Наномодифицированный бетон и способ его получения

Изобретение относится к строительным материалам и может быть использовано для изготовления изделий из наномодифицированного бетона как в гражданском, так и в промышленном строительстве. Технический результат - повышение прочности и понижение водопоглощения бетона. Наномодифицированный бетон содержит портландцемент, песок, воду, нанодобавку, суперпластификатор, причем в качестве суперпластификатора используется добавка «Реламикс», а в качестве нанодобавки - золь нанокремнезема, микрокремнезем и белая сажа при следующем соотношении компонентов, мас.%: портландцемент 24,7-25,0, песок 65,3- 65,43, золь нанокремнезема 0,0025-0,0028, микрокремнезем 1,24-1,3, белая сажа 0,025-0,028, суперпластификатор «Реламикс» 0,2-0,21, вода 8,4-8,8. Способ получения наномодифицированного бетона включает перемешивание в сухом состоянии портландцемента, песка, белой сажи, микрокремнезема и 2/3 воды с дальнейшим введением добавки суперпластификатора «Реламикс», золя нанокремнезема, 1/3 оставшейся воды с окончательным перемешиванием. 2 н.п. ф-лы, 3 табл. 1 пр.

 

Изобретение относится к строительным материалам и может быть использовано для изготовления изделий из наномодифицированного бетона как в гражданском, так и в промышленном строительстве.

Известна сырьевая смесь для изготовления бетона, содержащая цемент, песок и воду (Баженов Ю.М. Технология бетона. -М.: Изд-во АСВ, 2002. - С. 274-275). Мелкозернистый бетон на основе данной сырьевой смеси имеет следующие недостатки: пониженную прочность при сжатии и изгибе и повышенную пористость.

Наиболее близким по технической сущности к заявляемому техническому решению является «Наномодифицированный бетон и способ его получения», состоящий из портландцемента, глауконитового песка, воды, суперпластификатора С-3 и добавки - золь кремниевой кислоты, с расходом по мас. %: портландцемент 18,65-22,93; глауконитовый песок 74,53-68,8; указанная добавка 0,005-0,02; суперпластификатор С-3 0,18-0,23; вода - остальное. (Патент РФ №2421423, МПК7 СО4В 40/00, опубл. 27.11.2010 г.). Способ получения наномодифицированного бетона, включающий перемешивание портландцемента, глауконитового песка и 2/3 воды с последующим добавлением суперпластификатора С-3, смешанного с оставшейся водой и указанной добавкой.

Недостатками данного технического решения являются относительно невысокая прочность и высокое водопоглощение бетона.

Задачей технического решения является повышение прочности и понижение водопоглощения бетона.

Задача решается созданием наномодифицированного бетона, полученного из смеси, содержащей портландцемент, песок, воду, нанодобавку, суперпластификатор, причем в качестве суперпластификатора используется добавка «Реламикс», а в качестве нанодобавки - золь нанокремнезема, микрокремнезем и белая сажа при следующем соотношении компонентов, мас. %:

Портландцемент 24,7-25,0
Песок 65,3-65,43
Золь нанокремнезема 0,0025-0,0028
Микрокремнезем 1,24-1,3
Белая сажа 0,025-0,028
Суперпластификатор «Реламикс» 0,2-0,21
Вода 8,4-8,8

Способ получения наномодифицированного бетона из смеси включает перемешивание в сухом состоянии портландцемента, песка, белой сажи, микрокремнезема и 2/3 воды с дальнейшим введением добавки суперпластификатора «Реламикс», золя нанокремнезема, 1/3 оставшейся воды и окончательным перемешиванием.

В таблице 1 приведен состав количественного соотношения компонентов нижнего предела, при котором достигнут тот технический результат, который поставлен в задаче, в таблице 2 приведены составы прототипа, в таблице 3 сведены свойства предлагаемого состава и прототипа.

Добавка «Реламикс» относится к классу суперпластификаторов по ТУ 5870-002-14153664-04, представляет собой смесь неорганических (роданидов и тиосульфатов) и органических (полиметиленнафталинсульфонатов) солей натрия. Добавка «Реламикс» применяется для гомогенного распределения частиц SiO2 в бетонной смеси. Введение суперпластификатора «Реламикс» также позволяет увеличить подвижность бетонной смеси, снизить водоцементное отношение.

Нанодобавку - золь нанокремнезема получают в виде стабильных концентрированных водных золей из гидротермальных растворов с помощью ультрафильтрационных мембран. Содержание аморфного кремнезема SiO2 - 225 г/дм3. Плотность раствора золя - 1143 г/дм3. Минимальный размер золей составляет 45 нм и средний размер 60 нм. На частицы с диаметром 45-100 нм приходится 65% всей массы нанокремнезема.

За счет большой удельной поверхности (S/m от 50 до 500-1000 м2/г) наночастицы аморфного кремнезема SiO2 активизируют реакции гидратации силикатов кальция и образование гидратов типа C-S-H. Введение относительно небольшого количества наночастиц от массы цемента приводит к появлению в системе цемент-песок-вода дополнительный значительный по площади реакционно-активной поверхности. Пуццоланический эффект действия аморфного нанокремнезема в бетонах проявляется химическим взаимодействием активного кремнезема с гидроксидом кальция Са(ОН)2, выделяющимся при гидратации портландцемента. В результате такой пуццоланической активности наночастицы участвуют в реакциях позолонного типа, приводящих к расходованию Са(ОН)2 и образованию дополнительно количества гидросиликатов кальция типа C-S-H. Наночастицы могут влиять на объемные пропорции трех разновидностей C-S-H: с высокой, ультравысокой и низкой плотностью, повышая объемную долю разновидностей C-S-H с высокой плотностью, что способствует увеличению плотности и прочности бетона.

Белая сажа марки БС-50 по ГОСТ 18307-78 с массовой долью оксида кремния SiO2 не менее 76%. Белая сажа состоит в основном из кремнезема в некристаллической форме. Материал обладает чрезвычайно высокой площадью поверхности, что является основой его высокой пуццолановой активности. Частицы белой сажи в большинстве являются сферическими, диаметром в среднем 100 нм. Площадь поверхности частиц белой сажи составляет 20-23 м2/г. В результате химической реакции между кремнеземом белой сажи и известью Са(ОН)2 создается эффект заполнения больших пор. Пуццолановая реакция приводит к преобразованию более плотной фазы извести СН и ее крупных пор в менее плотной фазе C-S-H. Таким образом, происходит превращение фаз с высокой плотностью и большими порами в системе портландцементного теста в продукты с низкой плотностью и небольшими порами, что является наиболее логичным объяснением увеличения плотности и прочности бетона.

Микрокремнезем (МК) - аморфный кремнезем - образуется как побочный продукт при производстве ферросилиция и осаждается в электрофильтрах. Большую часть образуют частички аморфного оксида кремния круглой формы средним размером 0,1 мкм и удельной поверхностью 16-22 м2/г. Микрокремнезем является пуццолановой добавкой с высокой гидравлической активностью, которая ускоряет химические реакции гидратации цемента в начальный период твердения и приводит к возникновению структурно-топологического эффекта (уменьшение порообразования в цементном камне и достижение более высокой плотности цементного камня и контактной зоны).

Применение используемых добавок совместно с суперпластификатором обеспечивает получение суммарного эффекта, который проявляется в повышении уплотнения и упрочнения структуры бетона, результатом чего является повышение прочности в проектном возрасте при сжатии и снижение водопоглощения.

Заявляемая совокупность существенных признаков проявляет новое свойство, которое обеспечивает повышение гидратационной активности компонентов бетонной и образование структуры бетона с плотной упаковкой.

Таким образом, образование плотной структуры бетона за счет пуццоланического эффекта аморфного кремнезема и, как следствие, повышение гидратационной активности компонентов бетонной смеси позволило получить наномодифицированный бетон, отличающийся повышенной прочностью и пониженным водопоглощением.

Пример. Портландцемент марки ЦЕМ I 42,5 Н перемешивают в сухом состоянии с песком, белой сажей, микрокремнеземом и 2/3 частями воды.

Суперпластификатор «Реламикс» и золь нанокремнезема растворяют в остальной воде. Все перемешивают и вливают в смесь портландцемент, песка, белой сажи, микрокремнезема и воды.

В качестве вяжущего используется общестроительный портландцемент ЦЕМ I 42,5 Н по ГОСТ 31108-2003. Вода затворения по ГОСТ 23732-2011.

В качестве мелкозернистого заполнителя применяется речной песок по ГОСТ 8736-93. Для изготовления образцов - балочек используют формы по ГОСТ 310.4-81. Приготовление бетонной смеси производится по ГОСТ 31356-2007.

Непосредственно перед изготовлением образцов внутреннюю поверхность стенок форм и поддона слегка смазывают машинным маслом.

Полученной смесью форму заполняли в соответствии с требованием ГОСТ 310.4-81 и уплотняют на виброплощадке СМЖ-539М.

Образцы испытывают после 28 суток твердения в нормальных условиях.

Испытание по определению прочности образцов на сжатие производится на испытательном прессе типа ИП-1-А-1000 с предельной нагрузкой 1000 кН.

Значения прочности на сжатие вычислены как среднее арифметическое значение четырех наибольших результатов испытания 6 образцов.

Из таблицы 3 следует, что при данных соотношениях компонентов бетонной смеси и способе получения достигается технический результат.

Данное техническое решение обеспечивает получение наномодифицированного бетона, отличающегося от прототипа повышенной прочностью при сжатии (в среднем в 1,77 раза) и пониженным водопоглощением на 8,3%.

Заявляемое техническое решение промышленно применимо и может быть использовано в промышленном и гражданском строительстве.

1. Наномодифицированный бетон, полученный из смеси, содержащей портландцемент, песок, воду, суперпластификатор, нанодобавку, отличающийся тем, что в качестве суперпластификатора взята добавка «Реламикс», в качестве нанодобавки - золь нанокремнезема, белая сажа и микрокремнезем при следующем соотношении компонентов, мас. %:

Портландцемент 24,7-25,0
Песок 65,3-65,43
Золь нанокремнезема 0,0025-0,0028
Микрокремнезем 1,24-1,3
Белая сажа 0,025-0,028
Суперпластификатор «Реламикс» 0,2-0,21
Вода 8,4-8,8

2. Способ получения наномодифицированного бетона из смеси по п. 1, включающий перемешивание портландцемента, песка и 2/3 воды, отличающийся тем, что перемешивание осуществляют с добавлением микрокремнезема и белой сажи с дальнейшим введением суперпластификатора «Реламикс», золя нанокремнезема и 1/3 оставшейся воды.



 

Похожие патенты:

Изобретение относится к строительным материалам и может быть использовано для изготовления изделий из бетона в гражданском и промышленном строительстве, а также при возведении сооружений специального назначения.

Изобретение относится к строительным материалам и может быть использовано для изготовления изделий из бетона в гражданском и промышленном строительстве, а также при возведении сооружений специального назначения.

Изобретение относится к области строительства, а именно к технологии приготовления бетонных смесей и изделий из них, и может быть использовано в технологии производства изделий и конструкций в сборном домостроении и в монолитном строительстве.

Изобретение относится к области строительства, а именно к технологии приготовления бетонных смесей и изделий из них, и может быть использовано в технологии производства изделий и конструкций в сборном домостроении и в монолитном строительстве.

Изобретение относится к области строительства, а именно к технологии приготовления бетонных смесей и изделий из них, и может быть использовано в технологии производства изделий и конструкций в сборном домостроении и в монолитном строительстве.
Изобретение относится к промышленности строительных материалов, в частности к производству бетонных стеновых блоков. Технический результат заключается в повышении морозостойкости и прочности бетона.
Мастика // 2556542
Изобретение относится к промышленности строительных материалов, в частности к производству мастики, которая может быть использована для нанесения на бетонные и железобетонные конструкции.

Изобретение относится к строительным материалам и может быть использовано для изготовления изделий из бетона в гражданском и промышленном строительстве, а также при возведении сооружений специального назначения.

Изобретение относится к промышленности строительных материалов, в частности к производству бетонной плитки для полов. Технический результат - повышение прочности.

Изобретение относится к промышленности строительных материалов и касается составов сырьевых смесей, которые могут быть использованы для изготовления облицовочной плитки.

Изобретение относится к строительным материалам и может быть использовано для изготовления изделий из бетона в гражданском и промышленном строительстве, а также при возведении сооружений специального назначения.

Изобретение относится к строительным материалам и может быть использовано для изготовления изделий из бетона в гражданском и промышленном строительстве, а также при возведении сооружений специального назначения.

Изобретение относится к области производства холодным способом асфальтобетонных дорожных, аэродромных смесей и асфальтобетонов, применяемых для выполнения ремонтно-восстановительных работ и устройства новых дорожных покрытий повышенной прочности.

Изобретение относится к промышленности строительных материалов, в частности к производству бетонов. Сырьевая смесь для изготовления бетона содержит, мас.

Изобретение относится к производству строительных материалов и может быть использовано для изготовления теплоизоляционных, конструкционно-теплоизоляционных и конструкционных бетонов для жилищного и гражданского строительства.

Изобретение относится к промышленности строительных материалов, а именно к составам для изготовления теплоизоляционного и конструкционно-теплоизоляционного пеносиликата с улучшенными функциональными свойствами.
Мастика // 2556542
Изобретение относится к промышленности строительных материалов, в частности к производству мастики, которая может быть использована для нанесения на бетонные и железобетонные конструкции.

Изобретение относится к строительным материалам и может быть использовано для изготовления изделий из бетона в гражданском и промышленном строительстве, а также при возведении сооружений специального назначения.

Изобретение относится к промышленности строительных материалов, в частности к производству бетонной плитки для полов. Технический результат - повышение прочности.

Изобретение относится к составам сырьевых смесей на цементной основе, применяемых для производства теплоизоляционных строительных материалов, отличающихся повышенной пожаростойкостью.

Изобретение относится к дорожному строительству. Технический результат - более глубокое проникновение полимеризованного битума вглубь асфальтобетона с восстановлением утраченной эластичности и гибкости битумной составляющей дорожного покрытия, с эффективной изоляцией асфальтобетона от неблагоприятного атмосферного воздействия. Дорожное покрытие для поверхностной обработки асфальтобетона, включающее битумный вяжущий материал, мелкодисперсный минеральный наполнитель, растворитель, в качестве битумного вяжущего материала содержит оксидированный битум и битумно-полимерный компонент HL, в качестве растворителя - ксилол, в качестве минерального наполнителя - доломитовую муку, при следующем содержании исходных компонентов, мас. %: оксидированный битум 13, битумно-полимерный компонент HL 5, ксилол 12, доломитовая мука 70. 4 табл.

Изобретение относится к строительным материалам и может быть использовано для изготовления изделий из наномодифицированного бетона как в гражданском, так и в промышленном строительстве. Технический результат - повышение прочности и понижение водопоглощения бетона. Наномодифицированный бетон содержит портландцемент, песок, воду, нанодобавку, суперпластификатор, причем в качестве суперпластификатора используется добавка «Реламикс», а в качестве нанодобавки - золь нанокремнезема, микрокремнезем и белая сажа при следующем соотношении компонентов, мас.: портландцемент 24,7-25,0, песок 65,3- 65,43, золь нанокремнезема 0,0025-0,0028, микрокремнезем 1,24-1,3, белая сажа 0,025-0,028, суперпластификатор «Реламикс» 0,2-0,21, вода 8,4-8,8. Способ получения наномодифицированного бетона включает перемешивание в сухом состоянии портландцемента, песка, белой сажи, микрокремнезема и 23 воды с дальнейшим введением добавки суперпластификатора «Реламикс», золя нанокремнезема, 13 оставшейся воды с окончательным перемешиванием. 2 н.п. ф-лы, 3 табл. 1 пр.

Наверх