Осесимметричный изоляторный узел нейтронной трубки

Изобретение относится к конструктивным элементам ускорителей заряженных частиц, в частности к изоляторам нейтронных трубок, и может быть использовано при разработке нейтронных трубок и генераторов нейтронов. В заявленном осесимметричном изоляторном узле нейтронной трубки с ускоряющим электродом (3) изоляторы (1) выполнены в виде, по крайней мере, двух полых усеченных конусов, обращенных большими диаметрами друг к другу и соединенных с помощью пайки или термокомпрессионной сварки через кольцевую манжету (2) с кольцевым выступом по ее внутреннему диаметру. Кроме того, в заявленном устройстве установлен кольцевой подвижный компенсирующий элемент (4) с фиксирующим кольцом, между внешним и внутренним диаметрами которого выполнена кольцевая проточка. При этом по внешнему диаметру ускоряющего электрода выполнена кольцевая проточка, в кольцевой проточке ускоряющего электрода и в кольцевой проточке фиксирующего кольца установлена манжета с возможностью скольжения ее выступа. Техническим результатом является уменьшение продольной длины высоковольтных изоляторов трубки путем придания им формы усеченного конуса и увеличение электропрочности изолятора путем секционирования. 2 ил.

 

Изобретение относится к конструктивным элементам ускорителей заряженных частиц, в частности к изоляторам нейтронных трубок, и может быть использовано при разработке ионных источников и генераторов нейтронов.

Известна запаянная нейтронная трубка, содержащая анод, полый цилиндрический изолятор, на одном конце которого герметично закреплена мишень, на другом конце герметично закреплен расположенный в полости цилиндрического магнита металлический корпус с размещенными в нем катодом и антикатодом, в которой анод выполнен в виде заземленного металлического корпуса, поверхность анода расположена непосредственно на внутренней поверхности цилиндрического постоянного магнита, а катод и антикатод изолированы от заземленного металлического корпуса. Патент Российской Федерации на изобретение №2356114, МПК: G21G 4/02, 2009 г. Недостатком аналога является низкая электрическая прочность высоковольтного изолятора из-за отсутствия его секционирования.

Известна запаянная нейтронная трубка, содержащая секционированный высоковольтный изолятор, состоящий из двух одинаковых цилиндрических изоляторов с электродом, закрепленным посередине, на одном торце изолятора герметично закреплена мишень, на другом торце герметично закреплен металлический корпус с размещенными в нем катодом, антикатодом, анодом и цилиндрическим постоянным магнитом, создающим между катодами аксиальное магнитное поле. Запаянные ускорительные нейтронные трубки ВНИИА для лучевой терапии. В материалах научно-технической конференции «Вакуумная наука и техника», Сочи (Дагомыс), октябрь 2008 г., с.155-160. Прототип. Недостатком прототипа является значительная длина составного высоковольтного изолятора цилиндрической формы. Длина нейтронной трубки определяется длиной высоковольтного изолятора, поскольку электрическая прочность вакуумных промежутков превосходит электрическую прочность высоковольтных изоляторов к поверхностному пробою.

Задачей изобретения является уменьшение продольной длины высоковольтного изолятора без изменения вакуумных промежутков трубки или расстояний между электродами.

Данное изобретение устраняет недостатки аналогов и прототипа.

Техническим результатом изобретения является уменьшение продольной длины высоковольтных изоляторов трубки путем придания им формы усеченного конуса и увеличение электропрочности изолятора путем секционирования.

Технический результат достигается тем, что в осесимметричном изоляторном узле нейтронной трубки с ускоряющим электродом в виде диска изоляторы выполнены в виде, по крайней мере, двух полых усеченных конусов, обращенных большими диаметрами друг к другу и соединенных с помощью пайки или термокомпрессионной сварки через кольцевую манжету с кольцевым выступом по ее внутреннему диаметру, установлен кольцевой подвижный компенсирующий элемент с фиксирующим кольцом, между внешним и внутренним диаметрами которого выполнена кольцевая проточка, причем по внешнему диаметру ускоряющего электрода выполнена кольцевая проточка, а манжета установлена с возможностью скольжения ее выступа в кольцевой проточке ускоряющего электрода и в кольцевой проточке фиксирующего кольца.

Сущность изобретения поясняется на фиг.1 и фиг.2.

На фиг.1 схематично представлен изоляторный узел, выполненный в виде двух полых усеченных конусов из диэлектрика, например из керамики, соединенных через манжету друг с другом и с ускоряющим электродом, соединенным с манжетой через кольцевой подвижный компенсирующий элемент, где: 1 - изоляторы, выполненные в виде полых усеченных конусов, 2 - кольцевая манжета, 3 - ускоряющий электрод в виде диска, 4 - кольцевой подвижный компенсирующий элемент.

На фиг.2 схематично представлен фрагмент изоляторного узла, где: 1 - изоляторы, выполненные в виде полых усеченных конусов, 2 - кольцевая манжета, 3 - ускоряющий электрод в виде диска, 4 - кольцевой подвижный компенсирующий элемент, 5 - кольцевой выступ по внутреннему диаметру кольцевой манжеты 2, 6 - кольцевая проточка, выполненная по внешнему диаметру ускоряющего электрода в виде диска 3, 7 - фиксирующее кольцо, 8 - кольцевая проточка между внешним и внутренним диаметрами фиксирующего кольца 7.

Кольцевой подвижный компенсирующий элемент 4 является частью изоляторного узла. В нем установлена кольцевая манжета 2 с кольцевым выступом 5 по внутреннему диаметру.

На ускоряющем электроде в виде диска 3 выполнена кольцевая проточка 6 по его внешнему диаметру. Фиксирующее кольцо 7 жестко соединено с ускоряющим электродом 3. Кольцевая манжета 2 с выступом 5 по внутреннему диаметру установлена с возможностью скольжения выступа 5 между диском 3 ускоряющего электрода и фиксирующим кольцом 7 в пределах кольцевой проточки 8.

Придание изоляторам 1 формы полого усеченного конуса приводит к уменьшению длины составного изолятора и увеличению электрической прочности на единицу длины.

При этом длина вакуумных промежутков и расстояние между электродами нейтронной трубки по поверхностям изоляторов 1 остаются неизменными, а продольная длина изолятора 1 уменьшается в 1/cosα раз, где α - половина угла при вершине конуса.

И при изготовлении, и при работе нейтронной трубки происходит разогрев всех ее элементов, что приводит к изменению их объемных и линейных размеров.

С изменением диаметра изоляторов 1 увеличивается деформация ускоряющего электрода 3 изоляторного узла из-за разности коэффициентов линейного расширения диэлектриков и металлов.

Деформация ускоряющего электрода 3 может приводить к деформации кольцевой манжеты 2 и разрушению изоляторного узла.

Для уменьшения этого эффекта в конструкцию изолирующего узла введен подвижный кольцевой компенсирующий элемент 4, размещенный по окружности между манжетой 2 и ускоряющим электродом 3, снимающий эффект деформации манжеты из-за расширения ускоряющего электрода 3.

Осесимметричный изоляторный узел нейтронной трубки с ускоряющим электродом в виде диска, отличающийся тем, что изоляторы выполнены в виде, по крайней мере, двух полых усеченных конусов, обращенных большими диаметрами друг к другу, соединенных с помощью пайки или термокомпрессионной сварки через кольцевую манжету с кольцевым выступом по ее внутреннему диаметру, установлен кольцевой подвижный компенсирующий элемент с фиксирующим кольцом, между внешним и внутренним диаметрами которого выполнена кольцевая проточка, причем по внешнему диаметру ускоряющего электрода выполнена кольцевая проточка, а манжета установлена с возможностью скольжения ее выступа в кольцевой проточке ускоряющего электрода и в кольцевой проточке фиксирующего кольца.



 

Похожие патенты:

Изобретение относится к способу изготовления электродов и мишеней нейтронных трубок для генерации потоков нейтронов и может быть использовано при разработке генераторов нейтронов для исследования геофизических и промысловых скважин.

Изобретение относится к ядерной физике и медицине и может быть применено для нейтронозахватной терапии злокачественных опухолей с использованием источника нейтронов, выполненного на основе ускорителя заряженных частиц.

Изобретение относится к устройствам для генерации импульсных потоков быстрых нейтронов, в частности к портативным нейтронным генераторам с запаянными нейтронными трубками, и может быть использовано в низковольтной ускорительной технике, геофизическом приборостроении, в частности, при разработке импульсных генераторов нейтронов для исследования нефтегазовых и урановых скважин методом импульсного нейтронного каротажа.

Изобретение относится к области создания ускоренных ионов в нейтронных трубках, применяемых в медицине, системах идентификации ядерных материалов, устройствах каротажа нефтегазовых скважин и в других областях.

Изобретение относится к области физического приборостроения, в частности к источникам нейтронного излучения, и предназначено для применения в аппаратуре элементного анализа вещества на основе нейтронно-радиационных методов.

Изобретение относится к нейтронной технике, к средствам формирования потоков нейтронов высокой плотности и может быть использовано в экспериментальной нейтронной физике, ядерной геофизике, при анализе материалов, в том числе нейтронно-активационном анализе, и в других областях ядерной техники и технологии.

Изобретение относится к области электротехники, к источникам нейтронного и рентгеновского излучения и других подобных устройств, в частности к экранировке аппаратов и их деталей.

Изобретение относится к области физического приборостроения, в частности к источникам нейтронного излучения, предназначенным для проведения геофизических исследований нефтяных, газовых и рудных скважин.

Изобретение относится к области физического приборостроения, в частности к источникам нейтронного излучения, и предназначено для проведения геофизических исследований скважин импульсными нейтронными методами.

Изобретение относится к способам изготовления газонаполненных нейтронных трубок и формированию нейтронного потока. .

Изобретение относится к устройствам импульсных излучателей-генераторов разовых или многоразовых импульсов нейтронного и рентгеновского излучения. В заявленном скважинном импульсном нейтронном генераторе трансформаторы (2) и (3) залиты компаундом с диэлектрической проницаемостью, уменьшающейся с ростом температуры, конденсаторы (4), (6) и (7) залиты компаундом с диэлектрической проницаемостью, увеличивающейся с ростом температуры. При этом температурный компенсатор включает в себя резиновую мембрану (13), размещенную в корпусе (9) компенсатора и разделяющую компенсатор на две полости, одна из которых соединена с жидким диэлектриком, а другая заполнена инертным газом под давлением. Техническим результатом является стабилизация нейтронного потока в широком диапазоне температур, уменьшение габаритов и массы. 1 з.п. ф-лы, 1 ил.

Использование: для излучения импульсов нейтронного и рентгеновского излучения. Сущность изобретения заключается в том, что скважинный излучатель нейтронов в охранном кожухе содержит вакуумную нейтронную трубку со схемой питания, состоящую из двух высоковольтных трансформаторов, накопительного конденсатора, схемы формирования ускоряющего импульса, выполненной по биполярной схеме, блока питания с коммутатором и схемой формирования импульса запуска коммутатора, при этом на мишенном и анодном электродах нейтронной трубки установлены теплопроводящие изоляторы, выполненные в виде полых цилиндров с кольцевыми проточками, имеющие тепловой контакт с электродами нейтронной трубки и внутренней поверхностью охранного кожуха. Технический результат: увеличение срока службы, повышение стабильности за счет снижения перегрева основных узлов излучателя, в том числе и нейтронной трубки, являющейся основным источником тепла, а также уменьшение габаритов и массы. 1 з.п. ф-лы, 2 ил.

Изобретение относится к способу изготовления титано-тритиевых мишеней нейтронных трубок, используемых в скважинной геофизической аппаратуре для каротажа нефтяных и газовых месторождений, а также в составе аппаратуры нейтронного активационного анализа. В заявленном способе титан напыляют на металлическую основу мишени и насыщают его тритием, подают газовую среду к мишени и проводят в ней термическую обработку мишени и удаляют газовую среду от мишени. При этом термическую обработку мишени проводят в камере термической обработки при температуре 200-250°C в течение 1-2 часов, давление газовой среды в камере термической обработки определяют из условия, что при максимальном нагреве камеры оно составит 80-90 кПа, в качестве газовой среды используют осушенный воздух с содержанием влаги не более 13 мг/кг. Техническим результатом является повышение термической стойкости титано-тритиевой мишени, повышение ресурса и надежности работы нейтронной трубки. 1 табл.

Изобретение относится к фотонейтронным источникам. Фотонейтронный источник включает канал для ввода пучка электронов, облучаемый пучком электронов с энергией 6-8 МэВ, е-γ-конвертер из вольфрама толщиной 0,1 см, две фотонейтронные мишени из бериллия, полость для облучения образцов, замедлитель быстрых нейтронов из полиэтилена и биологическую защиту из борированного полиэтилена для поглощения тепловых и замедления и поглощения быстрых нейтронов, вылетающих наружу из источника. В биологической защите выполнена полость, заполненная замедлителем. В центре замедлителя также выполнена полость, в которой установлены симметрично относительно ее центра первая и вторая фотонейтронные мишени. Пространство между мишенями служит полостью для облучения образцов. На внешней поверхности первой фотонейтронной мишени размещен е-γ-конвертер, который сопряжен с каналом для ввода пучка электронов. По боковым сторонам полости для облучения образцов могут быть дополнительно размещены боковые фотонейтронные мишени из бериллия толщиной не менее 1 см. Фотонейтронный источник дополнительно содержит канал для помещения образцов внутрь полости для облучения образцов и канал для вывода нейтронов из центра источника, причем первая и вторая фотонейтронные мишени выполнены подвижными с возможностью перемещения в центр источника. Техническим результатом является упрощение конструкции и технологии изготовления фотонейтронного источника, повышение эффективности и надежности его функционирования, повышение защиты от нейтронного облучения в процессе функционирования. 15 з.п. ф-лы, 7 ил., 3 пр.
Наверх