Устройство для получения стронция-82


 


Владельцы патента RU 2543051:

Федеральное государственное унитарное предприятие "Государственный научный центр Российской Федерации - Физико-энергетический институт имени А.И. Лейпунского" (RU)

Изобретение относится к устройству для получения стронция-82. Заявленное устройство содержит нагреватель (9) и изолирующую камеру (4), заполняемую газом, не взаимодействующим с металлическим рубидием, в которой установлены облученная в потоке ускоренных заряженных частиц мишень (10), представляющую собой стальную оболочку, заполненную металлическим рубидием, держатель (1) облученной мишени (10) и химический реактор (23), с корпусом которого соединены трубопроводы подачи в химический реактор (23) расплавленного металлического рубидия (18), закиси азота (17), раствора азотной кислоты (19), а также трубопровод (15) выдачи из химического реактора (23) полученного раствора солей рубидия. В частных случаях исполнения устройства на трубопроводе (18) подачи расплавленного металлического рубидия в химический реактор (23) установлен клапан (6). При этом изолирующая камера (4) теплоизолирована. Техническим результатом является упрощение технологии получения стронция-82 и повышение ее безопасности. 2 з.п. ф-лы, 1 ил.

 

Изобретение относится к радиохимии и производству радиоизотопов для ядерной медицины.

Известно устройство для получения стронция-82, состоящее из облученной в потоке ускоренных заряженных частиц мишени, представляющей собой стальную оболочку, заполненную металлическим рубидием, изделий из материала, сорбирующего стронций-82 и не взаимодействующего с расплавленным рубидием, и нагревателей, поддерживающих оптимальный температурный режим сорбции, при котором температура расплавленного рубидия отличается от температуры сорбента (Б.Л. Жуйков, С.В. Ермолаев, В.М. Коханюк, Патент RU 2356113).

Недостатки известного устройства:

- сложность нагревателей, обеспечивающих оптимальный температурный режим сорбции, при котором температура расплавленного рубидия отличается от температуры сорбента;

- устройство не оснащено оборудованием для очистки стронция-82 от активных и неактивных примесей;

- устройство не оснащено оборудованием для выполнения опасной операции по утилизации облученного рубидия.

Наиболее близким по технической сущности заявленному устройству является устройство для получения стронция-82, состоящее из нагревателя и изолирующей камеры, заполняемой газом, не взаимодействующим с металлическим рубидием, в которой установлены облученная в потоке ускоренных заряженных частиц мишень, представляющая собой стальную оболочку, заполненную металлическим рубидием, и держатель облученной мишени (Б.Л. Жуйков, В.М. Коханюк, В.Н. Глущенко и др., Радиохимия, 1994, том 36, с.494-498).

Недостаток известного устройства:

- известное устройство предназначено для реализации сложной, взрывоопасной и пожароопасной технологии радиохимического получения стронция-82, использующей органический растворитель.

Для исключения указанного недостатка в устройстве для получения стронция-82, состоящем из нагревателя и изолирующей камеры, заполняемой газом, не взаимодействующим с металлическим рубидием, в которой установлены облученная в потоке ускоренных заряженных частиц мишень, представляющая собой стальную оболочку, заполненную металлическим рубидием, и держатель облученной мишени, предлагается в изолирующей камере установить химический реактор, с корпусом которого соединить трубопроводы подачи в химический реактор расплавленного металлического рубидия, закиси азота, раствора азотной кислоты, и трубопровод выдачи из химического реактора полученного раствора солей рубидия.

В частном случае исполнения устройства предлагается:

- на трубопроводе подачи расплавленного металлического рубидия в химический реактор установить клапан;

- изолирующую камеру теплоизолировать.

На фигуре представлено устройство для получения стронция-82.

На фигуре приняты следующие обозначения: 1 - держатель облученной мишени; 2 - душевая насадка, 3(1)÷3(8) - запорные вентили; 4 - изолирующая камера; 5 - инструмент для вскрытия оболочки облученной мишени; 6 - клапан; 7 - мановакууметр; 8 - мерная колба; 9 - нагреватель; 10 - облученная мишень; 11 - разбрызгиватель расплавленного рубидия; 12 - теплоизоляция; 13 - термометр; 14 - трубопровод вакуумирования химического реактора; 15 - трубопровод выдачи раствора солей рубидия из химического реактора; 16 - трубопровод подачи в изолирующую камеру газа, не взаимодействующего с рубидием; 17 - трубопровод подачи закиси азота в химический реактор; 18 - трубопровод подачи расплавленного металлического рубидия в химический реактор; 19 - трубопровод подачи раствора азотной кислоты в химический реактор; 20 - трубопровод подачи сжатого воздуха в химический реактор; 21 - трубопровод, соединяющий химический реактор с вытяжной вентиляцией; 22 - трубопровод, соединяющий химический реактор со спецканализацией; 23 - химический реактор.

Устройство для получения стронция-82 состоит из нагревателя 9 и изолирующей камеры 4, заполняемой газом, не взаимодействующим с металлическим рубидием, в которой установлены облученная в потоке ускоренных заряженных частиц мишень 10, представляющая собой стальную оболочку, заполненную металлическим рубидием, и держатель 1 облученной мишени 10 и установленный в изолирующей камере 4 химический реактор 23, с корпусом которого соединены трубопроводы подачи в химический реактор 23 расплавленного металлического рубидия 18, закиси азота 17, раствора азотной кислоты 19, и трубопровод 15 выдачи из химического реактора 23 полученного раствора солей рубидия.

Нагреватель 9 предназначен для нагревания всего внутреннего объема изолирующей камеры 4 до температуры большей температуры плавления рубидия. Нагреватель 9 может быть размещен внутри изолирующей камеры и представлять собой фен, который будет нагревать газ, заполняющий камеру, создавать его циркуляцию и нагревать им оборудование внутри камеры. Изолирующая камера 4, заполняемая газом, не взаимодействующим с металлическим рубидием, предназначена для размещения оборудования и безопасного вскрытия в ней мишени 10, облученной в потоке ускоренных заряженных частиц. Облученная мишень 10, представляющая собой стальную оболочку, заполненную металлическим рубидием, предназначена для накопления в ней стронция-82, образующегося в металлическом рубидии под воздействием ускоренных заряженных частиц. Держатель 1 предназначен для закрепления облученной мишени 10 перед ее вскрытием. Химический реактор 23 предназначен для получения в нем раствора солей рубидия.

Трубопровод 18 предназначен для подачи в химический реактор 23 расплавленного металлического рубидия, трубопровод 17 - для подачи в химический реактор 23 закиси азота, трубопровод 19 - для подачи в химический реактор 23 раствора азотной кислоты, а трубопровод 15 - для выдачи из химического реактора 23 полученного раствора солей рубидия.

В частных случаях исполнения устройства для получения стронция-82:

- на трубопроводе 18 подачи расплавленного металлического рубидия в химический реактор 23 может быть установлен клапан 6;

- изолирующая камера 4 может быть теплоизолирована теплоизоляцией 12.

Кроме того, в состав устройства могут входить следующие элементы:

душевая насадка 2, запорные вентили 3(1)÷3(8), инструмент 5 для вскрытия облученной мишени, мановакууметр 7, мерная колба 8, разбрызгиватель 11 расплавленного рубидия, термометр 13, трубопровод 14 вакуумирования химического реактора 23, трубопровод 16 подачи в изолирующую камеру 4 газа, не взаимодействующего с рубидием; трубопровод 20 подачи сжатого воздуха в химический реактор 23; трубопровод 21, соединяющий химический реактор 23 с вытяжной вентиляцией, трубопровод 22, соединяющий химический реактор 23 со спецканализацией.

Клапан 6 предназначен для подачи расплавленного металлического рубидия в химический реактор 23 по трубопроводу 18. Теплоизоляция 12 предусмотрена для сохранения тепла в изолирующей камере 4. Запорные вентили 3(1)÷3(8) предназначены для переключений оборудования при выполнении технологических операций. Инструмент 5 используют для вскрытия облученной мишени 10. Мановакууметр 7 предназначен для измерения давления в химическом реакторе 23. Мерная колба 8 предусмотрена для подачи раствора азотной кислоты в химический реактор 23. Разбрызгиватель 11 предназначен для разбрызгивания расплавленного рубидия в химическом реакторе 23. Термометр 13 (1) предусмотрен для измерения температуры, одинаковой во всем объеме изолирующей камеры 4, а термометр 13 (2) - для измерения температуры в химическом реакторе 23. Трубопровод 14 используют для вакуумирования химического реактора 23 и тем самым создания необходимого перепада давления между химическим реактором 23 и вскрытой облученной мишенью 10 перед подачей в химический реактор 23 расплавленного рубидия. Трубопровод 16 предназначен для подачи в изолирующую камеру 4 газа, не взаимодействующего с рубидием, перед вскрытием облученной мишени 10, трубопровод 20 - для подачи сжатого воздуха в химическом реакторе 23 с целью выдавливания из него растворов, трубопровод 21 предназначен для соединения химического реактора 23 с вытяжной вентиляцией, а трубопровод 22 предназначен для соединения химического реактора 23 со спецканализацией.

Устройство работает следующим образом.

Заполненную металлическим рубидием мишень 10 облучают в потоке ускоренных протонов. Помещают облученную мишень 10 в изолирующую камеру 4 и устанавливают ее в держатель 1. Открывают запорный вентиль 3(3) и заполняют изолирующую камеру 4 аргоном по трубопроводу 16. Вскрывают оболочку облученной мишени 10 инструментом 5.

Включают электроплитку 9 и нагревают оборудование и весь объем в изолирующей камере 4 до температуры 45 градусов по термометру 13 (1). Открывают запорный вентиль 3 (1) и откачивают по трубопроводу 14 воздух из химического реактора 23 до давления 1 мм рт.ст. по мановакуумметру 7. Опускают открытый конец трубопровода 18 в облученную мишень 10. Закрывают запорный вентиль 3 (1), открывают электромагнитный клапан 6 и передавливают давлением аргона облученный рубидий из мишени 10 в химический реактор 23. При поступлении облученный рубидий распределяется на внутренних поверхностях химического реактора 23 разбрызгивателем 11. Закрывают электромагнитный клапан 6.

Открывают запорный вентиль 3 (4) и подают в химический реактор 23 по трубопроводу 17 закись азота порциями, по меньшей мере, до прекращения роста температуры в химическом реакторе 23 по термометру 13 (2) при подаче свежей порции закиси азота. Закрывают запорный вентиль 3 (4). В результате взаимодействия закиси азота и рубидия на внутренних поверхностях химического реактора 23 образуются взрывобезопасные и пожаробезопасные соли рубидия.

Открывают запорный вентиль 3 (7) для соединения химического реактора по трубопроводу 21 со спецвентиляцией. Открывают запорный вентиль 3 (5) и подают в химический реактор 23 по трубопроводу 19 из мерной колбы 8 3 М раствор азотной кислоты, контролируя давление по мановакуумметру 7. Душевая насадка 2 будет распределять раствор азотной кислоты по внутренним поверхностям химического реактора. Раствор азотной кислоты растворит соли рубидия на внутренних поверхностях химического реактора 23 и весь стечет на его дно. Закрывают вентиль 3 (5).

Открывают запорные вентили 3 (2) и 3 (6) и полученный раствор из химического реактора 23 по трубопроводу 15 подают на сорбцию стронция-82. Закрывают запорные вентили 3 (2) и 3 (6). Открывают вентиль 3 (7).

Заполняют химический реактор 23 из мерной колбы 8 дезактивирующим раствором. Выполняют дезактивацию химического реактора 23. Закрывают вентиль 3 (7). Открывают вентили 3 (6) и 3 (8) и сливают дезактивирующий раствор в спецканализацию.

Пример конкретного исполнения устройства для получения стронция-82.

Облученная в потоке ускоренных частиц мишень 10 представляет собой стальную оболочку диаметром 20 мм, заполненную 20 г металлического рубидия. Содержание стронция-82 в облученной мишени 10 составляет 40 ГБк.

Объемы изолирующей камеры 4 и химического реактора 23, изготовленные из нержавеющей стали, равны соответственно 40 и 3 литрам.

В качестве нагревателя 9 выбрана электроплитка.

Все трубопроводы изготовлены из нержавеющей стали.

На трубопроводе 18 подачи в химический реактор 23 расплавленного металлического рубидия установлен электромагнитный клапан 6.

Корпус изолирующей камеры 4 снаружи закрыт каолиновой ватой.

Достигнут технический результат изобретения, упрощена технология получения стронция-82 и повышена ее безопасность за счет того, что в технологическом процессе не используется органический растворитель, а облученный металлический рубидий переводится во взрывобезопасные и пожаробезопасные соли рубидия.

1. Устройство для получения стронция-82, состоящее из нагревателя и изолирующей камеры, заполняемой газом, не взаимодействующим с металлическим рубидием, в которой установлены облученная в потоке ускоренных заряженных частиц мишень, представляющая собой стальную оболочку, заполненную металлическим рубидием, и держатель облученной мишени, отличающееся тем, что в изолирующей камере установлен химический реактор, с корпусом которого соединены трубопроводы подачи в химический реактор расплавленного металлического рубидия, закиси азота, раствора азотной кислоты, и трубопровод выдачи из химического реактора полученного раствора солей рубидия.

2. Устройство для получения стронция-82 по п.1, отличающееся тем, что на трубопроводе подачи расплавленного металлического рубидия в химический реактор установлен клапан.

3. Устройство для получения стронция-82 по п.1, отличающееся тем, что изолирующая камера теплоизолирована.



 

Похожие патенты:
Изобретение относится к способу генерации радиоизотопов, которые используются в ядерной медицине для приготовления фармпрепаратов, вводимых в пациентов. Заявленный способ включает облучение мишени пучком тормозного излучения и извлечение из мишени образовавшихся радионуклидов методами радиохимии.

Изобретение относится к радиохимии, а именно к способу получения дитритийдифторбензола источника ядерно-химического генерирования неизвестных фторзамещенных фенил-катионов.

Заявленное изобретение относится к устройству для элюирования радиоактивного материала. Заявленное устройство (100) для элюирования радиоактивного материала (160) может содержать элюционную колонку (105), предназначенную для размещения в ней радиоактивного материала, первый уплотнительный элемент (110), уплотняющий первый конец (111) элюционной колонки (105), второй уплотнительный элемент (120), уплотняющий второй конец (112) элюционной колонки (105), источник (20) подачи элюирующего вещества, соединенный с первым концом (111) элюционной колонки (105) при помощи первой иглы (22), устройство (40) сбора, соединенное со вторым концом (112) элюционной колонки (105) при помощи второй иглы (42), и фильтр (150), расположенный в элюционной колонке (105) и предназначенный для поддержания радиоактивного материала (160) и предотвращения контакта указанного материала (160) со второй иглой (42). Техническим результатом является возможность регулирования эффективности собирания ионов в процессе элюирования при изменении конфигурации колонки. 9 з. п. ф-лы, 12 ил.

Изобретение относится к области радиохимии и может быть использовано в технологии получения радиоактивных изотопов и аналитической химии. Способ разделения радионуклидов кадмия и серебра включает растворение облученного серебра в азотной кислоте, упаривание раствора, растворение образовавшихся нитратов в аммиачном растворе, восстановление серебра до металла в аммиачной среде сернокислым гидроксиламином при рН более 6 и при мольном отношении сернокислого гидроксиламина к серебру более 1, отделение осадка металлического серебра от маточного раствора, содержащего кадмий-109 и осаждение из маточного раствора любого малорастворимого соединения кадмия. Изобретение обеспечивает эффективное разделение радионуклидов кадмия и серебра. 2 ил., 1 табл.

Изобретение относится к области радиохимии и может быть использовано в технологии получения радиоактивных изотопов и аналитической химии. Способ выделения радионуклида кадмий-109 раствора, содержащего радионуклиды кадмия и серебра, заключается в растворении облученного серебра в азотной кислоте, упаривании до влажных солей полученного раствора, растворении образовавшихся нитратов и осаждении основного карбоната кадмия избытком осадителя. Осаждение основного карбоната кадмия проводят в присутствии нитрата и гидроксида аммония с концентрациями: [NH4NO3]≥0,1 моль/л и 0,2≤[NH4OH]≤0,8 моль/л. В качестве осадителя используют раствор карбоната или гидрокарбоната натрия или калия. Изобретение позволяет повысить коэффициент очистки кадмия без необходимости регенерации серебра. 1 ил., 2 табл.

Изобретение относится к способу синтеза легких ядер. В заявленном способе предусмотрено столкновение ускоренных потоков осциллирующих ионов при использовании магнитной системы в конфигурации открытой осесимметричной магнитной ловушки. При этом используется дополнительный плазменный эмиттер на внешнем электроде и потенциальный электрод, расположенный по центру. Техническим результатом является снижение потребляемой мощности и возможность обеспечения непрерывного режима работы применяемого устройства. 3 ил.
Наверх