Микроконтроллерное устройство диагностики межвитковой изоляции обмотки электродвигателя

Изобретение относится к электроизмерительной технике, в частности к устройствам для контроля качества изоляции, характеризуемого ее пробивным напряжением, и может быть использовано в средствах для диагностики состояния межвитковой изоляции обмотки асинхронного или синхронного двигателя. Микроконтроллерное устройство диагностики межвитковой изоляции обмотки электродвигателя содержит (фиг.) МК 1, делитель напряжения 2, управляемый источник опорного напряжения 3, первый управляемый ключ 4, индикатор 5, источник постоянного напряжения 6, диагностируемую обмотку электродвигателя 7, второй ключ 8 и образцовую индуктивность 9. Первый вывод источника постоянного напряжения 6 подключен к первым выводам индуктивностей 7 (диагностируемая обмотка электродвигателя) и 9 (образцовая индуктивность), вторые выводы которых подключаются ко второму выводу второго ключа, который может находиться либо в «верхнем» (подключается индуктивность 7), либо в «нижнем» (подключается образцовая индуктивность 9) положении. Первый вывод второго ключа подключен ко вторым выводам первого управляемого ключа и делителя напряжения. Вывод управления первого ключа подключен к МК 1, вход управления источника опорного напряжения 3 подключен в выходу широтно-импульсного модулятора (на фиг. не показан) МК 1, выход источника опорного напряжения 3 подключен к первому входу аналогового компаратора (на фиг. не показан) МК 1, ко второму входу аналогового компаратора МК 1 подключен средний вывод делителя напряжения 2, первый крайний вывод делителя напряжения 2 подключен к первым выводам первого управляемого ключа 4 и источника постоянного напряжения 6, индикатор 5 подключен к выходу соответствующего порта МК 1. Технический результат заключается в повышении точности устройства за счет организации сравнения ЭДС самоиндукции образцовой и диагностируемой обмоток. 1 ил.

 

Область техники, к которой относится изобретение

Изобретение относится к электроизмерительной технике, в частности к устройствам для контроля качества изоляции, характеризуемого ее пробивным напряжением, и может быть использовано для построения средств диагностики состояния межвитковой изоляции обмотки асинхронного или синхронного двигателя.

Уровень техники

В результате старения изоляции обмотки асинхронного двигателя снижается ее пробивное напряжение и сопротивление, что в свою очередь ведет к внезапному отказу двигателя. Для своевременного предупреждения повреждения изоляции необходима ее диагностика, т.е. контроль качества (состояния) межвитковой изоляции.

Известно устройство для измерения сопротивления и контроля качества изоляции сети с асинхронным двигателем, содержащее коммутационный аппарат с силовыми контактами, ключ первым выводом подключен к подвижному контакту первого коммутатора, левый неподвижный контакт которого подключен к первому фазному выводу обмотки асинхронного двигателя, а правый неподвижный контакт первого коммутатора соединен с правым неподвижным контактом второго коммутатора и со вторым фазным выводом обмотки асинхронного двигателя, левый неподвижный контакт второго коммутатора соединен с третьим фазным выводом обмотки асинхронного двигателя, подвижный контакт второго коммутатора соединен с общей точкой правого неподвижного контакта третьего коммутатора, первым выводом параллельно соединенных генератора и измерительного прибора, левый неподвижный контакт третьего коммутатора соединен с общей точкой вторых выводов генератора и измерительного прибора и со вторым выводом ключа, подвижный контакт третьего коммутатора заземлен (см. пат. РФ №1832223, кл. G01R 27/18).

Недостаток известного решения - ограничены функциональные возможности.

Известно устройство для измерения емкости и диэлектрических потерь конденсаторного датчика, содержащее микроконтроллер (МК), индикатор, два генератора, времязадающие RC-цепи генераторов. В качестве одного емкостного элемента применен конденсаторный датчик, между обкладками которого находится изоляционный материал. МК в определенной последовательности с помощью управляемых ключей подключает известные по сопротивлению резисторы времязадающих RC-цепей, измеряет постоянную времени RC-цепей и рассчитывает сопротивление изоляционного материала, значение которого выводит на индикатор (см. пат. РФ №2258232, кл. G01R 27/26).

Недостаток известного решения - ограничены функциональные возможности, устройство не позволяет контролировать состояние межвитковой изоляции индуктивностей.

Наиболее близким по технической сущности к заявляемому техническому решению и принятым авторами за прототип является микроконтроллерное устройство для диагностики изоляции обмотки асинхронного двигателя, содержащее источник постоянного напряжения, МК, индикатор, ключ, управляемый источник опорного напряжения, делитель напряжения и обмотку электродвигателя, причем индикатор подключен к МК, вывод управления ключом подключен к МК, первый вывод ключа подключен к первой клемме источника постоянного напряжения, вторая клемма источника постоянного напряжения подключена к первому выводу обмотки электродвигателя, второй вывод которой подключен ко второму выводу ключа, вход управления управляемого источника опорного напряжения подключен к широтно-импульсному модулятору (ШИМ) МК, крайние выводы делителя напряжения подключены к выводам ключа, средний вывод делителя напряжения подключен к первому входу аналогового компаратора МК, ко второму входу которого подключен выход управляемого источника опорного напряжения (см. пат. РФ №2428707, кл. G01R 27/26).

Недостаток известного решения - низкая точность измерения - устройство не имеет образцовой (эталонной) индуктивности для проведения его поверки.

Раскрытие изобретения

Технический результат, который может быть достигнут с помощью предлагаемого изобретения, сводится к повышению точности устройства за счет организации сравнения ЭДС самоиндукции образцовой и диагностируемой обмоток.

Технический результат достигается тем, что в микроконтроллерное устройство диагностики межвитковой изоляции обмотки электродвигателя, содержащее источник постоянного напряжения, МК, индикатор, первый управляемый ключ, причем индикатор подключен к МК, вывод управления первым ключом подключен к МК, первый вывод этого же ключа подключен к первой клемме источника постоянного напряжения и первому выводу делителя напряжения, причем вторая клемма источника постоянного напряжения подключена к первому выводу диагностируемой обмотки электродвигателя введены образцовая индуктивность и второй ключ, в «нижнем» положении которого подключается образцовая индуктивность, а в «верхнем» - диагностируемая обмотка электродвигателя, причем первый вывод образцовой индуктивности подключен ко второй клемме источника постоянного напряжения, первый вывод второго ключа подключен ко вторым выводам первого управляемого ключа и делителя напряжения, вход управления управляемого источника опорного напряжения подключен к МК, средний вывод делителя напряжения подключен ко второму входу аналогового компаратора МК, к первому входу которого подключен выход управляемого источника опорного напряжения.

Краткое описание чертежей

На фиг. представлена структурная схема микроконтроллерного устройства диагностики межвитковой изоляции обмотки электродвигателя.

Осуществление изобретения

Микроконтроллерное устройство диагностики межвитковой изоляции обмотки электродвигателя содержит (фиг.) МК 1, делитель напряжения 2, управляемый источник опорного напряжения 3, первый управляемый ключ 4, индикатор 5, источник постоянного напряжения 6, диагностируемую обмотку электродвигателя 7, второй ключ 8 и образцовую индуктивность 9.

Первый вывод источника постоянного напряжения 6 подключен к первым выводам индуктивностей 7 (диагностируемая обмотка электродвигателя) и 9 (образцовая индуктивность), вторые выводы которых подключаются ко второму выводу второго ключа, который может находиться либо в «верхнем» (подключается индуктивность 7), либо в «нижнем» (подключается образцовая индуктивность 9) положении. Первый вывод второго ключа подключен ко вторым выводам первого управляемого ключа и делителя напряжения. Вывод управления первого ключа подключен к МК 1, вход управления источника опорного напряжения 3 подключен в выходу широтно-импульсного модулятора (на фиг. не показан) МК 1, выход источника опорного напряжения 3 подключен к первому входу аналогового компаратора (на фиг. не показан) МК 1, ко второму входу аналогового компаратора МК 1 подключен средний вывод делителя напряжения 2, первый крайний вывод делителя напряжения 2 подключен к первым выводам первого управляемого ключа 4 и источника постоянного напряжения 6, индикатор 5 подключен к выходу соответствующего порта МК 1.

Микроконтроллерное устройство диагностики межвитковой изоляции обмотки электродвигателя работает следующим образом.

МК 1 устанавливает с помощью внутреннего широтно-импульсного модулятора (на фигуре не показан) на выходе управляемого источника опорного напряжения 3 заданный уровень опорного напряжения и замыкает ключ 4. Ключ 8 находится в «нижнем» положении, т.е. включена образцовая индуктивность 9. По цепи: первый вывод источника постоянного напряжения 6, индуктивность 9, ключ 4, второй вывод источника постоянного напряжения 6 протекает нарастающий ток. В определенный момент МК 1 размыкает ключ 4, на выводах индуктивности 9 возникает ЭДС самоиндукции, которая приложена к делителю напряжения 2. Если напряжение на выходе делителя превысит опорное, то аналоговый компаратор МК 1 поменяет на выходе логический уровень, по этому сигналу микроконтроллер 1 оценивает значение амплитуды ЭДС самоиндукции. В образцовой индуктивности отсутствуют дефекты в межвитковой изоляции, и значение ЭДС самоиндукции будет максимальным. Это значение запоминается МК.

Далее ключ 8 переводится в «верхнее» положение, т.е. подключена диагностируемая обмотка электродвигателя. По цепи: первый вывод источника постоянного напряжения 6, индуктивность 7, ключ 4, второй вывод источника постоянного напряжения 6 протекает нарастающий ток. В определенный момент МК 1 размыкает ключ 4, на выводах индуктивности 7 возникает ЭДС самоиндукции, которая приложена к делителю напряжения 2. Если межвитковая изоляция содержит дефекты, снижающие значение пробивного напряжения, а также обладает малым сопротивлением, то часть энергии, запасенной в индуктивности, после размыкания ключа 4 рассеется в виде тепла на сопротивлениях межвитковой изоляции. В этом случае ЭДС самоиндукции будет ниже значения, установленного с помощью образцовой индуктивности, и аналоговый компаратор не поменяет логический уровень на выходе.

Затем микроконтроллер 1 переходит к следующему циклу измерения амплитуды ЭДС самоиндукции. Микроконтроллер 1 снижает напряжение на выходе управляемого источника опорного напряжения 3 и вновь замыкает ключ 4, цикл повторяется до тех пор, пока микроконтроллер 1 не определит значение амплитуды ЭДС самоиндукции, которое выводит на цифровой индикатор 6. По значению амплитуды ЭДС самоиндукции производится оценка состояния изоляции.

Предлагаемое изобретение по сравнению с прототипом и другими известными решениями имеет преимущество - повышает точность микроконтроллерного устройства диагностики за счет сравнения ЭДС самоиндукции образцовой индуктивности с ЭДС самоиндукции диагностируемой обмотки электродвигателя в процессе оценки состояния изоляции последней.

Микроконтроллерное устройство диагностики межвитковой изоляции обмотки электродвигателя, содержащее источник постоянного напряжения, микроконтроллер, индикатор, первый управляемый ключ, причем индикатор подключен к микроконтроллеру, вывод управления первым управляемым ключом подключен к микроконтроллеру, первый вывод этого же ключа подключен к первой клемме источника постоянного напряжения, вторая клемма источника постоянного напряжения подключена к первому выводу диагностируемой обмотки электродвигателя, вход управления управляемого источника опорного напряжения подключен к выходу микроконтроллера, крайние выводы делителя напряжения подключены к выводам первого управляемого ключа, средний вывод делителя напряжения подключен ко второму входу аналогового компаратора микроконтроллера, к первому входу которого подключен выход управляемого источника опорного напряжения, отличающееся тем, что введены образцовая индуктивность и второй ключ, имеющий два положения «верхнее» и «нижнее», причем первый вывод образцовой индуктивности подключен ко второй клемме источника постоянного напряжения, а второй ее вывод при «нижнем» положении второго ключа подключается ко вторым выводам первого управляемого ключа и делителя напряжения, к этим же выводам подключается второй вывод диагностируемой обмотки электродвигателя при «верхнем» положении второго ключа.



 

Похожие патенты:

Изобретение относится к измерительной технике. В частности, оно может быть использовано в радиочастотных резонансных датчиках.

Изобретение относится к технике измерения диэлектриков методом объемного резонатора при нормальной температуре. Устройство содержит волновод СВЧ, резонатор с цилиндрической частью, ограниченный с одной стороны торцевой стенкой волновода СВЧ, а с другой стороны короткозамыкающим поршнем с возможностью осевого перемещения внутри резонатора, механизм перемещения поршня и блок радиоизмерительного оборудования.

Изобретение относится к технике измерения диэлектриков методом объемного резонатора при нагреве в диапазоне температур до 2000°C. Устройство содержит цилиндрический резонатор, ограниченный с одной стороны торцевой стенкой волновода СВЧ, а с другой стороны подвижным поршнем со штоком, загрузочное окно для установки образца исследуемого материала, измеритель температуры, подвод защитного газа, механизм перемещения поршня со штоком.

Изобретение относится к измерительной технике и предназначено для измерения параметров диссипативных CG-двухполюсников - эквивалентов емкостных измерительных преобразователей.

Изобретение относится к области радиотехники и электроники и может быть использовано для измерения электрофизических параметров материалов. Технический результат заключается в повышении разрешающей способности до порядка 1 микрометра, а также повышении чувствительности до уровня, достаточного для определения параметров материалов с диэлектрической проницаемостью в диапазоне 1.5÷400 и проводимостью в диапазоне 2·10-2 Oм-1·м-1÷107 Ом-1·м-1.Заявленное устройство содержит СВЧ-генератор с подключенным к нему прямоугольным волноводом, имеющим измерительное устройство с волноводной резонансной системой в качестве оконечного устройства, причем оконечное устройство содержит емкостную металлическую диафрагму, согласно решению на емкостную металлическую диафрагму наложен плоскопараллельный образец диэлектрика с площадью, равной площади фланца волновода, а на образец диэлектрика наложен зонд в виде металлической проволоки с длиной от 12 до 20 мм и диаметром от 0,1 до 0,5 мм с заостренным концом, изогнутым под прямым углом, отрезок зонда большей длины расположен на диэлектрической пластине перпендикулярно щели в диафрагме, отрезок зонда с заостренным концом меньшей длины перпендикулярен плоскости образца диэлектрика, при этом толщина плоскопараллельного образца диэлектрика t выбрана из условия t ε 〈 〈 λ в , где λв - длина волны основного типа в волноводе, ε - диэлектрическая проницаемость пластины.

Предлагаемое техническое решение относится к измерительной технике. Техническим результатом заявляемого устройства является повышение точности измерения.

Изобретение относится к измерительной технике, в частности к устройствам для измерения активного сопротивления, и может быть использовано в средствах для измерения и контроля неэлектрических величин резистивными датчиками.

Изобретение относится к области измерительной техники, в частности может быть использовано в спектроскопии диэлектриков для исследования диэлектрических характеристик веществ, знание которых необходимо при дистанционном электромагнитном зондировании, диэлектрическом каротаже, изучении молекулярного строения вещества.

Изобретение относится к измерительной технике, в частности к устройствам для измерения активного сопротивления, и может быть использовано для измерения физических величин, контролируемых резистивными датчиками.

Изобретение относится к СВЧ технике, а именно к способам определения коэффициента потерь tgδ диэлектриков методом объемного резонатора. Образец измеряемого диэлектрика помещают в область максимального электрического поля резонатора, возбужденного на моде Е010, измеряют добротность резонатора с образцом и без образца и по результатам измерений судят о значении tgδ диэлектриков.

Изобретение относится к области измерения характеристик материалов и может быть использовано для определения диэлектрической проницаемости изоляционных композитных и других материалов. Способ основан на измерении комплексного коэффициента отражения электромагнитных волн от отрезка линии передачи, на конце которого устанавливают калибровочные меры и испытуемый образец материала, с последующей обработкой материалов. На входе отрезка линии передачи с волновым сопротивлением Zв параллельно ему подключают резистивный элемент с сопротивлением R=(0,1-0,2)Zв, по результатам калибровочных измерений определяют параметры рассеяния цепи, соединяющей плоскость измерения коэффициента отражения с плоскостью подключения испытуемого участка линии с испытуемым образцом. Обрабатывая массив данных, находят диэлектрическую проницаемость и тангенс угла потерь испытуемого материала. Предложено устройство для осуществления способа. Технический результат заключается в повышении точности определения диэлектрической проницаемости в широком диапазоне частот. 2 н. и 3 з.п. ф-лы, 5 ил., 1 табл.
Предложен способ определения диэлектрической проницаемости и толщины твердых образцов на металле. Техническим результатом изобретения является повышение точности определения толщины и диэлектрической проницаемости материала на металле. Способ предусматривает возбуждение электромагнитного колебания определенной пространственной структуры и измерение резонансных частот при замене одного из торцов резонатора образцом поочередно стороной покрытия и металла, для чего дополнительно на одной из торцевых стенок устанавливают диэлектрик высотой h, диэлектрической проницаемостью εд и диаметром, равным диаметру резонатора, возбуждают пространственное колебание типа H011, измеряют резонансные частоты резонатора f1 и f2 соответственно при установке на открытую противоположную торцевую стенку образца поочередно стороной покрытия и металлической подложки, закрывают открытую торцевую стенку, измеряют резонансные частоты f3 и f4 соответственно при замене другой торцевой стенки, где расположен возмущающий диэлектрик, образцом поочередно стороной покрытия и металлической подложки, по разности частот Δf21=f2-f1 определяют толщину покрытия Δh, а по разности Δf43-Δf21 определяют диэлектрическую проницаемость εn покрытия на металле, где Δf43=f4-f3, при этом, варьируя высоту h и диэлектрическую проницаемость εд возмущающего резонатор диэлектрика, можно изменять чувствительность к диэлектрической проницаемости εn покрытия на металле. 1 з.п. ф-лы, 6 ил.

Группа изобретений относится к медицине и может быть использована для емкостного измерения физического движения в пациенте, который содержит изменяющиеся во времени статические заряды. Система содержит зонд и электрет или сочетание электрически проводящего элемента и генератора напряжения, выполненного с возможностью обеспечения постоянного во времени статического заряда. Электрет или электрически проводящий элемент могут быть механически и электрически соединены с пациентом так, что они механически перемещаются с пациентом и подвергаются действию содержащегося изменяющегося во времени статического заряда. Зонд расположен удаленно от электрета или сочетания электрически проводящего элемента и генератора напряжения и имеет с ними бесконтактное емкостное соединение, такое, что относительное механическое движение между зондом и электретом или проводящим элементом вызывает изменения в выходном измерительном сигнале зонда. Постоянный во времени электрический статический заряд уменьшает вызванные изменяющимся во времени статическим зарядом искажения в выходном измерительном сигнале. При этом прикрепляют элемент, содержащий постоянный во времени электрический заряд, в месте измерения пациента так, что элемент содержит изменяющиеся во времени статические заряды. Формируют измерительный сигнал посредством емкостного измерения механического движения в пациенте с использованием зонда, который расположен удаленно от элемента, места измерения и объекта, так что зонд выполняет бесконтактное измерение механических движений объекта. Применение изобретений позволит повысить точность емкостного измерения пациента. 3 н. и 17 з.п. ф-лы, 5 ил.

Изобретение относится к области сварочного производства. Представленные устройство и способ могут быть использованы для определения во время процесса сварки индуктивности сварочного кабеля на основе измерения размаха пульсации напряжения на выходных сварочных клеммах при переключении силовых полупроводниковых переключателей. Указанная индуктивность может быть использована, например, для управления параметрами процесса сварки. 2 н. и 13 з.п. ф-лы, 12 ил.

Техническое решение относится к измерительной технике и предназначено для измерения диэлектрической проницаемости и влажности материала. Способ включает в себя измерение напряжения зондирующего сигнала во входной цепи первичного преобразователя, заполняемого контролируемым материалом, причем первичный преобразователь выполнен в виде короткозамкнутого на конце отрезка длинной линии. Измерения напряжения выполняют одновременно в двух точках: непосредственно на входе преобразователя и на резисторе, включенном между генератором и преобразователем. Генератор перестраивают в диапазоне частот дискретными шагами. На каждом шаге вычисляют отношение напряжения на входе первичного преобразователя к напряжению на входе элемента и по минимуму этого отношения определяют частоты гармоник при заполнении первичного преобразователя воздухом и при заполнении его контролируемым материалом. По значениям частот нескольких гармоник вычисляют действительную составляющую показателя преломления материала. Мнимую составляющую показателя преломления вычисляют по величине отношения напряжения на входе первичного преобразователя к напряжению на входе резистора. Далее определяют влажность и другие физические параметры, влияющие на показатель преломления. Технический результат заключается в повышении точности измерений и расширении функциональных возможностей. 6 з.п. ф-лы, 5 ил.

Использование: для определения комплексной диэлектрической проницаемости материалов с помощью электромагнитных волн. Сущность изобретения заключается в том, что устройство содержит отрезок металлической волноводной линии передачи, плоскопараллельную пластину и дополнительно введены второй отрезок металлической волноводной линии передачи, снабженный фланцами с обоих концов, одинакового внутреннего поперечного сечения с первым отрезком металлической волноводной линии передачи, варакторный диод, внутренняя часть второго отрезка металлической волноводной линии передачи заполнена диэлектриком, плоскопараллельная пластина выполнена из металла и снабжена окном с размерами, равными размерам внутреннего поперечного сечения отрезка металлической волноводной линии передачи, металлические выводы варакторного диода и плоскопараллельная пластина разделены изолятором, плоскопараллельная пластина и фланец одного конца второго отрезка металлической волноводной линии передачи соединены между собой механически, длина второго отрезка металлической волноводной линии передачи кратна половине длины электромагнитной волны во втором отрезке металлической волноводной линии передачи с диэлектриком. Технический результат: обеспечение возможности увеличения точности определения комплексной диэлектрической проницаемости и определения одновременно действительной и мнимой частей комплексной диэлектрической проницаемости. 3 ил., 1 табл.

Изобретение относится к измерительной технике и предназначено для измерения физических параметров материала, в том числе и при экстремальных температурах. Способ включает в себя измерение напряжения зондирующего сигнала во входной цепи первичного преобразователя, заполняемого контролируемым материалом, причем первичный преобразователь выполнен в виде отрезка длинной линии. Измерения напряжения выполняют дистанционно, для чего между входом амплитудного детектора и входом первичного преобразователя включают первый дополнительный отрезок линии передачи, в котором создают режим бегущих волн. Подачу зондирующего сигнала с выхода генератора на вход первичного преобразователя производят через включенный между ними второй дополнительный отрезок линии передачи. Генератор перестраивают в диапазоне частот и определяют частоты гармоник при заполнении первичного преобразователя контролируемым материалом и воздухом. По значениям указанных частот определяют влажность, состав и другие физические параметры материала, влияющие на диэлектрическую проницаемость. Технический результат заключается в обеспечении измерений при экстремальных температурах, повышение точности измерения, расширение функциональных возможностей. 2 н. и 10 з.п. ф-лы, 4 ил.

Изобретение относится к измерительной технике и метрологии, а именно к технике измерения электрической емкости на постоянном электрическом токе, измеряемой путем счета электронов. Согласно способу постоянный электрический ток воспроизводят с помощью цепи, выполненной в виде измеряемого конденсатора Сx и генератора линейно изменяющегося напряжения, а значение электрической емкости определяется по времени Δt, за которое разность напряжения между электродами конденсатора достигнет определенного уровня ΔU, количеству электронов, прошедших по цепи воспроизводимого тока за это время (при этом фиксируется каждый электрон, проходящий по цепи воспроизведения тока), и заряду электрона, эти значения подаются на персональный компьютер и им обрабатываются по формуле: Сx=e·f·Δt/ΔU, где: е - элементарный заряд электрона; f - измеряемая частота (число) электронов на выходе измерителя тока; Δt - время, за которое напряжение изменяется на величину ΔU; при этом измерение электрической емкости конденсатора происходит в условиях эксплуатации конденсатора при прохождении через него воспроизводимого постоянного тока. Технический результат изобретения заключается в повышении точности измерения электрической емкости на постоянном электрическом токе (в условиях эксплуатации измеряемого конденсатора) и расширении диапазона измерения емкости в сторону меньших значений, обеспечение возможности непосредственной регистрации заряда с дискретностью электрона. 2 н.п. ф-лы, 1 ил.

Изобретение относится к измерительной технике, в частности к измерениям погонной емкости одножильного электрического провода в процессе его производства. Способ заключается в создании гармонического электрического поля между участком поверхности изоляции провода и заземленной электропроводящей жилой посредством помещенного в воду трубчатого измерительного преобразователя, через который перемещают контролируемый провод, с измерительным и двумя обеспечивающими однородность электрического поля на его краях дополнительными защитными электродами, измерении при известных амплитуде и частоте приложенного к электродам гармонического напряжения силы тока, протекающего через измерительный электрод, и суммарной силы тока, протекающего через все электроды измерительного преобразователя, и определении значения погонной емкости по формуле: где Ix - сила тока, протекающего через измерительный электрод; I1 - суммарная сила тока, протекающего через все электроды измерительного преобразователя; С0(I1) и k(I1) - экспериментально определенные функции тока I1. Технический результат заключается в повышении точности измерения. 4 ил.

Изобретение относится к измерению потенциала земли. Способ измерения электрического потенциала земли, включающий этапы: размещения измерительной пластины в непосредственной близости от земли, но с обеспечением электрохимического разделения указанной пластины и земли при помощи барьера, причем измерительная пластина имеет оперативную емкостную связь с землей; измерения электрического потенциала земли при помощи измерительной пластины; подачи первого сигнала, представляющего потенциал, измеренный измерительной пластиной, на усилитель, содержащий по меньшей мере один каскад; и сравнения потенциала, измеренного измерительной пластиной, с опорным напряжением. Технический результат заключается в возможности измерения потенциала земли без осуществления электрохимических процессов. 5 н. и 52 з.п. ф-лы, 1 табл., 12 ил.
Наверх