Система терморегулирования стыковочного модуля обитаемой орбитальной станции


 


Владельцы патента RU 2548316:

Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" (RU)

Изобретение предназначено для терморегулирования модулей долговременных орбитальных станций. Система терморегулирования содержит средства теплопереноса, электронагреватели со средствами управления и датчиковую аппаратуру на внутренней поверхности корпуса модуля. Средствами теплопереноса служат тепловые трубы, расположенные на наружной поверхности корпуса стыковочного модуля симметрично относительно каждого стыковочного агрегата. При этом трассы прокладки тепловых труб делят корпус модуля на две зоны, содержащие, по крайней мере, два стыковочных агрегата. В каждой зоне проходят две кольцевые трассы, образованные двумя группами дублирующих друг друга тепловых труб, а также две пары S-образных трасс, начало и конец каждой из которых сонаправлены с соответствующей кольцевой трассой и отстоят от неё на расстоянии не более двух диаметров тепловой трубы. S-образная трасса образована парой дублирующих друг друга тепловых труб. Электронагреватели устанавливают напротив каждой пары тепловых труб в зоне конденсации. Техническим результатом изобретения является увеличение срока эксплуатации, уменьшение энергопотребления и уменьшение массогабаритных характеристик системы. 1 ил.

 

Изобретение относится к космической технике, а именно к системам терморегулирования (CTP) модулей долговременных орбитальных станций, и может быть использовано при создании систем, обладающих значительным ресурсом работы.

Обитаемая орбитальная станция формируется из крупногабаритных многоцелевых модулей, соединенных между собой через герметичный стыковочный модуль сферической или близкой к сферической формы. Стыковочный модуль служит для связи трех и более крупногабаритных модулей обитаемой орбитальной станции (OOC), а также для стыковки пилотируемых транспортных систем, является кратковременно посещаемым модулем с низким тепловыделением внутреннего оборудования и содержит до шести стыковочных агрегатов, установленных по два на каждой оси модуля, которые в свободном или занятом состоянии являются основными источниками или стоками тепла в системе.

В настоящий момент известные стыковочные модули не имеют своей независимой системы терморегулирования - средства терморегулирования стыковочного модуля являются конструктивно относящимися к более крупным системам терморегулирования, образуя совмещенные системы терморегулирования. Термостатирование корпуса стыковочного модуля в настоящий момент осуществляется при помощи гидравлического контура, единого с контуром сопряженного обитаемого модуля. Принцип построения такой системы терморегулирования заключается в термостатировании и сборе тепла с поверхности корпуса стыковочного модуля при помощи совмещенной двухконтурной гидравлической системы и удалении его в космическое пространство при помощи навесного холодного радиатора. Теплосъем с поверхности стыковочного модуля и ее термостатирование осуществляется при помощи змеевиков, включенных в общую гидравлическую систему совмещенной системы терморегулирования.

В случае разработки независимой системы терморегулирования стыковочного модуля использование двухконтурной гидравлической системы не представляется целесообразным также по ее массово-энергетическим характеристикам.

Известен опыт эксплуатации тепловых труб на орбитальной станции «МИР» (Труды международной конференции «Тепловые трубы для космического применения», 2009 год, http:///www.heatpipe.ru, п.71 согласно программе конференции). Тепловые трубы использовались в системе обеспечения теплового режима пилотируемого модуля в составе радиационного теплообменника-охладителя базового блока станции.

Известна система терморегулирования космического объекта (патент RU 2404092 С1, 20.11.2010, МПК: B64G 1/50 (2006.01)), включающая в себя связанные между собой замкнутые циркуляционные контуры, регулятор расхода жидкости, выполненный с шаговым двигателем, систему управления, датчики температуры, электрически связанные через систему управления с регулятором расхода жидкости, газожидкостные и змеевиковые теплообменники, термоплаты, гидрокомпенсатор, дренажный клапан, радиационный теплообменник.

Известна система терморегулирования космического объекта (патент RU 2230007 С1, 10.06.2004, МПК: B64G 1/50 (2006.01), G05D 23/20 (2006.01)), содержащая средства теплопереноса, средства управления элементами системы и датчиковую аппаратуру. В качестве средств теплопереноса здесь используются замкнутые контуры обогрева и охлаждения с побудителями циркуляции жидких теплоносителей, связанные через промежуточные жидкостно-жидкостные теплообменники. В качестве средств управления элементами системы используются клапаны и регулятор расхода жидкого теплоносителя. Датчиковая аппаратура состоит из датчиков перепада давлений на побудителях циркуляции жидких теплоносителей и датчиков расхода жидких теплоносителей.

Недостатками данных систем терморегулирования является наличие дополнительной массы и низкая надежность для бесперебойной работы системы терморегулирования стыковочного модуля обитаемой орбитальной станции.

Задачей изобретения является увеличение срока эксплуатации и повышение надежности системы терморегулирования стыковочного модуля обитаемой орбитальной станции при увеличении эффективности теплопереноса в системе за счет использования оптимальной компоновки тепловых труб и электронагревателей.

Техническим результатом изобретения является:

- увеличение срока эксплуатации предложенной системы терморегулирования и стыковочного модуля в целом;

- уменьшение энергопотребления CTP;

- уменьшение массогабаритных характеристик.

Технический результат изобретения достигается тем, что в системе терморегулирования стыковочного модуля обитаемой орбитальной станции, состоящей из средств теплопереноса, электронагревателей со средствами управления и датчиковой аппаратуры, установленных на внутренней поверхности корпуса модуля, в качестве средств теплопереноса используют тепловые трубы, расположенные на наружной поверхности корпуса стыковочного модуля симметрично относительно каждого из стыковочных агрегатов стыковочного модуля, при этом трассы прокладки тепловых труб делят корпус стыковочного модуля на две зоны, каждая из которых содержит, по крайней мере, два стыковочных агрегата, при этом в каждой зоне проходят две кольцевые трассы, которые являются геометрическим местом точек, полученным в результате пересечения сферической или близкой к сферической поверхности корпуса стыковочного модуля и двух плоскостей, касательных ко всем стыковочным агрегатам зоны, при этом кольцевые трассы образованы двумя группами дублирующих друг друга тепловых труб, также в каждой зоне расположены, по крайней мере, две пары S-образных трасс, срединная часть каждой из которых является геометрическим местом точек, полученным в результате пересечения сферической или близкой к сферической поверхности корпуса стыковочного модуля и одной из двух плоскостей, проходящей через прямую, содержащую центр сферической или близкой к сферической поверхности корпуса стыковочного модуля и перпендикулярную плоскости разделения двух зон корпуса стыковочного модуля, и касательной к каждому стыковочному агрегату, начало и конец каждой S-образной трассы сонаправлены с соответствующей кольцевой трассой и отстоят от нее на расстоянии не более двух диаметров тепловой трубы, при этом каждая S-образная трасса образована парой дублирующих друг друга тепловых труб, а на внутренней поверхности стыковочного модуля напротив каждой пары тепловых труб в зоне конденсации тепловой трубы устанавливаются электронагреватели.

Сущность изобретения заключается в следующем.

Термостатирование корпуса стыковочного модуля осуществляется с помощью системы терморегулирования, построенной на базе тепловых труб и электронагревателей в отсутствие радиатора, причем тепловые трубы используются для переноса и перераспределения тепла по корпусу стыковочного модуля, а электронагреватели используются как средство местного обогрева при понижении температуры элементов модуля ниже допустимой. Отсутствие радиатора уменьшает суммарную массу системы, однако приводит к увеличению количества тепла, которое должно быть передано с солнечной стороны корпуса стыковочного модуля на теневую, являющиеся таковыми в рассматриваемый момент времени.

Сущность изобретения поясняется чертежом (фиг.1).

Стыковочный модуль содержит до шести стыковочных агрегатов, которые в свободном или занятом состоянии являются основными источниками и стоками тепла в системе, что обуславливает выбор координат трасс прокладки тепловых труб по геометрическому положению стыковочных агрегатов. Специфика эксплуатации стыковочного модуля предполагает частую смену комбинаций свободных и занятых стыковочных агрегатов, поэтому наиболее оптимальной является симметричная конфигурация трасс прокладки тепловых труб, которая обеспечивает одинаковый отвод или подвод тепла от каждого стыковочного агрегата, являющегося в данный момент тепловым источником или стоком.

На фиг.1 изображена принципиальная схема расположения тепловых труб и электронагревателей на корпусе стыковочного модуля OOC в окрестности одного из стыковочных агрегатов, где обозначено:

1 - корпус стыковочного модуля;

2 - стыковочный агрегат;

3 - плоскость разделения двух зон корпуса стыковочного модуля;

4 - трасса прокладки тепловых труб типа «Большое кольцо»;

5 - трасса прокладки тепловых труб типа «Малое кольцо»;

6 - трасса прокладки тепловых труб типа «Левая S-образная»;

7 - трасса прокладки тепловых труб типа «Правая S-образная»;

8 - прямая, содержащая центр поверхности корпуса стыковочного модуля и перпендикулярная плоскости разделения двух зон корпуса стыковочного модуля;

9 - основной электронагреватель на тепловой трубе, расположенной на трассе типа «Большое кольцо» на участке расположения стыковочного агрегата;

10 - резервный электронагреватель на тепловой трубе, расположенной на трассе типа «Большое кольцо» на участке расположения стыковочного агрегата;

11 - участок расположения стыковочного агрегата;

12 - основной электронагреватель на тепловой трубе, расположенной на трассе типа «Малое кольцо»;

13 - резервный электронагреватель на тепловой трубе, расположенной на трассе типа «Малое кольцо»;

14 - основной электронагреватель на тепловой трубе, расположенной на трассе типа «Левая S-образная»;

15 - резервный электронагреватель на тепловой трубе, расположенной на трассе типа «Левая S-образная»;

16 - основной электронагреватель на тепловой трубе, расположенной на трассе типа «Правая S-образная»;

17 - резервный электронагреватель на тепловой трубе, расположенной на трассе типа «Правая S-образная»;

18 - основной электронагреватель на тепловой трубе, расположенной на трассе типа «Большое кольцо» на участке корпуса стыковочного модуля между стыковочными агрегатами;

19 - резервный электронагреватель на тепловой трубе, расположенной на трассе типа «Большое кольцо» на участке корпуса стыковочного модуля между стыковочными агрегатами;

20 - участок корпуса стыковочного модуля между стыковочными агрегатами;

21 - пара электронагревателей (основной и резервный) на участке корпуса модуля между стыковочными агрегатами вне трасс прокладки тепловых труб;

22 - пара электронагревателей (основной и резервный) на участке корпуса стыковочного модуля, ограниченном трассой типа «Малое кольцо»;

23 - зона корпуса стыковочного модуля рассматриваемого стыковочного агрегата.

На наружной поверхности корпуса стыковочного модуля (1) симметрично относительно каждого из стыковочных агрегатов (2) стыковочного модуля расположены тепловые трубы. Трассы прокладки тепловых труб делят корпус стыковочного модуля на две зоны (23), каждая из которых содержит два или три стыковочных агрегата (2). В каждой зоне проходят две кольцевые трассы, которые являются геометрическим местом точек, полученным в результате пересечения поверхности корпуса стыковочного модуля (1) и двух плоскостей, касательных ко всем стыковочным агрегатам (2) зоны (23). Кольцевые трассы образованы двумя группами дублирующих друг друга тепловых труб. Трасса, образованная при пересечении с плоскостью, расположенной ближе к плоскости разделения (3) двух зон (23) корпуса стыковочного модуля (1), является трассой типа «Большое кольцо» (4). Трасса, образованная при пересечении с плоскостью, расположенной дальше от плоскости разделения (3) двух зон (23) корпуса стыковочного модуля (1), является трассой типа «Малое кольцо» (5).

В каждой зоне (23) расположены также две или три пары S-образных трасс (по количеству стыковочных агрегатов (2) зоны (23)). Каждая пара S-образных трасс образована двумя типами трасс: «Левая S-образная» (6) и «Правая S-образная» (7), причем конкретный тип трассы определяется исходя из ее положения относительно стыковочного агрегата (2) при расположении трассы типа «Большое кольцо» (4) снизу, как показано на фиг.1. Каждая S-образная трасса образована парой дублирующих друг друга тепловых труб. Срединная часть каждой S-образной трассы является геометрическим местом точек, полученным в результате пересечения поверхности корпуса стыковочного модуля (1) и одной из двух плоскостей, проходящей через прямую (8), содержащую центр поверхности корпуса стыковочного модуля (1) и перпендикулярную плоскости разделения (3) двух зон (23) корпуса стыковочного модуля (1), и касательной к каждому стыковочному агрегату (2). Начало и конец каждой S-образной трассы сонаправлены с соответствующей кольцевой трассой и отстоят от нее на расстоянии не более двух диаметров тепловой трубы.

На внутренней поверхности корпуса стыковочного модуля (1) напротив каждой пары тепловых труб в зоне конденсации тепловой трубы устанавливаются электронагреватели. Основными являются электронагреватели, расположенные под той тепловой трубой, которая в своей паре находится ближе к стыковочному агрегату (2). Резервными являются электронагреватели, расположенные под той тепловой трубой, которая в своей паре находится дальше от стыковочного агрегата (2). В окрестности каждого стыковочного агрегата (2) устанавливаются:

- основной (9) и резервный (10) электронагреватели на тепловых трубах, расположенных на трассе типа «Большое кольцо» (4) на участке расположения стыковочного агрегата (11),

- основной (12) и резервный (13) электронагреватели на тепловых трубах, расположенных на трассе типа «Малое кольцо» (5),

- основной (14) и резервный (15) электронагреватели на тепловых трубах, расположенных на трассе типа «Левая S-образная» (6),

- основной (16) и резервный (17) электронагреватели на тепловых трубах, расположенных на трассе типа «Правая S-образная» (7),

- основной (18) и резервный (19) электронагреватели на тепловых трубах, расположенных на трассе типа «Большое кольцо» (4) на участке корпуса модуля между стыковочными агрегатами (20),

- пара электронагревателей (основной и резервный) (21) на участке корпуса модуля между стыковочными агрегатами (20) вне трасс прокладки тепловых труб.

Пара электронагревателей (основной и резервный) (22) на участке корпуса стыковочного модуля (1), ограниченном трассой типа «Малое кольцо» (5), относятся ко всем стыковочным агрегатам (2) зоны (23) корпуса стыковочного модуля (1).

На внутренней стороне корпуса стыковочного модуля (1) устанавливаются также электронные переключатели (на фиг.1 не обозначено), являющиеся средствами управления для электронагревателей (9)-(10), (12)-(19), (21)-(22). Также с внутренней стороны корпуса модуля (1) устанавливается датчиковая аппаратура, представляющая собой информационные температурные датчики, функционально входящие в систему терморегулирования стыковочного модуля (на фиг.1 не обозначено).

Часть тепловых труб, образующая кольцевые трассы (4)-(5), выполняет функцию перераспределения тепла от стыковочного агрегата (2) и срабатывающих электронагревателей (9)-(10), (12)-(13), (18)-(19) по корпусу стыковочного модуля (1) между стыковочными агрегатами зоны (23). Другая часть тепловых труб, образующая S-образные трассы (6)-(7), выполняет функцию переноса тепла от стыковочного агрегата (2) и срабатывающих электронагревателей (14)-(17) на кольцевые трассы (4)-(5) для дальнейшего его перераспределения. Передача тепла от трубы к трубе осуществляется в зоне стыка тепловых труб.

Электронагреватели (9)-(10), (12)-(19), (21)-(22) предназначены для компенсации нерегулируемых теплопотерь и исключения выпадения водяного конденсата на внутренней поверхности корпуса стыковочного модуля (1). Электронагреватели (9)-(10), (12)-(19), (21)-(22) управляются индивидуально каждый своим электронным переключателем (на фиг.1 не обозначено). В зависимости от текущего значения температуры конструкции под установочной поверхностью электронного переключателя производится включение или отключение соответствующего электронагревателя. Электронные переключатели, управляющие основными и резервными электронагревателями (9)-(10), (12)-(19), (21)-(22), имеют различные номиналы срабатывания по температуре конструкции под установочной поверхностью электронного переключателя.

Датчиковая аппаратура, состоящая из информационных температурных датчиков, используется для текущего контроля теплового состояния стыковочного модуля.

Предложенная система терморегулирования стыковочного модуля обитаемой орбитальной станции функционирует следующим образом.

Тепловой поток с солнечной стороны корпуса стыковочного модуля (1) на теневую сторону передается как по корпусу модуля (1), так и посредством тепловых труб, образующих трассы (4)-(7). В том случае, если стыковочный агрегат (2) расположен на солнечной стороне корпуса модуля (1) и является источником тепла, тепловой поток от стыковочного агрегата (2) перераспределяется между стыковочными агрегатами зоны (23) с помощью тепловых труб, образующих кольцевые трассы (4)-(5). Также с помощью тепловых труб, образующих S-образные трассы (6)-(7), упомянутый тепловой поток передается на трассы (4)-(5) для дальнейшего его перераспределения. В том случае, если стыковочный агрегат (2) расположен на теневой стороне корпуса стыковочного модуля (1) и является стоком тепла, тепловые потери компенсируются мощностью срабатывающих электронагревателей (9)-(10), (12)-(17), а также тепловым потоком, передающимся от срабатывающих электронагревателей (18)-(19) с помощью тепловых труб трассы типа «Большое кольцо» (4) на участке корпуса модуля между стыковочными агрегатами (20), и мощностью срабатывающих электронагревателей (21)-(22), подводимой к стыковочному агрегату (2) посредством теплопередачи по корпусу стыковочного модуля (1).

Предложенная система терморегулирования проходила испытания на ОАО «РКК «Энергия» в составе модуля сферической формы с шестью стыковочными агрегатами, предназначенного для функционирования в составе международной космической станции.

По результатам проведенных тепловых расчетов при заданных программой полета условиях эксплуатации модуля требуемый теплоотвод от стыковочного агрегата, расположенного на солнечной стороне корпуса стыковочного модуля, составляет порядка 70 Вт.

Система терморегулирования испытуемого модуля содержит 60 тепловых труб, из них 24 штуки в составе трасс типа «Большое кольцо», 12 штук в составе трасс типа «Малое кольцо» и 24 штуки в составе S-образных трасс. Длина каждой тепловой трубы составляет от 1600 до 2700 мм, зона стыка тепловых труб составляет от 300 до 400 мм. Наружный диаметр каждой тепловой трубы составляет 12±0,25 мм. Номинальное расстояние между осями дублирующих друг друга тепловых труб составляет 18 мм. Расстояние между сонаправленными участками тепловых труб кольцевых и S-образных трасс составляет от 10 до 20 мм. В окрестности каждого стыковочного агрегата проходит восемь тепловых труб. По результатам лабораторно-отработочных испытаний тепловых труб эффективность одной тепловой трубы диаметром 12 мм составляет порядка 80 Вт, что позволяет обеспечить требуемый теплоотвод от стыковочного агрегата с большим запасом.

Также система терморегулирования содержит 76 пар электронагревателей и управляющих ими электронных переключателей, на которые подано питание при полете модуля в составе орбитальной станции. Из указанных электронагревателей 38 штук являются основными и 38 штук являются резервными и устанавливаются частью под трассами прокладки тепловых труб (30 штук основных и 30 штук резервных), частью вне трасс прокладки тепловых труб (8 штук основных и 8 штук резервных) на внутренней поверхности корпуса стыковочного модуля. Электронагреватели мощностью 30 Вт каждый устанавливаются на расстоянии не менее 100 мм от конца тепловой трубы. Электронные переключатели устанавливаются на расстоянии от 100 до 200 мм от управляемого электронагревателя. Такая установка повышает тепловую инерционность пары «электронагреватель - электронный переключатель» и способствует уменьшению числа срабатывания коммутационных элементов. Электронные переключатели, управляющие основными и резервными электронагревателями, имеют различные номиналы срабатывания по температуре конструкции под установочной поверхностью электронного переключателя, что позволяет реализовать «холодное» резервирование пары «электронагреватель - электронный переключатель». В окрестности каждого стыковочного агрегата устанавливаются семь пар электронагревателей

Также в систему терморегулирования испытуемого модуля функционально входят 40 информационных температурных датчиков, показывающих текущее тепловое состояние модуля.

Выбранная компоновка тепловых труб и электронагревателей позволяет обеспечить высокую степень надежности системы, поскольку отказ любых двух тепловых труб не приведет к критичному уменьшению теплопередачи по корпусу стыковочного модуля.

Система терморегулирования стыковочного модуля обитаемой орбитальной станции, состоящая из средств теплопереноса, электронагревателей со средствами управления и датчиковой аппаратуры, установленных на внутренней поверхности корпуса модуля, отличающаяся тем, что в качестве средств теплопереноса используют тепловые трубы, расположенные на наружной поверхности корпуса стыковочного модуля симметрично относительно каждого из стыковочных агрегатов стыковочного модуля, при этом трассы прокладки тепловых труб делят корпус стыковочного модуля на две зоны, каждая из которых содержит, по крайней мере, два стыковочных агрегата, при этом в каждой зоне проходят две кольцевые трассы, которые являются геометрическим местом точек, полученным в результате пересечения сферической или близкой к сферической поверхности корпуса стыковочного модуля и двух плоскостей, касательных ко всем стыковочным агрегатам зоны, при этом кольцевые трассы образованы двумя группами дублирующих друг друга тепловых труб, также в каждой зоне расположены, по крайней мере, две пары S-образных трасс, срединная часть каждой из которых является геометрическим местом точек, полученным в результате пересечения сферической или близкой к сферической поверхности корпуса стыковочного модуля и одной из двух плоскостей, проходящей через прямую, содержащую центр сферической или близкой к сферической поверхности корпуса стыковочного модуля и перпендикулярную плоскости разделения двух зон корпуса стыковочного модуля, и касательной к каждому стыковочному агрегату, начало и конец каждой S-образной трассы сонаправлены с соответствующей кольцевой трассой и отстоят от нее на расстоянии не более двух диаметров тепловой трубы, при этом каждая S-образная трасса образована парой дублирующих друг друга тепловых труб, а на внутренней поверхности стыковочного модуля напротив каждой пары тепловых труб в зоне конденсации тепловой трубы устанавливаются электронагреватели.



 

Похожие патенты:

Группа изобретений относится к методам и средствам управления параметрами среды в изделиях ракетно-космической техники, в частнОСТИ, при предстартовой подготовке современных ракет-носителей (РН) полезной нагрузки (ПН).

Изобретение относится к космической технике и может быть использовано в космических аппаратах (КА). КА содержит модуль целевой аппаратуры, модуль служебных систем с системой электропитания с солнечными батареями, комплексом автоматики, аккумуляторными батареями, систему терморегулирования, объединяющую конструктивно блок управления, гидроблоки, панели навесных холодных радиаторов из отдельных сборочных единиц с концевым теплообменником термостатирования (КТТ) с жидким теплоносителем и тепловой трубой (ТТ), термоплаты с жидким теплоносителем, ТТ с плоскими полками, тепловые магистрали из гидроарматур.

Изобретение относится космической технике и может быть использовано в компоновке космического аппарата (КА). Устанавливают на внутренних поверхностях трехслойных сотовых панелей с встроенными тепловыми трубами и сдублированными циркуляционными коллекторами с жидким теплоносителем приборы модулей служебных систем и полезной нагрузки, устанавливают в составе модуля служебных систем две дополнительные нераскрываемые панели радиатора с встроенными жидкостными коллекторами с двухсторонним излучением, устанавливают за пределами панелей радиаторов аккумуляторные батареи, устанавливают на внутренних обшивках их панелей радиаторов с встроенными тепловыми трубами приборы с большой теплоемкостью и широким рабочим диапазоном температур, размещают баки с топливом системы коррекции внутри силовой конструкции корпуса и на нижней панели, другие приборы устанавливают на панелях с встроенными жидкостными коллекторами, устанавливают приборы модуля полезной нагрузки и жидкостные коллекторы на внутренних обшивках их панелей радиаторов с встроенными тепловыми трубами и встроенными жидкостными коллекторами, выполняют замкнутые сдублированные жидкостные контуры по параллельной схеме соединения жидкостных коллекторов.

Изобретение относится к управлению параметрами среды в изделиях ракетно-космической технике при их подготовке на стартовом сооружении и в полете. Устройство включает в себя установленный на переходном отсеке (4) головной обтекатель (ГО) (3) полезной нагрузки (ПН) (1), выводимой ракетой (2) космического назначения.

Изобретение относится преимущественно к наземным испытаниям и отработке системы терморегулирования (СТР) космического аппарата. Согласно изобретению, заблаговременно определяют недостающее количество теплоносителя в системе, состоящей из имитатора СТР и модуля полезной нагрузки (ПН).

Изобретение относится к тепловому проектированию преимущественно геостационарных телекоммуникационных спутников с тепловой нагрузкой порядка 4,5-5,5 кВт. Спутник выполняют из двух модулей: модуля полезной нагрузки (ПН) и модуля служебных систем (СС).

Изобретение относится к системам терморегулирования (СТР) космических аппаратов (КА), преимущественно телекоммуникационных спутников. СТР содержит два независимых, одинаковых по составу, бортовых циркуляционных тракта с теплоносителем, которые размещены рядом друг с другом в сотовых панелях (или на них).

Изобретение относится к системам терморегулирования (СТР) мощных телекоммуникационных спутников, содержащим многочисленные (до 10) вертикально расположенные последовательно соединенные длинноразмерные (~3-6 м) коллекторы.

Изобретение относится к управлению движением космического аппарата (КА), на котором размещены теплоизлучающий радиатор и солнечная батарея (СБ). Способ включает выполнение полета КА по орбите вокруг планеты с разворотом СБ в положение, соответствующее совмещению нормали к рабочей поверхности СБ с направлением на Солнце.

Изобретение относится к управлению движением космического аппарата (КА), на котором размещены теплоизлучающий радиатор и солнечная батарея (СБ). Способ включает выполнение полета КА по орбите вокруг планеты с разворотом СБ в положение, соответствующее совмещению нормали к рабочей поверхности СБ с направлением на Солнце.

Изобретение относится к системе терморегулирования (СТР) бортовой аппаратуры космического аппарата. СТР выполнена на основе двухкаскадного теплового насоса. Бортовые приборы установлены на термостатирующих панелях (1) и отдают тепло через паровые камеры панелей в испарители (5) рабочего тела (РТ) нижнего каскада (фреон). Затем это РТ поступает на вход компрессора (2), далее - в промежуточный теплообменник (3) и, через детандер (4), в испаритель (5). В теплообменнике (3) РТ конденсируется и отдает тепло РТ верхнего каскада (смесь газов Не и Хе). Последнее подогревается в регенераторе (9) и идет на вход компрессора (7). После этого РТ верхнего каскада поступает в концевой теплообменник (8), где передает тепло в контур радиационного теплообменника (13), далее следует в регенератор (9) и, через детандер (10), в конденсатор (3). РТ радиаторного контура служит жидкометаллический теплоноситель, прокачиваемый электромагнитным насосом (12). Получив тепло в теплообменнике (8) от РТ верхнего каскада, этот теплоноситель отдает его зонам испарения тепловых труб - основных излучающих элементов теплообменника (13). Охлаждение компрессорно-детандерного турбоагрегата каждого каскада осуществляется РТ данного каскада через навитые на стенки корпуса турбоагрегата трубки. Технический результат изобретения состоит в повышении температуры радиационного теплообменника (13), и тем самым - улучшении его массогабаритных характеристик. 1 ил.

Изобретение относится к ракетно-космической технике и может быть использовано при подготовке и старте ракеты космического назначения. Устройство обеспечения теплового режима и чистоты космической головной части ракеты космического назначения с крупногабаритной полезной нагрузкой содержит на головном обтекателе и на переходном отсеке отверстия вдува термостатирующей газовой среды, отверстия истечения термостатирующей газовой среды, шарнирно установленные клапаны одностороннего действия отверстий вдува и истечения термостатирующей газовой среды, устройство вдува термостатирующей газовой среды в виде закрепленного на окантовке отверстия вдува лотка с клапанами одностороннего действия в виде уплотняющих крышек, дополнительные отверстия вдува термостатирующей газовой среды, клапаны одностороннего действия в виде заслонки с противовесом между входным отверстием с защитной сеткой и выходным отверстием, теплоизолирующее и терморегулирующие покрытия. Изобретение позволяет повысить качество чистоты и эффективность термостатирования космической головной части ракеты космического назначения. 9 ил.

Изобретение относится к системам терморегулирования космических аппаратов (КА), а именно к холодильникам-излучателям для сброса излишков тепловой энергии, вырабатываемой на борту КА. Полый телескопический холодильник-излучатель (ТХИ) содержит раздвижные полые секции, в состав которых введены стыковочные узлы. Эти узлы обеспечивают механическую стыковку секций, а также соединение гидравлических, пневматических и электрических коммуникаций смежных секций ТХИ после их раздвижения. Каждая раздвижная секция снабжена двумя поворачиваемыми на 180° жесткими теплоизлучающими панелями, связанными с этой секцией узлами поворота. Указанные панели повторяют форму раздвижной секции и уложены в стартовом положении на поверхность раздвижной секции ТХИ. Указанные панели м.б. выполнены в виде сегментов, соединенных гибкими трубопроводами и шарнирами с приводами, обеспечивающими поворот и фиксацию сегментов в рабочем положении. Технический результат изобретения состоит в повышении энергомассовой эффективности ТХИ путем увеличения эффективной площади их теплоизлучающих поверхностей. 1 з.п. ф-лы, 37 ил.

Изобретение относится к управлению работой систем обеспечения теплового режима (СОТР) автоматических космических аппаратов (КА) на околоземных орбитах. Способ состоит в том, что при штатном теплонагружении КА обеспечение температур сотопанелей (СП) осуществляют пассивными средствами на уровне номинального значения допустимых температур приборов, установленных на этих СП. При пониженном теплонагружении КА температуру СП регулируют электронагревателями (ЭН) в диапазоне температур от предельного нижнего до номинального значения. Данный диапазон разбивают на два или более интервалов, включающих, как минимум, один интервал нижней границы и один интервал верхней границы диапазона. При дефиците электроэнергии на борту КА температуру СП поддерживают с помощью ЭН в заданном интервале нижней границы, а при наличии электроэнергии - в заданном интервале верхней границы. Мощность каждого ЭН не превышает штатного энерговыделения приборов соответствующих СП. Техническим результатом изобретения является улучшение термостабилизации установленных на СП приборов с одновременным повышением надежности, уменьшением массы и энергопотребления СОТР. 1 з.п. ф-лы. 1 ил.

Изобретение относится к системам терморегулирования (СТР) космических аппаратов (КА), преимущественно телекоммуникационных спутников. СТР таких КА содержит одинаковые дублированные жидкостные контуры теплоносителя. Контуры включают в себя рядом расположенные жидкостные тракты и снабжены гидронасосами с близкими расходно-напорными характеристиками. Схема соединения жидкостных трактов с гидронасосами выполнена так, что направления движения теплоносителя в рядом расположенных жидкостных трактах взаимно противоположны. Технический результат изобретения состоит в уменьшении суммарного нескомпенсированного кинетического момента от работающей СТР и обеспечении, тем самым, снижения затрат массы рабочего тела системы ориентации и стабилизации КА. 6 ил.

Изобретение относится к ракетно-космической технике и может быть использовано для обеспечения теплового режима полезной нагрузки (ПН). Устройство обеспечения теплового режима полезной нагрузки в сборочно-защитном блоке содержит теплоизолирующую перегородку, теплоизолирующие покрытия, отверстия подачи и истечения термостатирующего газового компонента в головном обтекателе (ГО) и переходном отсеке (ПхО). Одновременно подают через отверстия над или под жестко установленной между ракетой-носителем и ПН теплоизолирующей перегородкой термостатирующего газового компонента в полости ГО и ПхО, обеспечивают перетекание потока термостатирующего газового компонента в направлениях вдоль нижней части полезной нагрузки и теплоизолирующей перегородки, или вдоль теплоизолирующей перегородки и пристыкованной к торцу космической головной части ракеты-носителя. Изобретение позволяет повысить эффективность термостатирования ПН. 2 н.п. ф-лы, 5 ил.

Группа изобретений относится к средствам предстартовой подготовки космического аппарата (КА). Устройство содержит противоточный рекуперативный жидкостно-жидкостный теплообменный агрегат, включенный в циркуляционный тракт теплоносителя системы терморегулирования КА. Этот агрегат сообщен с наземным средством термостатирования посредством подводящих и отводящих хладагент быстроразъемных трубопроводов (БРТ) с быстроразъемными соединениями (БРС). На данном агрегате БРТ и БРС установлена теплоизоляция. В первом варианте БРС установлены на КА перпендикулярно плоскости, проходящей через продольную ось головного обтекателя (ГО), в котором выполнен люк под БРС. Во втором варианте часть БРС установлена на КА параллельно продольной оси ГО, а другая часть БРС, соединенная с первой посредством БРТ, - на переходном отсеке, где выполнен соответствующий люк. Техническим результатом группы изобретений является повышение эффективности термостатирования бортовой аппаратуры КА при высоких значениях её тепловыделения и в широком диапазоне температур окружающей среды. 2 н.п. ф-лы, 2 ил.

Изобретение относится к бортовому оборудованию, преимущественно телекоммуникационных спутников. Способ включает изготовление коллекторов (К) и соединительных трубопроводов (СТ) из трубы специального профиля (с двумя полками). Жидкостные тракты К и СТ промывают органическим теплоносителем, затем сушат при повышенной температуре, испытывают на прочность и автономно проверяют на герметичность. Перед указанной проверкой термоциклируют К и СТ при давлении окружающего воздуха, выдерживая в каждом цикле при максим. и миним. температурах (Т) не менее 60 мин. Максим. Т выбирают не ниже Т перегонки 95% промывочной жидкости из микротечей. Каждый цикл (из трех или более) оканчивают продувкой сжатым воздухом при максим. Т и давлении. Техническим результатом изобретения является повышение надежности определения степени герметичности жидкостного тракта К и СТ и тем самым - качества изготовления жидкостного контура системы терморегулирования. 2 ил.

Изобретение относится к системам терморегулирования (СТР) космических аппаратов (КА) с тепловой нагрузкой от 13 до 18 кВт. СТР состоит из замкнутых жидкостных контуров и тепловых труб (ТТ), а также раскрываемых панелей радиатора (РПР). Каждый контур содержит сообщенные подконтуры модулей служебных систем (МСС) и полезной нагрузки (МПН). В сотовые приборные панели ("+Z" или "-Z") МПН встроены ТТ, а на панелях установлены жидкостные коллекторы (встроенные в другие приборные панели). Одна из РПР выполнена с коллекторами на двухфазном рабочем теле, образующемся в испарителе с капиллярным насосом, установленном на панели "+Z" или "-Z" МПН. Корпус испарителя контактирует с теплоносителем подконтура МПН. Хладопроизводительность другой РПР (с жидким теплоносителем) выбрана так, что без первой РПР обеспечивается температура приборов не выше максимально допустимой. Техническим результатом изобретения является обеспечение квалификации РПР (с аммиаком) в полетных условиях и при положительных результатах - возможность применения СТР, рассчитанной на 13 кВт, в составе КА с тепловой нагрузкой до 18 кВт (при подключении к СТР двух указанных РПР). 2 ил.

Изобретение относится к системам терморегулирования (СТР) космических аппаратов (КА), преимущественно телекоммуникационных спутников. В жидкостном контуре СТР установлен двухступенчатый электронасосный агрегат (ЭНА) с последовательно расположенными рабочими колесами, вращающимися с частотой 6000 об/мин. В контуре используется теплоноситель ЛЗ-ТК-2 (вместо аммиака). На выходе ЭНА предусмотрена дроссельная шайба, гидравлическое сопротивление которой обеспечивает минимальный требуемый расход теплоносителя. Без шайбы гидравлическое сопротивление контура отвечает максимальной холодпроизводительности СТР. ЭНА работоспособен при повышенном (более 27 В) напряжении питания. Технический результат изобретения состоит в повышении технологичности (унификации) и надежности длительной эксплуатации любых КА с потребной холодопроизводительностью от 5 до 13-18 кВт. 2 н.п. ф-лы, 1 ил.
Наверх