Космический телескопический холодильник-излучатель

Изобретение относится к системам терморегулирования космических аппаратов (КА), а именно к холодильникам-излучателям для сброса излишков тепловой энергии, вырабатываемой на борту КА. Полый телескопический холодильник-излучатель (ТХИ) содержит раздвижные полые секции, в состав которых введены стыковочные узлы. Эти узлы обеспечивают механическую стыковку секций, а также соединение гидравлических, пневматических и электрических коммуникаций смежных секций ТХИ после их раздвижения. Каждая раздвижная секция снабжена двумя поворачиваемыми на 180° жесткими теплоизлучающими панелями, связанными с этой секцией узлами поворота. Указанные панели повторяют форму раздвижной секции и уложены в стартовом положении на поверхность раздвижной секции ТХИ. Указанные панели м.б. выполнены в виде сегментов, соединенных гибкими трубопроводами и шарнирами с приводами, обеспечивающими поворот и фиксацию сегментов в рабочем положении. Технический результат изобретения состоит в повышении энергомассовой эффективности ТХИ путем увеличения эффективной площади их теплоизлучающих поверхностей. 1 з.п. ф-лы, 37 ил.

 

Изобретение относится к космическим холодильникам-излучателям (ХИ), используемым для сброса излишней тепловой энергии, вырабатываемой различными системами космических аппаратов (КА). Эта излишняя тепловая энергия может вырабатываться как энергосистемами КА, например ядерной или солнечной энергоустановкой, так и служебной или целевой аппаратурой. Необходимость сброса большого количества излишней тепловой энергии, особенно в случае ее низкой температуры, может потребовать холодильника-излучателя большой площади. Наличие ХИ большой площади может вызвать трудности при компоновке КА под обтекателем РН носителя.

Известна конструкция подобного ХИ космической ЯЭУ описанная в книге "Основы теории конструкции и эксплуатации космических ЯЭУ" / А.А. Куландин, С.В. Тимашев, В.Д. Атамасов и др. - Л.: Энергоатомиздат, Ленингр. отд-ние, 1987, 283 с., в которой увеличение площади ХИ производится за счет телескопического раздвижения холодильника-излучателя.

Недостатком предложенной конструкции является наличие гибких участков трубопроводов, которые обеспечивают гидравлическую связь между разными секциями ХИ после его раздвижения. Гибкие участки трубопроводов затрудняют размещение в сложенном состоянии одной секции ХИ в другой, так как требуют дополнительного места для своего размещения внутри выдвигающейся секции. Поэтому число секций ХИ ограничивается двумя, а внутри сложенного ХИ нет возможности разместить другие элементы ЯЭУ, например приборно-агрегатный отсек (ПАО). Те же трудности будут и при размещении токопроводящих шин.

Наиболее близким техническим решением к заявленному является ХИ ЯЭУ, описанный в патенте на изобретение «Ядерная энергетическая установка космического аппарата», RU 2461495 С1 от 20.09.2012., в котором полые цилиндрические раздвижные секции ХИ снабжены стыковочными узлами, обеспечивающими механическую стыковку самих секций, а также соответствующими стыковочными узлами для соединения гидравлических, пневматических и электрических коммуникаций смежных секций холодильника-излучателя после их раздвижения.

Недостатком приведенной конструкции ХИ ЯЭУ является то, что сброс тепла излучением осуществляется только с внешней поверхности ХИ. Внутренняя сторона ХИ в процессе сброса тепла не участвует, что снижает его энергомассовую эффективность в два раза.

Задачей изобретения является повышение энергомассовой эффективности ХИ энергетических систем космического аппарата.

Сущность изобретения состоит в том, что космический телескопический холодильник-излучатель выполнен полым с возможностью размещения в нем элементов КА и состоит из раздвижных полых секций. При этом в состав раздвижных секций введены стыковочные узлы, обеспечивающие механическую стыковку самих секций, а также, соответственно, стыковочные узлы для соединения гидравлических, пневматических и электрических коммуникаций смежных секций космического телескопического холодильника-излучателя после их раздвижения. Каждая раздвижная секция космического телескопического холодильника-излучателя снабжена двумя поворачиваемыми на 180° жесткими теплоизлучающими панелями, связанными с раздвижной секцией узлами поворота соответственно, при этом указанные теплоизлучающие панели повторяют форму раздвижной секции и уложены в стартовом положении на поверхность раздвижной секции холодильника-излучателя.

Сущность изобретения состоит также в том, что каждая поворачиваемая жесткая теплоизлучающая панель выполнена как минимум из двух сегментов, соединенных между собой шарнирно.

Техническим результатом, достигаемым этим изобретением, является увеличение энергомассовой эффективности космического телескопического холодильника-излучателя. Этот результат достигается тем, что на каждой секции телескопического ХИ расположены две поворачиваемые на 180° жесткие теплоизлучающие панели. При этом сброс тепла излучением происходит как с внешней поверхности теплоизлучающих панелей, так и внутренней, что значительно увеличивает общую поверхность теплоизлучения при практически той же массе и равных стартовых габаритах ХИ с прототипом. В результате этого снижается удельная масса космического ХИ, т.е. повышается его энергомассовая эффективность, что в конечном итоге приводит к снижению массы всего КА. Наличие только двух жестких теплоизлучающих панелей, разворачиваемых на 180°, приводит к минимуму потери эффективности космического ХИ из-за переизлучения тепла между теплоизлучающими панелями.

Разворот жестких теплоизлучающих панелей секций ХИ на 180° может осуществляться, например, с помощью специальных электроприводов и поворотных узлов.

На фиг.1 и 2 представлен общий вид ЯЭУ с космическим телескопическим ХИ (каждая телескопическая секция которого снабжена двумя поворачиваемыми на 180° жесткими теплоизлучающими панелями) в стартовом положении.

На фиг.3 представлены сечения А-А по фиг.2.

На фиг.4 представлены сечения Б-Б по фиг.1.

На фиг.5 представлены сечения В-В по фиг.1.

На фиг.6, 7 представлены выносные виды I и II по фиг.1.

На фиг.8, 9, 10 и 11 представлены выносные виды III, IV, V и VI по фиг.3.

На фиг.12 и 13 представлен общий виды ЯЭУ с раздвинутым в рабочее положение космическим телескопическим ХИ (каждая телескопическая секция которого снабжена двумя поворачиваемыми на 180° жесткими теплоизлучающими панелями). На фиг.12 показано сечение А-А по фиг 2.

На фиг.14, 15, 16 и 17 представлены выносные виды VII, VIII, IX и X по фиг.12.

На фиг.18 и 19 представлен общий вид ЯЭУ с космическим телескопическим ХИ (каждая телескопическая секция которого снабжена двумя поворачиваемыми на 180° жесткими теплоизлучающими панелями) в собранном состоянии.

На фиг.20 представлены сечения А-А по фиг.19.

На фиг.21 представлены сечения Б-Б по фиг.18.

На фиг.22 представлены сечения В-В по фиг.18.

На фиг.23, 24 представлены выносные виды XI и XII по фиг.18.

На фиг.25, 26, 27 и 28 представлены выносные виды XIII, XIV, XV и XVI по фиг.20.

На фиг.29 представлена схема приведения поворачиваемых на 180° жестких теплосбрасывающих панелей в рабочее положение.

На фиг.30 и 31 представлен общий вид ЯЭУ с космическим телескопическим ХИ (каждая телескопическая секция которого снабжена двумя поворачиваемыми на 180° жесткими теплоизлучающими панелями) в рабочем состоянии. На фиг.30 показано сечение А-А по фиг 19.

На фиг.32, 33, 34 и 35 представлены выносные виды XVII, XVIII, XIX и XX по фиг.30.

На фиг.36 представлен многогранник, вписанный в цилиндр радиуса R и длиной L.

На фиг.37 представлена зависимость относительной площади многогранника (относительно площади описанного цилиндра) от числа граней.

В состав, например ЯЭУ, входят реактор 1, радиационная зашита 2, отсек оборудования 3, раздвижные секции ХИ 4 с зубчатыми направляющими рейками 5, приводами выдвижения 6, опорными катками 7, нишей 8 электрокабелей 9, стыковочными кольцами 10,11 с гидроразъемами 12, 13, электрическими разъемами 14, 15, стягивающими крюками 16, 17, откидными теплоизлучающими панелями 18, приводами поворота панелей 19 с шестернями 20, узлами поворота 21 и 22, трубопроводы 23, ПАО 24 с приводами выдвижения 25, опорное кольцо 26 с опорными катками 27 и силовой рамой 28 с зубчатыми направляющими рейками 29.

Приведение холодильника-излучателя ЯЭУ в рабочее состояние осуществляется следующим образом. После отделения ЯЭУ от ракеты-носителя (РН) осуществляется выдвижение ПАО 24 с помощью приводов выдвижения 25 и зубчатых направляющих реек 29 из внутреннего пространства силовой рамы 28, расположенной внутри секции ХИ 4. При выдвижении ПАО 24 опирается на опорные катки 27, расположенные на опорном кольце 26. Зубчатые направляющие рейки 29 расположены на силовой раме 28 и могут также являться силовым элементом конструкции. После выдвижения ПАО 24 начинается выдвижение секций ХИ 4 с помощью приводов выдвижения 6 и зубчатых направляющих реек 5. Выдвижение осуществляется в сторону, противоположную опорному кольцу 26, до упора каждого стыковочного кольца 11 в стыковочное кольцо 10 предыдущей секции ХИ 4. После этого происходит зацепление и стягивание колец с помощью крюков 16 и 17, расположенных на стыковочных кольцах 10 и 11. При этом осуществляется стыковка гидравлических разъемов 13 на стыковочных кольцах 11 с гидравлическими разъемами 12 на стыковочных кольцах 10. А также стыковка электроразъемов 14 на стыковочных кольцах 10 с электроразъемами 15 на стыковочных кольцах 11. После стягивания производится раскрытие с помощью приводов поворота панелей 19 с шестернями 20 откидных теплоизлучающих панелей 18. При этом узлы поворота 21 и 22 обеспечивают поворот и герметизацию отдельных частей трубопровода 23. Затем производится проверка герметичности гидравлических разъемов (например, путем наддува трубопроводов газом), а также проверка целостности электроцепей, и осуществляется заполнение трубопроводов штатным теплоносителем, и осуществляется пуск и вывод ЯЭУ на рабочий режим.

Поворачиваемые на 180° жесткие теплоизлучающие панели 18 могут быть выполнены в виде теплоизлучающих сегментов 30, соединенных гибкими трубопроводами 31 и шарнирами 32 с приводами 33, обеспечивающих поворот и фиксацию сегментов 30 в рабочем положении.

Жесткая теплоизлучающая панель может быть выполнена в виде многогранника, вписанного в цилиндр (см. фиг.36). Применение многогранника делает конструкцию жесткой теплоизлучающей панели холодильника-излучателя более технологичной, так как создание плоских панелей проще, чем цилиндрических. Площадь многогранника и цилиндра определяются по формуле:

Sмног=2×n×L×R×sin(π/n);

Sцил=2×π×L×R, где

n - число граней многогранника ≥2;

π - число пи;

R - радиус цилиндра;

L - длина теплоизлучающей панели.

В этом случае площадь многогранника, отнесенная к площади описывающего цилиндра, определяется формулой:

Sотн[%]=n×sin(π/n)×100/π, где

n - число граней многогранника ≥2;

π - число пи.

На фиг.37 показана зависимость Sотн от числа граней вписанного в цилиндр многогранника. Для вписанной плоской панели (n=2) ее суммарная площадь составит только 63,5% от площади цилиндра.

Относительная площадь вписанного в цилиндр четырехгранника (n=4) составит уже 90%, а вписанного двенадцатигранника (n=12) - 99%. Из этого следует, что наиболее рациональным является создание раздвижных секций холодильника-излучателя в виде многогранников с числом граней от 4 до 12.

Поворачиваемая на 180° жесткая теплоизлучающая панель полуцилиндрической или многогранной формы имеет суммарную площадь теплоизлучения, равную:

Sпанели=π×R×L×Sотн/100+2×R×L=R×L×(π×Sотн/100+2), где

R - радиус кривизны цилиндрической панели;

L - длина теплоизлучающей панели;

Sотн - площадь многогранника, отнесенная к площади описывающего цилиндра в % (для цилиндрической панели Sотн=100%);

π - число пи.

Первый член в этом уравнении описывает площадь внешней поверхности поворачиваемой на 180° жесткой теплоизлучающей панели, а второй член - теплоизлучаюшую площадь ее внутренней поверхности. Видно, что применение двух поворачиваемых на 180° жестких теплоизлучающих панелей позволит увеличить суммарную площадь теплоизлучения в

K=1+4×R×L/(2×π×R×L×Sотн/100)=1+(2×100/(π×Sотн))=1,64×100/Sотн раз.

Дальнейшее увеличение площади поворачиваемой на 180° жесткой теплоизлучающей панели возможно за счет ее выпрямления до плоскости, что возможно, если теплоизлучающую панель выполнить в виде отдельных плоских сегментов, шарнирно соединенных между собой. В этом случае поворачиваемая на 180° жесткая теплоизлучающая панель будет иметь суммарную площадь теплоизлучения:

Sпанели=2×π×R×L×Sотн/100.

Применение двух поворачиваемых на 180° жестких теплоизлучающих панелей, выполненных в виде совокупности шарнирно соединенных между собой плоских теплоизлучающих сегментов, позволит увеличить суммарную площадь теплоизлучения космического холодильника-излучателя в K=(4×π×R×L×Sотн/100)/(2×π×R×L×Sотн/100)=2 раза. При этом переизлучение между поворачиваемыми на 180 жесткими теплоизлучающими панелями будет практически отсутствовать.

1. Космический телескопический холодильник-излучатель, выполненный полым с возможностью размещения в нем элементов космического аппарата (КА) и состоящий из раздвижных полых секций, включающих стыковочные узлы, обеспечивающие механическую стыковку самих секций, а также, соответственно, стыковочные узлы для соединения гидравлических, пневматических и электрических коммуникаций смежных секций космического телескопического холодильника-излучателя после их раздвижения, отличающийся тем, что каждая раздвижная секция космического телескопического холодильника-излучателя снабжена двумя поворачиваемыми на 180° жесткими теплоизлучающими панелями, связанными с раздвижной секцией узлами поворота соответственно, при этом указанные теплоизлучающие панели повторяют форму раздвижной секции и уложены в стартовом положении на ее поверхность.

2. Космический телескопический холодильник-излучатель по п.1, отличающийся тем, что каждая раздвижная секция снабжена двумя поворачиваемыми на 180° жесткими теплоизлучающими панелями, каждая из которых выполнена, как минимум, из двух сегментов, соединенных между собой шарнирно.



 

Похожие патенты:

Изобретение относится к теплообменному узлу для поворотного регенеративного подогревателя. Теплообменный узел содержит множество теплообменных элементов, расположенных в стопку на расстоянии друг от друга.

Изобретение относится к области теплоэнергетики, а именно к теплообменным аппаратам, и может быть использовано при создании охлаждаемых конструкций с большими удельными тепловыми потоками.

Изобретение относится к теплообменным устройствам и применимо в теплоснабжении. Теплообменная панель содержит теплообменный коллектор, теплопроводные элементы и нагревательный секционный блок для жидкого теплоносителя с крышкой, смежные ячейки которого гидравлически изолированы друг от друга.

Радиатор // 2509970
Изобретение относится к области теплотехники и может быть использовано в радиаторах охлаждения с естественной циркуляцией воздуха и применимо в составе электронных модулей, шасси, крейтов, эксплуатируемых в сложных условиях.

Изобретение относится к теплообменной технике и может быть использовано в пластинчатых теплообменниках. .

Изобретение относится к теплотехнике, в частности к гофрированным вставкам для пластинчатых теплообменников. .

Изобретение относится к области теплоэнергетики, а именно к теплообменным аппаратам, и может быть использовано при создании охлаждаемых конструкций с большими удельными тепловыми потоками.

Изобретение относится к области теплоэнергетики, а именно к теплообменным аппаратам, и может быть использовано при создании охлаждаемых конструкций с большими удельными тепловыми потоками.

Изобретение относится к устройствам для проведения теплообменных процессов между двумя средами через стенку и может быть использовано в химической, пищевой и нефтеперерабатывающей отраслях промышленности.

Изобретение относится к ракетно-космической технике и может быть использовано при подготовке и старте ракеты космического назначения. Устройство обеспечения теплового режима и чистоты космической головной части ракеты космического назначения с крупногабаритной полезной нагрузкой содержит на головном обтекателе и на переходном отсеке отверстия вдува термостатирующей газовой среды, отверстия истечения термостатирующей газовой среды, шарнирно установленные клапаны одностороннего действия отверстий вдува и истечения термостатирующей газовой среды, устройство вдува термостатирующей газовой среды в виде закрепленного на окантовке отверстия вдува лотка с клапанами одностороннего действия в виде уплотняющих крышек, дополнительные отверстия вдува термостатирующей газовой среды, клапаны одностороннего действия в виде заслонки с противовесом между входным отверстием с защитной сеткой и выходным отверстием, теплоизолирующее и терморегулирующие покрытия.

Изобретение относится к системе терморегулирования (СТР) бортовой аппаратуры космического аппарата. СТР выполнена на основе двухкаскадного теплового насоса.

Изобретение предназначено для терморегулирования модулей долговременных орбитальных станций. Система терморегулирования содержит средства теплопереноса, электронагреватели со средствами управления и датчиковую аппаратуру на внутренней поверхности корпуса модуля.

Группа изобретений относится к методам и средствам управления параметрами среды в изделиях ракетно-космической техники, в частнОСТИ, при предстартовой подготовке современных ракет-носителей (РН) полезной нагрузки (ПН).

Изобретение относится к космической технике и может быть использовано в космических аппаратах (КА). КА содержит модуль целевой аппаратуры, модуль служебных систем с системой электропитания с солнечными батареями, комплексом автоматики, аккумуляторными батареями, систему терморегулирования, объединяющую конструктивно блок управления, гидроблоки, панели навесных холодных радиаторов из отдельных сборочных единиц с концевым теплообменником термостатирования (КТТ) с жидким теплоносителем и тепловой трубой (ТТ), термоплаты с жидким теплоносителем, ТТ с плоскими полками, тепловые магистрали из гидроарматур.

Изобретение относится космической технике и может быть использовано в компоновке космического аппарата (КА). Устанавливают на внутренних поверхностях трехслойных сотовых панелей с встроенными тепловыми трубами и сдублированными циркуляционными коллекторами с жидким теплоносителем приборы модулей служебных систем и полезной нагрузки, устанавливают в составе модуля служебных систем две дополнительные нераскрываемые панели радиатора с встроенными жидкостными коллекторами с двухсторонним излучением, устанавливают за пределами панелей радиаторов аккумуляторные батареи, устанавливают на внутренних обшивках их панелей радиаторов с встроенными тепловыми трубами приборы с большой теплоемкостью и широким рабочим диапазоном температур, размещают баки с топливом системы коррекции внутри силовой конструкции корпуса и на нижней панели, другие приборы устанавливают на панелях с встроенными жидкостными коллекторами, устанавливают приборы модуля полезной нагрузки и жидкостные коллекторы на внутренних обшивках их панелей радиаторов с встроенными тепловыми трубами и встроенными жидкостными коллекторами, выполняют замкнутые сдублированные жидкостные контуры по параллельной схеме соединения жидкостных коллекторов.

Изобретение относится к управлению параметрами среды в изделиях ракетно-космической технике при их подготовке на стартовом сооружении и в полете. Устройство включает в себя установленный на переходном отсеке (4) головной обтекатель (ГО) (3) полезной нагрузки (ПН) (1), выводимой ракетой (2) космического назначения.

Изобретение относится преимущественно к наземным испытаниям и отработке системы терморегулирования (СТР) космического аппарата. Согласно изобретению, заблаговременно определяют недостающее количество теплоносителя в системе, состоящей из имитатора СТР и модуля полезной нагрузки (ПН).

Изобретение относится к тепловому проектированию преимущественно геостационарных телекоммуникационных спутников с тепловой нагрузкой порядка 4,5-5,5 кВт. Спутник выполняют из двух модулей: модуля полезной нагрузки (ПН) и модуля служебных систем (СС).

Изобретение относится к системам терморегулирования (СТР) космических аппаратов (КА), преимущественно телекоммуникационных спутников. СТР содержит два независимых, одинаковых по составу, бортовых циркуляционных тракта с теплоносителем, которые размещены рядом друг с другом в сотовых панелях (или на них).

Изобретение относится к надувным развертываемым космическим конструкциям, преимущественно обитаемым модулям. Модуль включает в себя жесткий несущий отсек (1) в виде неравносторонней призмы с полезной зоной (2) постоянного объема.
Наверх