Контейнер для горячего изостатического прессования изделий из гранулированных металлических порошков



Контейнер для горячего изостатического прессования изделий из гранулированных металлических порошков
Контейнер для горячего изостатического прессования изделий из гранулированных металлических порошков
Контейнер для горячего изостатического прессования изделий из гранулированных металлических порошков

 


Владельцы патента RU 2544719:

Открытое акционерное общество "Всероссийский институт легких сплавов" (ОАО "ВИЛС") (RU)

Изобретение относится к порошковой металлургии и может быть использовано при производстве заготовок дисков газотурбинных двигателей из гранулированных порошков жаропрочных никелевых сплавов. Контейнер для горячего изостатического прессования изделий кольцевой формы с соотношением диаметра изделия к его толщине более 10 содержит корпус высотой, не превышающей 0,7 его диаметра, и закладные элементы, размещенные в корпусе без жесткого крепления к его внутренней поверхности и с образованием перпендикулярных оси контейнера формообразующих полостей, которые выполнены с наружным диаметром 1,12-1,15 от диаметра изделия и имеют поверхность, ответную конфигурации поверхности изделия. Обеспечивается повышение коэффициента использования металла. 1 пр., 3 ил.

 

Настоящее изобретение относится к области металлургии, в частности порошковой металлургии жаропрочных никелевых сплавов, и может быть использовано при производстве заготовок дисков газотурбинных двигателей авиационной, газовой, морской и т.д. промышленности.

В настоящее время одним из основных направлений совершенствования технологии производства изделий методом гранульной металлургии является снижение расхода (массы) гранул и трудоемкости их изготовления, что может быть достигнуто за счет максимального приближения геометрии изготавливаемых заготовок к конфигурации готовых изделий, уменьшения припусков на механическую обработку, объема металлургических испытаний и т.п.

При производстве достаточно тонких заготовок дисков типа лабиринтов и покрывных дисков с отношением диаметра диска к толщине диска более 10 расход гранул для изготовления собственно одной заготовки соизмерим с расходом гранул на контрольное кольцо для проведения металлургических испытаний, вследствие чего изготовление таких деталей в единичном варианте крайне неэкономично и затратно.

Снижение расхода гранул и, следовательно, повышение КИМ в этом случае может быть достигнуто за счет использования схемы группового прессования таких заготовок, когда в одной капсуле может быть получено несколько заготовок (5-8 штук).

При этом обеспечивается более устойчивое формоизменение заготовок в процессе ГИП с исключением их коробления, вызывающего увеличение припусков на мехобработку, а также уменьшение количества напусков (2-3 раза) для вырезки контрольных колец. При этом также уменьшается потребное количество капсул с соответствующим снижением трудозатрат на их изготовление (штамповка, мехобработка, сварка, отжиг), дегазацию и герметизацию, ГИП, термическую обработку.

Однако увеличение количества получаемых заготовок в одной капсуле лимитируется формоизменением (усадкой) капсулы в диаметральном направлении.

При определенном увеличении отношения высоты капсулы к диаметру капсулы происходит образование мениска в центральной зоне (в середине) капсулы, величина которого может превысить припуск на механическую обработку. В этом случае возможно забракование заготовок, расположенных в середине капсулы, по геометрическим параметрам. Увеличение же припуска на механическую обработку приведет к сверхнормативным затратам гранул.

Устранение этого недостатка возможно за счет увеличения локальной жесткости капсулы в проблемных зонах.

В условиях всестороннего равномерного нагружения, реализуемого при ГИП таких заготовок дисков, когда формообразующим инструментом является капсула, для дальнейшего снижения расхода гранул необходимо обеспечение устойчивого формоизменения капсулы в процессе прессования и хорошей воспроизводимости размеров заготовок.

Это может быть достигнуто за счет использования закладных элементов, имеющих конфигурацию, идентичную или близкую конфигурации заготовки в состоянии поставки.

Известен контейнер (заготовка) для горячего изостатического прессования изделий из металлического порошка (патент США №3992202, кл. МКИ B22F 3/4) с внутренним отверстием (полостью), включающее корпус с верхней и нижней крышкой и пространством, образованным корпусом и закладным элементом (стержнем), жестко закрепленным на нижней крышке.

После заполнения контейнера металлическим порошком, герметизации и ГИП закладной элемент удаляется, образуя в изделии полость заданной конфигурации и размеров.

Недостатком этого контейнера является то, что его конструкция позволяет получать изделия с осевой полостью, и не может быть использовано для изготовления нескольких плоских деталей типа «диск» со сложной наружной поверхностью.

Предлагается контейнер для горячего изостатического прессования изделий из гранулированных металлических порошков, включающий корпус с формообразующими полостями, образованными закладными элементами, расположенными перпендикулярно оси контейнера и не имеющими жесткого закрепления на внутренней поверхности контейнера, а конфигурация поверхности закладных элементов является ответной конфигурации поверхности изготавливаемых изделий (т.е. является зеркальным отражением).

При этом для изготовления изделий кольцевой формы (типа «диск») с соотношением диаметра диска к его толщине более 10 наружный диаметр закладных элементов D3 должен составлять 1,12-1,15 от диаметра получаемого изделия, а высота контейнера Нк не должна превышать 0,7 диаметра контейнера Dк.

Конструкция предлагаемого контейнера отличается от прототипа тем, что формообразующие полости расположены перпендикулярно оси контейнера, а закладные элементы не имеют жесткого закрепления на внутренних поверхностях контейнера, при этом конфигурация поверхности закладных элементов является ответной конфигурации поверхности изготавливаемых изделий.

Для изготовления изделий кольцевой формы (типа «диск») с вышеуказанными соотношениями и исключения образования мениска по центральной части боковой образующей поверхности, приводящего к забракованию изделий, наружный диаметр закладных элементов D3 должен составлять 1,12-1,15 от диаметра получаемого изделия, а высота контейнера Нк не должна превышать 0,7 диаметра контейнера Dк.

Технический результат - повышение коэффициента использования металла (КИМ), экономия дорогостоящих дефицитных материалов, снижение трудозатрат и металлоемкости при изготовлении тонкостенных крупногабаритных заготовок дисков из порошков - гранул жаропрочных никелевых сплавов.

Область применения: изготовление тонкостенных крупногабаритных заготовок дисков, лабиринтов, проставок, колец, рабочих колес и т.п. для двигателестроения авиационной, энергетической, газовой, морской и другой промышленности.

Пример

Для осуществления изобретения были опробованы 3 варианта конструкции контейнера.

По первому варианту - предлагаемому изобретению - контейнер был изготовлен в соответствии с формулой изобретения. Чертеж контейнера и две половинки корпуса контейнера в металле перед окончательной сборкой представлены на фиг. 1а, б. Контейнер содержит закладные элементы 1, образующие формообразующие полости 2. Количество получаемых дисков - 5 штук. Указанный контейнер был засыпан гранулами никелевого сплава ЭП741НП и подвергнут ГИП.

Внешний вид контейнера после ГИП представлен на фиг. 2. Комплект заготовок покрывного диска из 5 штук после удаления оболочки представлен на фиг. 3а, а одна заготовка покрывного диска после разрезки комплекта - на фиг. 3б.

В процессе ГИП произошло устойчивое прогнозируемое формоизменение контейнера (заготовки) как в высотном, так и в диаметральном направлениях, позволившее получить 5 годных заготовок покрывного диска с отношением диаметра диска к его толщине ≈13.

По сравнению с использованием одиночных капсул для изготовления одного вышеуказанного покрывного диска экономия гранул составила 23 кг (с учетом исключения необходимости изготовления дополнительных контрольных колец, уменьшения припусков на мехобработку и т.п.). КИМ при этом повысился с 0,24 до 0,30.

По второму варианту была опробована конструкция контейнера высотой, составляющей 0,8 от диаметра контейнера и диаметром закладных элементов, составляющим 1,11 от диаметра получаемого покрывного диска.

После ГИП такого контейнера с гранулами сплава ЭП741НП глубина мениска по центру боковой поверхности превысила расчетное значение, обеспечивающее получение необходимого размера диска. Вследствие этого на наружном диаметре центрального покрывного диска из полученного компакта осталась оболочка, и диск был забракован.

Таким образом, изменение указанных в предлагаемом решении соотношений величин элементов контейнера не обеспечивает получения качественных изделий.

По третьему варианту был опробован контейнер для получения покрывных дисков с использованием решения - прототипа.

Жесткое закрепление закладных элементов с контейнером повысило общую жесткость конструкции и не позволило пройти равномерной деформации в процессе ГИП с расчетным формоизменением.

Вследствие этого произошел плоскостной изгиб закладных элементов (коробление) и их заход в гранулы в процессе ГИП и, следовательно, в тело прессуемых покрывных дисков. В связи с этим 4 из 5 изготавливаемых дисков были забракованы по геометрическим размерам.

Таким образом, предлагаемая конструкция контейнера позволяет получать крупногабаритные изделия из порошков - гранул жаропрочных никелевых сплавов с повышением КИМ при значительном снижении трудоемкости и металлоемкости процесса, а также при этом обеспечивает экономию дорогостоящих дефицитных материалов.

Контейнер для горячего изостатического прессования изделий кольцевой формы с соотношением диаметра изделия к его толщине более 10 из гранулированных металлических порошков, характеризующийся тем, что он содержит корпус высотой, не превышающей 0,7 его диаметра, и закладные элементы, размещенные в корпусе без жесткого крепления к его внутренней поверхности и с образованием перпендикулярных оси контейнера формообразующих полостей, которые выполнены с наружным диаметром 1,12-1,15 от диаметра изделия и имеют поверхность, ответную конфигурации поверхности изделия.



 

Похожие патенты:

Изобретение относится к порошковой металлургии, в частности к прессованию порошковых материалов в пресс-форме. Пресс-форма для прессования порошкового материала содержит нижний пуансон с лунками, шарики, большой и малый диски из пластичного материала одинакового состава, матрицу, верхний пуансон и дополнительный нижний пуансон, предварительно смазанный пластичной смазкой.

Изобретение относится к порошковой металлургии, в частности к получению кольцеобразного оксидного формованного изделия. Может использоваться для изготовления стационарного слоя катализатора, используемого в реакционных трубках кожухотрубного реактора.

Изобретение относится к области электрометаллургии и может быть использовано при производстве расходуемых электродов для плавки металлов и сплавов. Инструмент содержит контейнер, матрицу и соединенные между собой посредством стяжки пресс-штемпель и пресс-шайбу.

Изобретение относится к порошковой металлургии, в частности к получению заготовок щеток электромашин из порошковых материалов на основе углерода. Заготовки щеток электромашин прессуют в многоместной пресс-форме вертикальным обжатием.

Изобретение относится к порошковой металлургии, в частности к оборудованию для компактирования прессованием порошкообразных материалов. Может использоваться для получения брикетов из мелкодисперсных порошков, вводимых в расплавы металлов в качестве легирующих добавок.

Изобретение относится к порошковой металлургии, в частности к прессовому оборудованию. Пресс содержит станину колонного типа с верхней и нижней траверсой, закрепленные на траверсах верхний и нижний пуансоны, контейнер с порошковым материалом, размещенный в вакуумной камере, и привод перемещения контейнера.

Изобретение относится к области производства изделий из полимерных материалов, легкоплавких металлов и сплавов, имеющих армированные детали. .

Изобретение относится к порошковой металлургии, в частности к способу прессования полых микросфер в присутствии жидкости при производстве пористой конструкционной керамики.

Изобретение относится к порошковой металлургии, в частности к способам прессования порошковых материалов в присутствии жидкости. .

Изобретение относится к области металлургии, в частности к получению ледебуритных инструментальных сталей способом порошковой металлургии. Способ получения материала с изотропными механическими свойствами, улучшенной износостойкостью и высоким потенциалом закалки характеризуется тем, что из ледебуритной инструментальной стали методом порошковой металлургии путем распыления жидкой стали азотом получают порошок и горячим изостатическим прессованием порошка получают HIP-заготовку.

Изобретение относится к способу и контейнеру формования заготовок с использованием горячего изостатического прессования. Способ и контейнер обеспечивают регулирование объема контейнера с получением заготовки заданной формы и размера исходя из выбранной загрузки металлического порошка для контейнера.

Изобретение относится к области формирования заготовок с помощью горячего изостатического прессования. Способ и контейнер (201, 301) обеспечивают регулирование деформаций контейнера (201, 301) во время воздействия высоких температур и давлений в процессе горячего изостатического прессования для получения заготовки (206, 306) заданной формы с по существу параллельными, выпуклыми или вогнутыми сторонами (216).

Изобретение относится к области порошковой металлургии жаропрочных никелевых сплавов и может быть использовано в производстве тяжелонагруженных деталей газотурбинных двигателей (ГТД), работающих в условиях градиента температуры и имеющих механические свойства, меняющиеся по сечению.
Изобретение относится к порошковой металлургии, в частности к созданию легких материалов с низким коэффициентом линейного расширения, и может быть использовано в качестве конструкционного материала при создании командных приборов систем управления летательных аппаратов с высокими эксплуатационными характеристиками.

Изобретение относится к оборудованию для прессования под высоким давлением. Пресс высокого давления содержит сосуд высокого давления, ограждающий камеру высокого давления и содержащий находящуюся под высоким давлением рабочую среду, корпус, вентилятор, соединенный с ним электродвигатель, охлаждающее устройство для охлаждения участка стенки корпуса, насосное устройство и направляющий элемент.

Изобретение относится к оборудованию для прессования под высоким давлением и при высокой температуре. Горячий изостатический пресс состоит из резервуара для создания давления, внутри которого имеется загрузочное пространство.

Изобретение относится к порошковой металлургии, в частности к получению металлической детали, усиленной вставкой из керамических волокон. .

Изобретение относится к оборудованию для газостатической обработки, а именно к двухкамерным газостатам. .

Изобретение относится к порошковой металлургии, в частности к получению изделий из жаропрочных никелевых сплавов. .

Изобретение относится к области обработки изделий горячим прессованием. Устройство для обработки содержит сосуд высокого давления, имеющий печную камеру и расположенный под ней теплообменник. Печная камера содержит теплоизолированный кожух и печь. Между корпусной частью и теплоизолирующим участком теплоизолированного кожуха образован направляющий проход, предназначенный для направления рабочей среды под давлением. В кожухе предусмотрены по меньшей мере один первый впуск и по меньшей мере один второй впуск для пропускания рабочей среды под давлением в направляющий проход. При этом по меньшей мере один второй впуск расположен под теплообменником в вертикальном направлении и в направлении потока рабочей среды под давлением в направляющем проходе во время фазы охлаждения, а по меньшей мере один первый впуск расположен над теплообменником. В результате обеспечивается быстрое охлаждение при низких тепловых нагрузках на сосуд высокого давления. 9 з.п. ф-лы, 8 ил.
Наверх