Электрогидрообъёмная глубинная насосная установка для добычи нефти

Насосная установка предназначена для подъема нефти с больших глубин малодебитных скважин. Погружная насосная установка представляет собой герметичную капсулу, в которой размещены погружной электродвигатель и соединенный с ним приводной насос. Имеет гидродвигатель, основной шток которого соединен со штоком рабочего насоса, находящегося вне герметичной капсулы и оснащенного всасывающим и напорным клапанами, соответственно, в нижней и верхней крышке корпуса. Распределитель выполнен с механическим управлением от кулачка, установленного на фальшштоке гидродвигателя, равного диаметра с основным штоком, служащего для подачи рабочей жидкости высокого давления в основную штоковую полость гидродвигателя. В поршне рабочего насоса установлен обратный клапан для совмещения процесса и обеспечения равенства скорости всасывания и нагнетания нефти из пласта. Снижение скорости при падении пластового давления происходит автоматически с помощью предохранительно-перепускного клапана, установленного в линии высокого давления фальшштоковой полости гидродвигателя. Давление перепуска устанавливается дросселем равным давлению настройки предохранительного клапана, выполненного с учетом глубины установки насосного агрегата в скважине и величины, необходимой для преодоления возникающего вакуума в штоковой полости рабочего насоса при отсутствии пластового давления на этой глубине. Увеличивается скорость всасывания при изменении пластового давления. 1 ил.

 

Предлагаемое изобретение относится к насосным установкам (качалкам), предназначенным для подъема жидкостей с больших глубин, например нефти, при эксплуатации всевозможных скважин, в частности малодебитных скважин с осложненными характеристиками нефтяного пласта.

Известен скважинный электрогидроприводной насосный агрегат по патенту №2116512, далее агрегат, содержащий кинематически связанные друг с другом погружной электродвигатель и приводной насос, а также рабочий насос (плунжерный гидроцилиндр) с всасывающим и нагнетательным клапанами, отличающийся тем, что снабжен гидродвигателем возвратно-поступательного действия, причем гидродвигатель и рабочий насос выполнены каждый в виде цилиндра и плунжера со штоком, штоки плунжеров соединены друг с другом, полости цилиндра гидродвигателя связаны через распределитель с входом и выходом приводного насоса, всасывающий клапан размещен в плунжере, а нагнетательный - в верхней части цилиндра рабочего насоса, цилиндр и плунжер рабочего насоса имеют отверстия для приема добываемой нефти, при этом агрегат снабжен баком, имеющим компенсатор объема и соединенным с входом приводного насоса. Выход приводного насоса, т.е. линия высокого давления, поочередно соединяется с поршневой или штоковой полостями гидродвигателя посредством распределителя с механическим переключателем, связанным с плунжером гидродвигателя.

Агрегат имеет регулятор расхода рабочей жидкости, который снабжен управляющим механизмом. Кроме того, регулятор может быть снабжен шаговым гидравлическим или электромагнитным приводом, управляемым с поверхности, что позволяет изменять подачу добываемой жидкости в автоматическом режиме в зависимости от гидростатического давления пласта или в режиме ручного управления с поверхности, что расширяет эксплуатационные возможности агрегата.

Недостатками известного агрегата являются теоретическая нецелесообразность применения регулятора расхода для регулирования скорости всасывающих (нефть) ходов плунжера рабочего насоса, естественно, сложность гидравлической принципиальной схемы агрегата в целом за счет применения регулятора расхода с управляющим дистанционно с поверхности механизмом, а также практическая невозможность его размещения вместе с механизмом управления в ограниченном пространстве герметичной капсулы, внутренний диаметр которой для глубин более 1,5 км, на которых должен эксплуатироваться данный агрегат, не может превышать 92 мм, а наружный - 103 мм.

Если мы проанализируем работу рабочего насоса под действием штока поверхностной качалки, принудительно опускающего поршень рабочего насоса и с такой же скоростью тянущего его вверх, то отметим, что внутрипластовое давление при этом во внимание вообще не принимается. Как не принимается и наличие газов в нефтяном пласту. Что успело «засосаться» в рабочий насос, то и «вытолкнется» в нефтепровод скважины над рабочим насосом и поступит в последствии на поверхность.

При отсутствии внешней силы, воздействующей на плунжер рабочего насоса для его перемещения, таковой является давление рабочей жидкости от приводного насоса, подводимой к полостям гидродвигателя, шток которого кинематически соединен со штоком рабочего насоса. В этом случае скорость «всасывания» нефти штоковой полостью рабочего насоса и одновременно выталкивания нефти из поршневой полости в нефтепровод над рабочим насосом, т.е. скорость перемещения поршня вверх, будет меньше скорости перелива нефти из штоковой полости в поршневую при ходе поршня вниз из-за разности эффективных площадей поршневой и штоковой полостей гидродвигателя, что создает проблему еще большего уменьшения скорости «всасывания» при изменении пластового давления нефти.

В известном агрегате это снижение скорости должен осуществлять регулятор расхода. Но как его настроить, если сигнал будет запаздывать на несколько часов при глубине установки более 1,5 км? Как известно, производительность поверхностно установленной качалки не превышает 20 м куб. в сутки, а объем нефти, находящейся в скважине диаметром 10,3 см и глубиной 1500 м, равен 11-12 м куб. Предварительно настроить скорости можно на стенде с помощью регулятора расхода, а вот как решить задачу её снижения своевременно и на сколько, если пластовое давление нефти постоянно падает? Дистанционно, но именно в контроле этого процесса и своевременном реагировании и заключается проблема.

Поставленная задача в предлагаемом изобретении достигается тем, что насосная установка, содержащая герметичную капсулу с погружным электродвигателем и соединенным с ним приводным многосекционным шестеренным гидронасосом с необходимыми в зависимости от глубины эксплуатации установки рабочим давлением нагнетания и производительностью, гидродвигатель возвратно-поступательного действия, основной шток которого соединен со штоком рабочего насоса, находящегося вне герметичной капсулы и оснащенного всасывающим и напорным клапанами, соответственно, в нижней и верхней крышке корпуса, распределитель с механическим управлением от кулачка, установленного на фальшштоке гидродвигателя, равного диаметра с основным штоком, служащего для подачи рабочей жидкости высокого давления в основную штоковую полость гидродвигателя, при этом в поршне рабочего насоса установлен обратный клапан (клапаны) для совмещения процесса и обеспечения равенства скорости всасывания и нагнетания нефти из пласта, при этом снижение этой скорости происходит автоматически с помощью предохранительно-перепускного клапана, установленного в линии высокого давления фальшштоковой полости гидродвигателя, давление перепуска в которой устанавливается дросселем равным давлению настройки предохранительного клапана, выполненного с учетом глубины установки насосного агрегата в скважине и величины, необходимой для преодоления возникающего вакуума в штоковой полости рабочего насоса при отсутствии пластового давления на этой глубине.

На рисунке 1 представлена принципиальная гидравлическая схема скважинной электронасосной установки гидрообъемного типа действия.

Насосная установка состоит из погружного асинхронного электродвигателя (ПЭД) 1, приводного гидронасоса 2, распределителя 3 с механическим управлением от кулачка 4, установленного на фальшштоке 5 гидродвигателя 6, служащего одновременно трубопроводом для подачи рабочей жидкости от распределителя 3 в штоковую полость 7 гидродвигателя 6. В линии высокого давления 8, питающей основную поршневую полость 9 гидродвигателя 6, установлен клапан предохранительно-переливной с дросселем 10. Шток 11 гидродвигателя 6 соединен со штоком 12 рабочего насоса 13, в крышках которого установлены всасывающие 14 и нагнетательные 15 клапаны, а в поршне 16 - обратные клапаны 17.

Предохранительный клапан 10 предварительно настраивается на давление, обеспечивающее выталкивание нефти на поверхность из глубины установки насосного агрегата, с учетом дополнительного давления, обеспечивающего неразрывность потока нефти, поступающей через проходное сечение всасывающих клапанов 14 в штоковую полость 18 рабочего насоса 13 при падении пластового давления до атмосферного.

Установка работает следующим образом.

Вращение от электродвигателя 1 приводит во вращение приводной гидронасос 2, который создает поток рабочей жидкости высокого давления, поступающий к распределителю 3 с механическим управлением, переключаемого кулачком 4, установленным на фальшштоке 5 гидродвигателя 6. Рабочая жидкость высокого давления поступает через фальшшток 5 в штоковую полость 7 гидродвигателя 6 и приводит в движение его поршень со штоком 11. Шток 11, соединенный со штоком 12 рабочего насоса 13, начинает тащить поршень рабочего насоса вниз, при этом находящаяся в штоковой полости 18 нефть через обратные клапаны 17 начинает перетекать в поршневую полость рабочего насоса 13. Это движение прекращается после переключения кулачком 4 распределителя полостей гидродвигателя 6. Жидкость высокого давления начинает поступать по линии высокого давления 8 в поршневую полость 9 гидродвигателя 6. Шток 11 толкает шток 12 и поршень 16 рабочего насоса 13 начинает выдавливать нефть из насоса через нагнетательные клапаны 15 в нефтепровод и одновременно засасывать её из нефтяного пласта в штоковую полость 18 через всасывающие клапаны 14. За счет предварительной настройки давления срабатывания предохранительного клапана с дросселем 10 устанавливается максимальная скорость перемещения поршня рабочего насоса, которая обеспечивает полное заполнение нефтью при всасывании штоковой полости рабочего насоса без срабатывания предохранительного клапана за счет пластового давления, помогающего процессу всасывания. А если пластовое давление начинает снижаться вплоть до атмосферного, то в штоковой полости рабочего насоса возникнет вакуум из-за возникающего эффекта разрыва потока засасываемой в насос нефти, при этом давление в фальшштоковой полости гидродвигателя начинает расти вплоть до величины настройки предохранительного клапана и равного ему давления перепуска, при этом часть расхода приводного насоса начнет сливаться во внутрь герметичной капсулы, скорость поршня рабочего насоса уменьшится и процесс разрыва потока прекратится. После переключения полостей гидродвигателя по завершению процесса нагнетания нефти в нефтепровод скважины и всасывания в штоковую полость рабочего насоса нефти из пласта поршень рабочего насоса возвращается вниз и в его поршневую полость начинает перетекать нефть из штоковой полости через обратные клапаны.

После срабатывания распределителя процесс нагнетания-всасывания повторяется.

Погружная насосная установка, содержащая герметичную капсулу с электродвигателем и соединенным с ним гидронасосом, гидродвигатель, основной шток которого соединен со штоком рабочего насоса, находящегося вне герметичной капсулы и оснащенного всасывающим и напорным клапанами, соответственно, в нижней и верхней крышке корпуса, распределитель с механическим управлением от кулачка, установленного на фальшштоке гидродвигателя, равного диаметра с основным штоком, служащего для подачи рабочей жидкости высокого давления в основную штоковую полость гидродвигателя, при этом в поршне рабочего насоса установлен обратный клапан или клапаны для совмещения процесса и обеспечения равенства скорости всасывания и нагнетания нефти из пласта, а снижение этой скорости происходит автоматически с помощью предохранительно-перепускного клапана, установленного в линии высокого давления фальшштоковой полости, давление перепуска в которой устанавливается дросселем равным давлению настройки предохранительного клапана с учетом глубины установки насосного агрегата в скважине и величины, необходимой для преодоления возникающего вакуума в штоковой полости рабочего насоса при отсутствии пластового давления на этой глубине.



 

Похожие патенты:

Изобретение относится к области насосостроения, в частности к насосным установкам, предназначенным для подъема жидкости с больших глубин, например из малодебитных скважин.

Изобретение относится к скважинным насосным установкам и может быть использовано при добыче нефти, воды и других жидкостей из скважины. Установка содержит привод, плунжерный насос с возвратно-поступательным движением плунжера за счет продольной упругой деформации полого штока.

Изобретение относится к области насосостроения и может быть использовано в скважинных насосных установках для добычи нефти, воды и других жидкостей из скважин. Установка содержит плунжерный насос с возвратно-поступательным движением плунжера за счет продольной упругой деформации полого штока с наполнителем, верхний конец которого закреплен на устье скважины.

Изобретение относится к насосостроению и может быть использовано в нефтедобывающей промышленности при эксплуатации малодебитных скважин с осложненными характеристиками нефтяного пласта.

Изобретение относится к насосостроению и может быть использовано в нефтедобывающей промышленности при эксплуатации малодебитных скважин с осложненными характеристиками нефтяного пласта.

Изобретение относится к области насосостроения и может быть использовано для добычи нефти, воды и других жидкостей из скважин. Основной насос 1 выполнен в виде бесштокового гидроцилиндра 8 со сдвоенным поршнем 9, заполненным уплотнителем 10, и содержит упругий элемент 11 для сжатия уплотнителя 10.

Изобретение относится к насосостроению и может быть использовано в нефтедобывающей промышленности при эксплуатации малодебитных скважин с осложненными характеристиками нефтяного пласта.

Изобретение относится к гидроприводным насосным установкам и может использоваться для добычи нефти, воды и других жидкостей из скважин. .

Изобретение относится к скважинным насосным установкам и может использоваться для добычи нефти, воды и других жидкостей из скважин. .

Изобретение относится к области гидромашиностроения и может быть использовано в объемных насосных установках преимущественно для добычи нефти из скважин. .

Изобретение относится к области насосостроения и может быть использовано в нефтедобывающей промышленности при эксплуатации малодебитных скважин с осложненными характеристиками нефтяного пласта. Установка погружная электрогидроприводная содержит погружной электродвигатель с протектором, кинематически связанный с приводным насосом. Содержит плунжерный рабочий насос, масляный бак, компенсатор объемного расширения масла, поршневой гидрокомпенсатор и гидродвигатель с поршнями, соединенными с плунжерами рабочего насоса. Подпоршневые полости гидродвигателя подключены к всасывающей и нагнетательной линиям приводного насоса через гидрораспределитель. Надпоршневые полости через дроссельные отверстия гидравлически связаны с подпоршневой полостью гидрокомпенсатора, надпоршневая полость которого гидравлически связана посредством обратных клапанов с выходом плунжерного рабочего насоса. Повышается ресурс установки. 1 з.п. ф-лы, 1 ил.

Изобретение относится к насосному оборудованию и может быть использовано в нефтедобывающей промышленности при эксплуатации малодебитных скважин с осложненными характеристиками нефтяного пласта. Насос содержит погружной электродвигатель, приводной маслонасос, поршневой рабочий насос, состоящий из верхнего направляющего полого штока, двух поршней, жестко связанных центральным полым штоком, внутри которого расположен гидравлический канал для связи компенсационной подпоршневой жидкости между собой, с всасывающими и нагнетательными клапанами, жестко связанный через шток с гидродвигателем. Полости последнего подключены через автоматический реверсивный клапан к всасывающей и нагнетательной линиям приводного маслонасоса. На последней установлен предохранительный клапан, состоящий из одного поршня, с расположенными внутри рабочими каналами, жестко связанного с направляющим полым штоком. Надпоршневая полость гидрокомпенсатора связана с выходом рабочего насоса, а подпоршневая - с надпошневой полостью рабочего насоса и через канал в центральном штоке с подпоршневой полостью рабочего насоса. Содержит масляный бак с фильтрами тонкой очистки масла, компенсатор объемного расширения масла. Электродвигатель снабжен протектором, через вал которого вал электродвигателя кинематически связан с валом приводного маслонасоса. Использование изобретения позволяет повысить эксплуатационные и технологические характеристики насоса, а также улучшить его надежность и безопасность. 21 з.п. ф-лы, 4 ил.

Изобретение относится к насосному оборудованию и может быть использовано в нефтедобывающей промышленности при эксплуатации малодебитных скважин с осложненными характеристиками нефтяного пласта. Насос содержит погружной электродвигатель, приводной маслонасос, поршневой рабочий насос, состоящий из верхнего направляющего полого штока, двух поршней, жестко связанных центральным полым штоком. Поршневой рабочий насос выполнен с верхним, нижним и центральным ниппелями с образованием надпоршневых и подпоршневых областей верхнего и нижнего поршней, заполненных пластовой жидкостью и выполненных с нагнетательными и соединительными каналами и соединены полым штоком. Верхний поршень соединен с полым плунжером, а шток гидродвигателя соединен с нижнем поршнем рабочего насоса. Полости поршня гидродвигателя связаны через гидрораспределитель с напорной линией приводного насоса. Центральный ниппель рабочего насоса выполнен с всасывающими каналами, с установленными в них всасывающими клапанами. Подпоршневая область нижнего поршня рабочего насоса и подпоршневая область верхнего поршня рабочего насоса через нагнетательные каналы соединены с полым штоком рабочего насоса и через полый плунжер соединены с выходом погружного объемного насоса. В полом штоке рабочего насоса дополнительно установлен компенсационный цилиндр, связывающий надпоршневую область нижнего поршня рабочего насоса с надпоршневой областью верхнего поршня рабочего насоса через соединительные каналы нижнего и верхнего поршней рабочего насоса. В нагнетательном канале каждого поршня установлен нагнетательный клапан. В центральном ниппеле рабочего поршневого насоса выполнены два всасывающих канала приема пластовой жидкости, в каждом из которых установлен всасывающий клапан. Повышены эксплуатационные и технологические характеристики насоса, а также улучшена его надежность и безопасность. 4 з.п. ф-лы, 1 ил.

Изобретение относится к насосостроению и может быть использовано в нефтедобывающей промышленности при эксплуатации малодебитных скважин с осложненными характеристиками нефтяного пласта. Насос содержит кинематически связанные друг с другом погружной маслозаполненный электродвигатель, протектор, приводной насос, фильтр тонкой очистки, предохранительный клапан, фильтр, диафрагму, двухпоршневой рабочий насос. Поршневая полость последнего связана с выходом рабочего насоса. Масляный бак содержит фильтры тонкой очистки масла. Рабочий поршневой насос дополнительно содержит центральный ниппель, в котором выполнены каналы приема добываемой жидкости. В указанных каналах центрального ниппеля установлены всасывающие клапаны. В нижнем поршне рабочего насоса выполнен нагнетательный канал, в котором расположен нагнетательный клапан. В верхнем поршне рабочего насоса выполнен нагнетательный канал, в котором установлен нагнетательный клапан. Всасывающие и нагнетательные каналы выполнены с возможностью расположения всасывающих и нагнетательных клапанов так, что поток всасываемой и перекачиваемой жидкости проходит снизу вверх через эти клапаны. Использование заявленного изобретения позволяет повысить надежность оборудования. 5 з.п. ф-лы, 1 ил.

Изобретение относится к области нефтегазодобывающей промышленности и может применяться в нефтедобыче. Установка электропогружного гидропоршневого насоса содержит связанные между собой наземные станцию управления и понижающий трансформатор системы электропитания, силовой кабель и подземное оборудование, подвешенное на НКТ к устью скважины. Последнее состоит из гидропоршневых насоса и двигателя с золотниковым устройством, соединенного с баком для масла или гидравлической жидкости и силового объемного насоса с электродвигателем. К основанию погружного электродвигателя присоединен погружной маслонаполненный понижающий трансформатор двухступенчатой системы электропитания. К штекерному вводу подключены силовой кабель и фазные обмотки на цилиндрическом вытянутом в длину замкнутом магнитопроводе, установленном в цилиндрическом корпусе с основанием и головкой с выводами для соединения с электродвигателем. Установка имеет малую металлоемкость и энергоемкость, компактную и простую конструкцию, удобна в обслуживании, ремонте и эксплуатации. 6 з.п. ф-лы, 3 ил.

Изобретение относится к области насосостроения и может быть использовано в нефтедобывающей промышленности при эксплуатации малодебитных скважин с осложненными характеристиками нефтяного пласта. Насос содержит погружной электродвигатель с протектором, через вал которого вал электродвигателя кинематически связан с валом приводного маслонасоса. Полости поршневого рабочего насоса подключены через гидрораспределитель к всасывающей и нагнетательной линиям приводного маслонасоса. Предохранительный клапан установлен на нагнетательной линии приводного маслонасоса. Содержит гидрокомпенсатор, масляный бак с фильтром тонкой очистки масла, компенсатор объемного расширения масла. Выход приводного насоса через напорную линию соединен с предохранительным клапаном и фильтром тонкой очистки. Фильтр тонкой очистки соединен с входом в гидрораспределитель, а входы всасывающей и нагнетательной линий гидрораспределителя соединены с гидродвигателем через фильтры тонкой очистки. На входе в приводной насос дополнительно установлен магнитный фильтр. Повышается надежность и безотказность работы приводного устройства насоса. 1ил.

Изобретение относится к области насосостроения и может быть использовано в нефтедобывающей промышленности при эксплуатации малодебитных скважин с осложненными характеристиками нефтяного пласта. Насос содержит погружной электродвигатель, приводной маслонасос, поршневой рабочий насос с всасывающими и нагнетательными клапанами. Рабочий насос жестко связан через шток с поршневым гидродвигателем. Полости гидродвигателя подключены через автоматический реверсивный клапан к всасывающей и нагнетательной линиям приводного маслонасоса. На последней установлен предохранительный клапан, компенсационный узел, надпоршневая полость которого связана с выходом рабочего насоса, масляный бак с фильтрами тонкой очистки масла, компенсатор объемного расширения масла. Электродвигатель снабжен протектором, через вал которого вал электродвигателя кинематически связан с валом приводного маслонасоса. Снаружи корпуса рабочего насоса с зазором от корпуса рабочего насоса установлен фильтрующий модуль, диаметрально не превышающий габаритов погружного объемного насоса. Поршни рабочего насоса выполнены в диаметре меньше диаметра поршня гидродвигателя. Корпус рабочего насоса выполнен в диаметре меньше диаметра корпуса компенсационного узла и корпуса гидродвигателя. Изобретение позволит повысить эксплуатационные характеристики и надежность оборудования. 5 з.п. ф-лы, 1 ил.

Изобретение относится к области насосостроения и предназначено для подъема жидкости с больших глубин при добыче нефти из малодебитных скважин. Установка содержит погружной электродвигатель, гидропривод с приводным насосом, компенсатором, гидродвигателем и гидрораспределителем и два рабочих насоса диафрагменного типа. Гидродвигатель состоит из двух гидроцилиндров, разделенных поршнями на напорную и приводную полости. Диафрагмы компенсатора и рабочих насосов имеют вогнутую форму с плоским фланцем. Каждая диафрагма закреплена фланцевой частью между двумя кожухами аналогичной формы. Одна сторона диафрагмы рабочего насоса образует приводную полость, а другая сторона диафрагмы сообщена с внутренней полостью рабочего насоса. Приводные полости рабочих насосов соединены с приводными полостями гидроцилиндров и снабжены системой клапанов для контроля нагрузки на диафрагмы. Гидропривод содержит фильтр, клапан защиты при обратном вращении электродвигателя, обратный клапан в напорной линии, клапан стравливания. Обеспечивается стабильная работа при содержании свободного газа в перекачиваемой жидкой среде и увеличение сроков эксплуатации установки. 1 з.п. ф-лы, 2 ил.

Изобретение относится к насосостроению и может быть использовано в нефтедобывающей промышленности при эксплуатации малодебитных скважин с осложненными характеристиками нефтяного пласта. Насос содержит погружной электродвигатель, вал электродвигателя, кинематически связанный с приводным маслонасосом, протектор, компенсатор объемного расширения масла, содержащий диафрагму, масляный бак, гидроузел с фильтрами тонкой очистки масла, гидродвигатель, рабочий насос, компенсационный узел. Компенсатор объемного расширения масла расположен над приводным насосом. Под приводным маслонасосом расположен протектор защиты электродвигателя. Компенсатор объемного расширения масла снабжен двумя диафрагмами, разделенными между собой дополнительным ниппелем. Внутри полости одной из двух диафрагм дополнительно установлен корпус с образованием полости между внутренней поверхностью диафрагмы и наружной поверхностью корпуса. Использование изобретения позволит повысить надежность, улучшить технологичность и эксплуатационные характеристики насоса. 10 з.п. ф-лы, 1 ил.

Группа изобретений относится к области насосостроения и может быть использована в нефтедобывающей промышленности при эксплуатации малодебитных скважин с осложненными характеристиками нефтяного пласта. Установка содержит погружной электродвигатель и маслостанцию, в состав которой входит, по крайней мере, один приводной маслонасос, кинематически связанный с электродвигателем. Гидродвигатель содержит два поршня, соединенных промежуточным штоком. На торце каждого из поршней установлен шток. Гидрораспределитель гидравлически соединен с приводным насосом и гидродвигателем. Компенсатор рабочей жидкости установлен в отводящей трубе. Снаружи каждого штока установлено насосное устройство, включающее корпус и клапаны. Две области между каждым поршнем и уплотнениями штока составляют барьерное пространство. Каждая из областей гидравлически связана между собой и с компенсатором рабочей жидкости посредством общего канала. Компенсатор выполнен в виде диафрагмы, изготовленной из эластомерного материала, меняющей свою форму при перепаде давления внутри и снаружи диафрагмы на величину не более 0,5 м вод. ст. Диаметр каналов между каждой областью барьерного пространства и общим каналом, выполнен таким, что давление масла выше, чем давление перекачиваемой жидкости на уплотнениях штока на величину не менее 5 м вод. ст. Промежуточный шток выполнен без каналов, соединяющих области барьерного пространства. Во втором варианте группы каналов, осуществляющие гидравлическую связь между гидрораспределителем и гидродвигателем, выполнены внутри корпуса гидродвигателя. Повышается надежность работы установки, срок ее эксплуатации, снижается стоимость. 2 н. и 8 з.п. ф-лы, 7 ил.

Насосная установка предназначена для подъема нефти с больших глубин малодебитных скважин. Погружная насосная установка представляет собой герметичную капсулу, в которой размещены погружной электродвигатель и соединенный с ним приводной насос. Имеет гидродвигатель, основной шток которого соединен со штоком рабочего насоса, находящегося вне герметичной капсулы и оснащенного всасывающим и напорным клапанами, соответственно, в нижней и верхней крышке корпуса. Распределитель выполнен с механическим управлением от кулачка, установленного на фальшштоке гидродвигателя, равного диаметра с основным штоком, служащего для подачи рабочей жидкости высокого давления в основную штоковую полость гидродвигателя. В поршне рабочего насоса установлен обратный клапан для совмещения процесса и обеспечения равенства скорости всасывания и нагнетания нефти из пласта. Снижение скорости при падении пластового давления происходит автоматически с помощью предохранительно-перепускного клапана, установленного в линии высокого давления фальшштоковой полости гидродвигателя. Давление перепуска устанавливается дросселем равным давлению настройки предохранительного клапана, выполненного с учетом глубины установки насосного агрегата в скважине и величины, необходимой для преодоления возникающего вакуума в штоковой полости рабочего насоса при отсутствии пластового давления на этой глубине. Увеличивается скорость всасывания при изменении пластового давления. 1 ил.

Наверх