Блок излучателя нейтронов



Блок излучателя нейтронов
Блок излучателя нейтронов
Блок излучателя нейтронов

 


Владельцы патента RU 2541509:

Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (ФГУП "ВНИИА") (RU)

Изобретение относится к устройствам импульсных излучателей с получением разовых или многоразовых импульсов нейтронного и рентгеновского излучения. В заявленном блоке излучателя нейтронов нейтронная трубка (8) с металлическим корпусом (9) герметично закреплена на торце корпуса блока схемы питания, имеет с ним тепловой и электрический контакты с возможностью смены нейтронной трубки. При этом нейтронная трубка размещена с зазором между высоковольтным изолятором (16) нейтронной трубки и изолятором блока схемы питания (17), заполненным газообразным диэлектриком (18). Между корпусом нейтронной трубки и мишенью расположено керамическое кольцо с электрическим сопротивлением, равным сопротивлению смещения. Блок схемы питания и нейтронная трубка электрически соединены между собой плавающими контактами. Техническим результатом является увеличение ресурса, повышение интенсивности излучения за счет удаления изоляционных материалов из области вокруг ускоряющего электрода, повышение стабильности. 2 з.п. ф-лы, 3 ил.

 

Изобретение относится к устройствам импульсных излучателей - генераторов разовых или многоразовых импульсов нейтронного и рентгеновского излучения.

Известно устройство для импульсного нейтронного каротажа скважин, состоящее из наземной аппаратуры временного анализа импульсов, блока управления и питания и скважинного прибора, содержащего импульсный источник быстрых нейтронов, выполненный на ускорительной трубке с мишенью, каналы регистрации нейтронов и гамма-квантов, схему управления источником нейтронов, источник питания, в котором в каналы регистрации введены преобразующие сплошной спектр счетных импульсов в линейчатые схемы пропускания, управляемые одним задающим генератором и генератором цуга, а в цепь генератора цуга введена линия задержки и триггер, выходы которого подключены к входам управления схемы пропускания. Задающий генератор выполнен по схеме ждущего мультивибратора, одно плечо которого подключено к наземному источнику регулируемого напряжения. Авторское свидетельство СССР №447097, МПК: G01V 5/10, 2000 г. Устройство нестабильно и ненадежно в работе, громоздко.

Известен импульсный нейтронный генератор на вакуумной нейтронной трубке, содержащий блок трубки в виде металлического корпуса, залитого жидким диэлектриком, в котором расположена нейтронная трубка с ее схемой питания, блок коммутации со схемой формирования управляющего импульса, блока электроники. Серийно выпускаемый блок трубки ИНГ-013БТ. Прототип. Сборник материалов, Межотраслевой научно-технической конференции «Портативные генераторы нейтронов и технологии на их основе», Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова, 2004, с.73. Прототип имеет ограниченный ресурс работы.

Задачей изобретения является разработка мощного, стабильного нейтронного генератора с большим ресурсом работы.

Техническим результатом изобретения является увеличение ресурса, повышение интенсивности за счет удаления изоляционных материалов из области вокруг ускоряющего электрода, повышение стабильности.

Технический результат достигается тем, что в блоке излучателя нейтронов, содержащем нейтронную трубку со схемой питания, включающей накопительный конденсатор, схему формирования ускоряющего импульса напряжения на нейтронную трубку, схему питания ионного источника нейтронной трубки, схему формирования импульса поджига нейтронной трубки, причем схема питания размещена отдельным блоком в металлическом герметичном корпусе, залитом жидким диэлектриком, с системой термокомпенсации, нейтронная трубка с металлическим корпусом герметично закреплена на торце корпуса блока схемы питания, имеет с ним тепловой и электрический контакты с возможностью смены нейтронной трубки, нейтронная трубка размещена с зазором между высоковольтным изолятором нейтронной трубки и изолятором блока схемы питания, заполненным газообразным диэлектриком. Между корпусом нейтронной трубки и мишенью расположено керамическое кольцо с электрическим сопротивлением, равным сопротивлению смещения. Блок схемы питания и нейтронная трубка электрически соединены между собой плавающими контактами.

Сущность изобретения поясняется на фиг.1, фиг.2 и фиг.3.

На фиг.1 схематично представлен продольный разрез блока излучателя, где: 1 - металлический корпус блока схемы питания нейтронной трубки; 2 - металлический замкнутый сердечник высоковольтного трансформатора, 3 - импульсный высоковольтный трансформатор, 4 - трансформаторы поджига НТ, 5 - накопительный конденсаторы, 6 - конденсаторы источников, 7 - дроссель, 8 - нейтронная трубка, 9 - металлический корпус НТ, 10 - сопротивление смещения, 11 - мишенный электрод НТ, 12 - сеточный электрод НТ, 13 - анодный электрод НТ, 14 - катодный электрод НТ, 15 - поджигающий электрод НТ, 16 - высоковольтный изолятор НТ, 17 - изолятор блока схемы питания, 18 - газообразный диэлектрик, 19 - жидкий диэлектрик, 20 - электрический экран, 21 - плавающие контакты, 22 - элементы крепления и герметизации, 23 - проходные керамические изоляторы, 24 - термокомпенсатор.

На фиг.2 представлена схема блока излучателя нейтронов, где: 2 - металлический замкнутый сердечник высоковольтного трансформатора, 4 - трансформаторы поджига НТ, 5 - накопительный конденсаторы, 6 - конденсаторы источников, 7 - дроссель, 8 - нейтронная трубка, 10 - сопротивление смещения, 23 - проходные керамические изоляторы.

На фиг.3 схематично представлено разбиение блока излучателя нейтронного генератора на функциональные блоки: блок схемы питания нейтронной трубки БП и блок нейтронной трубки в металлическом корпусе НТ, где: 10 - сопротивление смещения, 11 - мишенный электрод НТ, 12 - сеточный электрод НТ, 21 - плавающие контакты.

Блок излучателя выполнен в виде двух функциональных блоков (фиг.3): блока схемы питания нейтронной трубки БП и нейтронной трубки в металлическим корпусом НТ. БП заполнен жидким диэлектриком. Полость между изолятором НТ и изолятором БП заполнена газообразным диэлектриком. Такое конструктивное выполнение излучателя позволяет осуществлять быструю замену НТ при отработке ее ресурса.

Блок схемы питания нейтронной трубки БП включает корпус 1, высоковольтную часть схемы ее питания, обеспечивающую ускоряющее напряжение с высоковольтным трансформатором 3 на замкнутом металлическом сердечнике 2, трансформатор поджига 4, накопительные конденсаторы 5, конденсатор источника ионов 6, дроссель 7.

Для обеспечения электрической прочности и теплопередачи от внутренних источников энергии во внешнюю среду БП залит жидким диэлектриком 19. Для компенсации температурного изменения объема жидкого диэлектрика установлен компенсатор 24.

Нейтронная трубка 8 НТ содержит металлический корпус 9, несколько ионных искровых источников дейтонов 14, 15 при общем аноде 13. Анодный узла обеспечивает повышенный в 2-3 раза ресурс работы трубки.

Сеточный электрод 12 жестко соединен с корпусом 9 нейтронной трубки, внутри которой коаксиально закреплена мишень и сопротивление смещения 10 (керамическое кольцо).

Сопротивление керамического кольца 10 равно сопротивлению смещения между сеточным 12 и мишенным 11 электродами. Величина этого сопротивления лежит в пределах от 800 Ом до 5 кОм.

Технологически сопротивление на керамике может быть выполнено различными способами: напылением резистивного слоя, выполнением объемного сопротивления в керамике и т.д.

Анодный узел 13 жестко закреплен на одном конце высоковольтного керамического изолятора 16, другой конец которого закреплен на корпусе 9 нейтронной трубки 8 и соединен с электрическим экраном 20 для выравнивания электрического поля в блоке излучателя.

Нейтронная трубка 8 с металлическим корпусом 9 герметично и жестко закреплена на торце корпуса 1 блока схемы питания при помощи элементов крепежа и герметизации 22, имеет с корпусом 1 электрический и тепловой контакт, размещена с зазором 18 между высоковольтным изолятором 16 и изолятором блока питания 17 заполненным газообразным диэлектриком. В качестве газообразного диэлектрика в излучателе использован элегаз, имеющий лучшие по сравнению с жидкими диэлектриками свойства.

В качестве жидкого диэлектрика 19 в БП использовано масло ТКп, имеющее хорошие диэлектрические свойства. Одним из наиболее подходящих жидких диэлектриков является кремнийорганическая жидкость ПФМС-2/5 Л, обладающая аналогичными с маслом ТКп диэлектрическими свойствами (50 кВ/2,5 мм) и коэффициентом объемного расширения.

Внешнее питание и импульсы запуска подают через керамические проходные изоляторы 23.

Блок излучателя работает следующим образом.

При срабатывании коммутирующего элемента (на фигурах не показан) накопительные конденсаторы 5, заряженные до напряжения 4,5 кВ, разряжаются через первичные обмотки трансформатора 4. На вторичной обмотке формируется импульс напряжения 100-150 кВ длительностью 4 мкс, положительной полярности и через систему контактов 21 подается на катод 14 нейтронной трубки. С задержкой 0,8 мкс один из трансформаторов 4 формирует импульс поджига ионного источника и разряд конденсаторов 6 через анод13 и катод 14. Образовавшиеся ионы дейтерия бомбардируют мишенный электрод нейтронной трубки 8. На мишени в результате реакции 1H2+1H32He4+n образуются нейтроны с энергией 14 МэВ и вторичные электроны.

При протекании тока через ускоряющий зазор на сопротивлении смещения 10 возникает разность потенциалов, которая запирает вторичные электроны, образовавшиеся в процессе бомбардировки мишени нейтронной трубки 8 ионами дейтерия, что позволяет уменьшить паразитный ток трубки и повысить тем самым срок ее службы.

При работе блока излучателя происходит разогрев мишенного электрода 11 до температуры 100°C. Так как мишень блока открыта, она охлаждается естественным путем и принудительным охлаждением воздухом или водой.

В излучателе можно последовательно автоматически подключать источники, увеличивая ресурс работы блока излучателя до 500-600 часов.

Ресурс определен длительностью работы блока питания и составляет 1000 часов.

1. Блок излучателя нейтронов, содержащий нейтронную трубку со схемой питания, включающей накопительный конденсатор, схему формирования ускоряющего импульса напряжения на нейтронную трубку, схему питания ионного источника нейтронной трубки, схему формирования импульса поджига нейтронной трубки, причем схема питания размещена отдельным блоком в металлическом герметичном корпусе, залитом жидким диэлектриком, с системой термокомпенсации, отличающийся тем, что нейтронная трубка с металлическим корпусом герметично закреплена на торце корпуса блока схемы питания, имеет с ним тепловой и электрический контакты с возможностью смены нейтронной трубки, нейтронная трубка размещена с зазором между высоковольтным изолятором нейтронной трубки и изолятором блока схемы питания, заполненным газообразным диэлектриком.

2. Блок излучателя нейтронов по п.1, отличающийся тем, что между корпусом нейтронной трубки и мишенью расположено керамическое кольцо с электрическим сопротивлением, равным сопротивлению смещения.

3. Блок излучателя нейтронов по п.1, отличающийся тем, что блок схемы питания и нейтронная трубка электрически соединены между собой плавающими контактами.



 

Похожие патенты:

Изобретение относится к области ускорительной техники и может быть использовано для моделирования микрометеоритов и техногенных частиц. Ускоритель высокоскоростных твердых частиц содержит инжектор, индукционные датчики, усилители, линейный ускоритель, источник фиксированного высокого напряжения, цилиндрические электроды, селектор скоростей, селектор удельных зарядов, камеру высокого давления, блок формирования девиации частоты, высокочастотный конвертор, повышающий импульсный трансформатор и мишень.

Изобретение относится к способам регистрации аномальной дисперсии неоднородного протяженного плазменного столба и может быть использовано в спектроскопии в неоднородных газовых и плазменных средах, в лазерной спектроскопии и в спектральном анализе газообразных веществ.

Изобретение относится к области ускорительной техники и может быть использовано в качестве инжектора пылевых частиц для последующей ускорительной системы. Инжектор заряженных пылевых частиц, содержащий корпус, зарядный электрод, зарядную камеру, внешний составной электрод зарядной камеры, иглу (или набор игл), бункерную камеру.

Изобретение относится к области ускорительной техники и может быть использовано для моделирования микрометеоритов и техногенных частиц. Каскадный импульсный ускоритель твердых частиц содержит инжектор, индукционные датчики, усилители, цилиндрические электроды, резисторы делителя, колонны разделительных сопротивлений, высоковольтные конденсаторы, неуправляемые разрядники, управляемые разрядники, систему управления, датчик тока, источник высокого напряжения, шину данных, мишень, согласующее устройство, электронно-вычислительную машину.

Заявленное изобретение относится к приборам для ускорения ионов в электростатических полях, конкретно к технике генерации нейтронов при ядерном взаимодействии дейтронов с тритиевыми мишенями.
Изобретение относится к высоковольтной ускорительной технике и, в частности, к ленточным транспортерам зарядов электростатических ускорителей. В качестве многослойной тканевой основы транспортировочной ленты используют полиэфирно-хлопковую ткань, слои которой соединяют между собой клеем с высокой адгезией, а плакировочные слои ткани выполняют из резиновой смеси на основе бутадиен-нитрильного каучука, включающего мел и каолин.

Изобретение относится к области ускорительной техники и может быть использовано для моделирования микрометеоритов и техногенных частиц. .

Изобретение относится к области физического приборостроения, в частности к источникам нейтронного излучения, и предназначено для использования при разработке нейтронных и рентгеновских генераторов.

Изобретение относится к приборам для ускорения ионов в электростатических полях, конкретно к технике генерации нейтронов при ядерном взаимодействии дейтронов с тритиевыми мишенями.

Изобретение относится к ускорительной технике наносекундного диапазона и предназначено для генерации мощных электронных пучков, используемых в СВЧ приборах, радиационных технологиях и научных исследованиях. Сильноточный наносекундный ускоритель электронных пучков содержит размещенные в одном цилиндрическом корпусе (1) и соединенные последовательно двойную формирующую линию (2) с коаксиальными электродами (7, 8), основной искровой разрядник (3) и обостряющий искровой разрядник (4), вакуумный диод (5) и импульсный зарядный генератор (6) с ферромагнитным сердечником (14) и высоковольтным электродом (19), который соединен с дисковым электродом (9) основного искрового разрядника (3) и коаксиальным электродом (7) двойной формирующей линии (2). При этом объемы, занимаемые зарядным генератором (6) и двойной формирующей линией (2), разделены корпусом основного разрядника (3). Емкостный накопитель зарядного генератора (6) выполнен из параллельно соединенных и соосно расположенных цилиндрических конденсаторов (12). Вторичная обмотка импульсного трансформатора выполнена из четырех секторных обмоток (18), радиально расположенных вокруг ферромагнитного сердечника (14). Технический результат - повышение надежности и ресурса ускорителя. 2 з.п. ф-лы, 1 табл., 1 ил.

Изобретение относится к области ускорительной техники и может быть использовано в качестве инжектора пылевых частиц в стенде для проведения испытаний по воздействию разнонаправленных потоков ускоренных частиц на материалы и элементов конструкции космических аппаратов. Инжектор заряженных пылевых частиц содержит корпус, зарядную камеру, внешний составной электрод зарядной камеры, бункерный электрод, бункерную камеру и пьезоизлучатель. Зарядный электрод имеет эллиптическую форму, на нем установлены два набора углеродистых нитей, направленных в горизонтальном и в вертикальном направлениях, внешний составной электрод содержит два выходных отверстия, направленных в горизонтальной и вертикальной плоскости, в выходных отверстиях инжектора установлены металлические сетки. Технический результат - увеличение выхода заряженных пылевых частиц и обеспечение двух направлений движения потока заряженных пылевых частиц - вертикального и горизонтального. 2 ил.

Изобретение относится к области ускорительной техники и может быть использовано для моделирования микрометеоритов и техногенных частиц. Резонансный ускоритель пылевых частиц содержит инжектор, индукционные датчики, усилители, мишень. Соосно инжектору установлены сквозной изолятор, экранирующий электрод, автогенератор и резонансный трансформатор, состоящий из диэлектрической трубы, первичной и вторичной обмотки и конического каркаса первичной обмотки. Технический результат - повышение скоростей и расширение диапазона ускоряемых частиц, повышение надежности и упрощение конструкции. 1 ил.

Изобретение относится к ускорительной технике и может быть использовано для создания пучков заряженных частиц наносекундной длительности с высокой частотой следования импульсов. Линейный индукционный ускоритель содержит индукционную систему 1 в виде набора ферромагнитных сердечников, охваченных витками намагничивания 2, которые объединены в два общих вывода, центральный электрод 3, расположенный по оси индукционной системы 1, один конец электрода 3 заземлен на корпус ускорителя, а второй связан с защитным экраном 5, одинарную формирующую линию 6, заземленный и потенциальный электроды которой соединены с выходом магнитного импульсного генератора 7, состоящего из последовательных контуров сжатия, каждый из которых образован конденсатором и дросселем насыщения, один из общих выводов витков намагничивания индукционной системы 1 подсоединен к потенциальному электроду формирующей линии 6, а между вторым общим выводом витков намагничивания индукционной системы 1 и заземленным электродом одинарной формирующей линии 6 включена обмотка магнитного коммутатора 8, между защитным экраном 5 и выходным фланцем 9 ускорителя расположен цилиндрический вакуумный изолятор 10, на изоляторе 10 размещена однослойная обмотка размагничивания 11, подсоединенная одним выводом к клемме 12 импульсного источника размагничивания. На изоляторе 10 размещена дополнительная обмотка 13, индуктивно связанная с обмоткой размагничивания 11, один вывод дополнительной обмотки 13 соединен с защитным экраном 5, другой подсоединен к обмотке размагничивания 11 и точка соединения обмоток 11, 13 подключена электрическим проводником 14 к центральному электроду 3, на котором у защитного экрана 5 размещены ферромагнитные сердечники 15 дополнительного дросселя насыщения. Контур, образованный дополнительной обмоткой 13, проводником 14, частью центрального электрода 16 и защитным экраном 5, охватывает сечение сердечников 15 дополнительного дросселя насыщения и является его короткозамкнутой обмоткой. Технический результат - повышение эффективности ускорителя за счет уменьшении длительности фронта импульса тока пучка ускорителя. 1 ил.

Изобретение относится к области ускорительной техники и может быть использовано для моделирования микрометеоритов и техногенных частиц. Устройство для исследования физических явлений при высокоскоростном ударе состоит из ускорительного тракта, содержащего инжектор, индукционные датчики, линейный ускоритель, мишень, согласно изобретению в ускорительный тракт введены соосно расположенные квадруполь, установленный за индукционными датчиками, и блок разряда частиц, сетки заземления, расположенные на входе и выходе блока разряда частиц после линейного ускорителя, приемник ионов, установленный перед мишенью, дополнительно введен второй ускорительный тракт, расположенный под углом от 1° до 10° к первому ускорительному тракту, состоящий из инжектора, индукционных датчиков, линейного ускорителя, мишени, квадруполя, блока разряда частиц, сетки заземления, приемника ионов, а также дополнительно в устройство введен измерительный блок, соединенный с блоком датчиков, приемниками ионов обоих усилительных трактов и блоком сбора информации, а также веден блок управляющих сигналов, соединенный с индукционными датчиками, квадруполями, линейными ускорителями, блоками разряда частиц обоих усилительных трактов и блоком сбора информации. Технический результат - расширение функциональных возможностей за счет возможности исследовать физические эффекты при встречном столкновении высокоскоростных частиц. 1 ил.
Наверх