Способ утилизации отходов, содержащих соединения урана



Способ утилизации отходов, содержащих соединения урана
Способ утилизации отходов, содержащих соединения урана
Способ утилизации отходов, содержащих соединения урана
Способ утилизации отходов, содержащих соединения урана
Способ утилизации отходов, содержащих соединения урана

 


Владельцы патента RU 2560095:

ООО "ВП-СЕРВИС" (RU)

Изобретение относится к области утилизации органических отходов, содержащих соединения урана-235 (спецодежда, пластикат, фильтры и пр.). Отходы измельчают, подают дискретно в бункер, затем - в первый шлюзовой питатель. Из последнего отходы непрерывно отбирают в камеру термического разложения в бескислородной атмосфере (пиролиза) и перемещают равномерно вдоль оси камеры к ее выходу. Далее образовавшиеся твердые продукты выводят непрерывно во второй бункер, из которого накопленную порцию дискретно перемещают через шлюзовой затвор в приемный бункер-бокс. Образовавшиеся газообразные продукты подают равномерно в горелочное устройство, образовавшиеся после их сгорания дымовые газы обезвреживают в каталитическом дожигателе, равномерно охлаждают в теплообменнике, промывают в мокром скруббере и выводят в атмосферу. Возможность накопления критической массы урана исключают согласованием режима работы устройств, перемещающих отходы. Технический результат - повышение безопасности эксплуатации оборудования и ядерной безопасности. 1 ил.

 

Изобретение относится к области утилизации органосодержащих отходов с содержанием соединений урана 235 более 5%.

Известен способ и установка для переработки радиоактивных отходов, предусматривающие сжигание отходов в шахтной печи [Маркелов Н.И. и др. Установка для переработки радиоактивных отходов. Патент model-22837, 09.07.2002 г.].

Недостатком данного способа является то, что поскольку сжигание отходов производится за счет работы горелочного устройства с избытком воздуха и подачей дымовых газов на слой материала, весь технологический процесс проходит под избыточным давлением и существует возможность неконтролируемого выхода радиоактивных материалов в атмосферу.

Другим недостатком способа является отсутствие устройств, предотвращающих возможность попадания в атмосферу радиоактивных компонентов при загрузочно-разгрузочных операциях, а также несоответствие конструктивного исполнения отдельных узлов требованиям ядерной безопасности.

Наиболее близким к предлагаемому способу является способ утилизации твердых отходов загрязненных радиоактивными компонентами, при котором отходы подвергают пиролизу в камере термического разложения, образующиеся запыленные газообразные продукты сжигают в топке, коксовый остаток сжигают на колосниковой решетке под камерой термического разложения, образующиеся дымовые газы подвергают комплексной пылеочистке, а весь технологический процесс утилизации проводят под разрежением, создаваемым дымососом, расположенным на выходе из установки [Авраменко А.В., Двоскин Г.И и др. Способ утилизации отходов, содержащих радиоактивные компоненты. Патент РФ №2335700, от 10.10.2008 г.].

Недостатком способа является пульсация режимных параметров технологического процесса из-за неравномерного цикличного разложения отходов и соответственно цикличного поступления и горения газообразных продуктов в горелочном устройстве с неравномерным, кратковременным (залповым) выделением большого количества тепла, что, в свою очередь, требует наличия больших поверхностей теплообменного оборудования, которое используется неэффективно, так как работает в неоптимальном пульсирующем режиме. Такой ход процесса объясняется следующим.

Предметом утилизации является, как правило, загрязненная оксидами урана смесь отходов примерно следующего состава: резинотехнические изделия - 50%, ветошь - 35%, пластики - 10%, прочее - 5%. Средняя калорийность смеси - примерно 20-22 МДж/кг. В процессе пиролиза органики основное время занимает нагрев материала до температуры начала термического разложения, а сам процесс пиролиза происходит очень быстро. При разовой загрузке в уже разогретое реакционное устройство порции материала цикл его разложения делится на три временных периода: нагрев - примерно 35% от суммарного времени цикла, основной процесс пиролиза - 20%, остаточные процессы - 45%. Таким образом, основная нагрузка на оборудование, в том числе теплообменное, приходится только на 20% общего времени цикла. В остальное время энергоресурсы, рассчитанные на подачу большого количества охлаждающего агента (воздуха) в теплообменник, тратятся впустую. Особенно это сказывается при пиролизе высококалорийного материала, когда имеет место бурное выделение большого количества тепла в течение нескольких минут. Для снятия большого количества тепла за ограниченное время теплообменное оборудование должно иметь большую поверхность, которую, исходя из требований ядерной безопасности, лимитирующей размеры узлов оборудования, приходится набирать из большого количества мелких узлов, что нетехнологично и неэкономично. Выравнивать же пульсацию процесса путем добавления новой порции материала в реакционное устройство нельзя из-за опасности накопления в нем критической массы урана 235.

Другим недостатком способа является то, что при сжигании коксового остатка на колосниковой решетке накопление золы также может привести к образованию критической массы урана 235, так как основная масса радиоактивных компонентов остается в золе.

Еще одним недостатком способа является то, что при загрузке очередной порции отходов возможно попадание воздуха из окружающей среды в камеру термического разложения.

Техническим результатом, на достижение которого направлено данное изобретение, является уменьшение металлоемкости теплообменного оборудования и экономия энергоресурсов за счет обеспечения равномерности процессов: - пиролиза отходов, - сжигания газообразных продуктов пиролиза и охлаждения продуктов сжигания, обеспечение невозможности поступления воздуха в камеру термического разложения и обеспечение невозможности накопления критической массы урана 235 в отдельных узлах установки.

Технический результат достигается тем, что порцию отходов предварительно измельчают в измельчителе и перемещают перемещающим устройством в первый накопительный бункер, откуда порцию отходов перемещают дискретно в первый шлюзовой питатель, из которого отходы непрерывно отбирают в обогреваемую внешним обогревателем металлическую камеру термического разложения и перемещают равномерно перемещающим устройством вдоль оси камеры к ее выходу, из которого образовавшиеся твердые продукты выводят непрерывно во второй накопительный бункер, из которого накопленную порцию дискретно перемещают во второй шлюзовой питатель и далее в приемный бункер-бокс, образовавшиеся газообразные продукты подают непрерывно в горелочное устройство, образовавшиеся после их сгорания дымовые газы обезвреживают в каталитическом дожигателе, охлаждают в теплообменнике, очищают в циклоне, промывают в мокром скруббере и выводят из процесса дымососом, а возможность накопления критической массы урана - 235 в ходе технологического процесса исключают путем согласования режима работы устройств, перемещающих отходы. Возможность попадания воздуха в камеру термического разложения исключают за счет накопления слоев отходов в устройстве перемещающим отходы в первый накопительный бункер и в первом шлюзовом питателе.

Сущность предлагаемого технического решения поясняется чертежом, где на фиг.1 представлена схема устройства реализующего процесс термического разложения отходов содержащих уран 235.

Предлагаемый способ осуществляют с помощью устройства, представленного на фиг.1, включающего измельчитель 1 с перемещающим устройством 2, первый накопительный бункер 3, первый шлюзовой питатель 4, камеру термического разложения 5, с внешним обогревателем 6, перемещающее устройство 7, второй накопительный бункер 8, второй шлюзовой питатель 9, бункер-бокс 10, горелочное устройство 11, каталитический дожигатель 12, теплообменник 13, циклон 14, мокрый скруббер 15, дымосос 16.

Способ осуществляют следующим образом.

Порцию смеси отходов массой не более 2,5 кг загружают в измельчитель - 1 и образующуюся крошку перемещающим устройством - 2 перемещают в первый накопительный бункер - 3. После окончания перемещения порции отходов в бункер - 3 перемещающее устройство - 2 останавливают, открывают верхний затвор первого шлюзового питателя - 4, перемещают в него порцию отходов, закрывают верхний затвор и открывают нижний затвор шлюзового питателя - 4. Отходы отбирают непрерывно работающим перемещающим устройством - 7 и подают во внутренний объем камеры термического разложения - 5 предварительно разогретой внешним обогревателем - 6. По мере продвижения отходов вдоль оси нагретой камеры термического разложения - 5 к ее выходу отходы постепенно нагреваются, пиролизуются и превращаются в газообразные и твердые продукты. На выходе из камеры термического разложения - 5 твердые продукты пиролиза (полукокс) равномерно выгружаются во второй накопительный бункер - 8, а газообразные продукты равномерно поступают в горелочное устройство - 9. К моменту полного опорожнения первого шлюзового питателя - 4, в первом накопительном бункере - 3 подготавливают новую порцию отходов. Нижний затвор шлюзового питателя - 4 закрывают, верхний затвор открывают, и повторяется операция перемещения отходов из накопительного бункера - 3 в шлюзовой питатель - 4.

После заполнения второго накопительного бункера - 8 заданной массой полукокса его перегружают в шлюзовой питатель - 10, открывают его нижний затвор и сбрасывают порцию полукокса в бункер-бокс - 11. После сгорания газообразных продуктов в горелочном устройстве - 9 образовавшиеся дымовые газы поступают в каталитический дожигатель - 12, где происходит каталитическое дожигание остатков органики, а затем в кожухотрубный, воздушный теплообменник - 13. Охлажденные в теплообменнике - 13 дымовые газы очищают от пыли в циклоне - 14, промывают в «мокром» скруббере - 15 и через дымосос - 16 выводят из процесса.

Наличие слоев отходов в устройстве перемещающим отходы в первый накопительный бункер - 3 и в первом шлюзовом питателе - 4 исключает возможность попадания воздуха из внешней среды в камеру термического разложения - 5 и, наоборот, газообразных продуктов пиролиза из камеры термического разложения - 5 во внешнюю среду.

Непрерывный отбор отходов из шлюзового питателя - 4 обеспечивает их равномерное поступление в камеру термического разложения - 5 и, как следствие, - практически одинаковый установившийся режим нагрева и пиролиза отходов по температурным зонам камеры термического разложения - 5, что в свою очередь обеспечивает равномерное поступление газообразных продуктов пиролиза в горелочное устройство - 9 и далее в теплообменник - 13.

Равномерное поступление дымовых газов в теплообменник - 13 позволяет производить их охлаждение в теплообменнике с расчетной поверхностью теплообмена, что позволяет избежать необходимости использования сразу нескольких таких теплообменников для снятия большого количества тепла за короткий промежуток времени, следствием чего является снижение общей металлоемкости установки.

Периодическая остановка перемещающего устройства - 2 при непрерывно работающем перемещающем устройстве - 7 позволяет избежать накопления критической массы урана 235 в узлах установки.

Пример

С целью сравнения величины поверхности теплообмена, необходимой для снятия тепла, выделяющегося при сжигании газообразных продуктов пиролиза проведены сравнительные опыты по термическому разложению отходов содержащих органику: - с разовой загрузкой порции отходов и - с равномерной подачей такой же порции отходов в камеру термического разложения (КТР).

Исходные данные: Масса утилизируемых отходов - 4 кг/час; максимально допустимый диаметр труб теплообменника - 110 мм; коэффициент теплопередачи (газ-газ) - α=20, ккал/кг*м2*час*град C; градиент температур - Δt=300, °C; калорийность газообразных продуктов пиролиза - 4500 ккал/кг.

1. Разовая загрузка - 4 кг. Суммарное время процесса - 20 минут, в том числе: нагрев отходов до начала процесса пиролиза - 7 минут (35% от суммарного времени), активный период процесса, в ходе которого разлагается 80% отходов - 4 минуты (20% времени); завершение процесса, в ходе которого догреваются и разлагаются 20% отходов (некоторые компоненты, влажная ветошь и пр.) - 7 минут (45% времени).

В активный период процесса пиролиза (4 минуты) выделяется 2,24 кг газообразных продуктов. В пересчете на часовую производительность - 33,6 кг/ч. Интенсивность поступления тепла в теплообменник - Q=33,6*4500=151200 ккал/час.

Необходимая поверхность теплообмена

Необходимая суммарная длина труб теплообменника

2. Равномерная подача отходов в камеру термического разложения - 4 кг/час. За это время равномерно выделится 2,8 кг газообразных продуктов. Количество тепла, которое содержат эти продукты и которое необходимо снять в теплообменнике - Q=2,8*4500=12600 ккал/час.

Необходимая поверхность теплообмена

Необходимая суммарная длина труб теплообменника

Для снятия тепла при равномерном поступлении дымовых газов в теплообменник необходимо подавать 326 н.м3 воздуха в течение часа.

При неравномерном поступлении дымовых газов необходимый расход воздуха в период залпового выделения тепла - 3900 н.м3/час. Хотя этот расход необходим только в течение 20% общего времени цикла, во избежание сложных проблем с постоянным изменением режима работы воздуходувки расход не меняют в течение всего цикла, следствием чего является напрасный расход энергоресурсов.

Таким образом, совокупность указанных существенных признаков обеспечивает уменьшение металлоемкости теплообменного оборудования и экономию энергоресурсов за счет равномерности процесса охлаждения продуктов сжигания, обеспечивает невозможность поступления воздуха в камеру термического разложения за счет накопления слоев отходов в транспортирующем устройстве и шлюзовом питателе и обеспечивает невозможность накопления критической массы урана 235 за счет согласования режима работы устройств, перемещающих отходы.

Способ утилизации отходов, содержащих соединения урана, включающий загрузку отходов в камеру термического разложения, нагрев и разложение органики (пиролиз) с образованием газообразных и твердых продуктов, сжигание газообразных продуктов, обезвреживание, охлаждение и пылеочистку дымовых газов, отличающийся тем, что отходы предварительно измельчают и подают дискретно в накопительный бункер, откуда порцию отходов перемещают дискретно в шлюзовой питатель, из которого отходы непрерывно отбирают в обогреваемую внешним нагревателем металлическую камеру термического разложения и перемещают равномерно вдоль оси камеры к ее выходу, из которого образовавшиеся твердые продукты выводят непрерывно в накопительный бункер, из которого накопленную порцию дискретно перемещают в шлюзовой затвор и далее в приемный бункер-бокс, образовавшиеся газообразные продукты подают непрерывно в горелочное устройство, образовавшиеся после их сгорания дымовые газы обезвреживают, равномерно охлаждают в теплообменнике, очищают и выводят в атмосферу, возможность попадания воздуха в камеру термического разложения исключают за счет образования слоев отходов в устройстве перемещающим отходы из измельчителя в накопительный бункер и в шлюзовом питателе, а возможность накопления критической массы урана в ходе технологического процесса исключают путем согласования режима работы устройств, перемещающих отходы.



 

Похожие патенты:

Изобретение относится к средствам электрохимической дезактивации и может быть использовано для проведения глубокой дезактивации радиоактивно загрязненного металла на атомных электростанциях и других предприятиях атомной энергетики и промышленности.

Изобретение относится к средствам переработки жидких радиоактивных отходов (ЖРО), а именно к переработке аммиаксодержащих жидких радиоактивных отходов. Заявленный способ снижения концентрации аммиака в жидких радиоактивных отходах включает выпаривание радиоактивных отходов в щелочном режиме и вторичное выпаривание образовавшегося конденсата в кислотном режиме в присутствии нитрита.

Изобретение относится к способу удаления прочнофиксированных радиоактивных загрязнений с конструкционных материалов. В заявленном способе дезактивирующий раствор готовят непосредственно на загрязненной поверхности, для чего на нее сначала наносят слой концентрированной серной кислоты с содержанием основного вещества не менее 92%, затем накладывают листовой пористый материал, смоченный в растворах дезактивирующего реагента, выдерживают его, затем удаляют, а поверхность промывают водой.

Изобретение относится к атомной промышленности, а более конкретно к реабилитации окружающей среды при выводе из эксплуатации и ликвидации бассейнов с радиоактивными донными отложениями.

Изобретение относится к области ядерной энергетики, а именно к переработке жидких радиоактивных отходов, в частности кубовых остатков выпарных установок переработки трапных вод атомных электростанций.

Изобретение относится к хранению отработанного ядерного топлива (ОЯТ). Хранилище содержит бассейн 1 с водой, в боковых стенках которого выполнены возвратные охлаждающие трубы 2.

Изобретение относится к средствам переработки нитратсодержащих жидких радиоактивных отходов (ЖРО) и может быть использовано на атомных электростанциях и специализированных предприятиях, кондиционирующих радиоактивные отходы низкой и средней активности.
Изобретение относится к способам удаления радиоактивных отложений с поверхностей капсул с источником ионизирующего излучения. Способ включает в себя последовательную обработку капсулы раствором кислоты и промывку капсулы водным раствором, которые нагревают до режима пузырькового кипения.
Изобретение относится к способу переработки радиоактивных отходов, в частности пористо-волокнистых теплоизоляционных материалов (ТИМ), образующихся в процессе эксплуатации объектов атомной энергетики и промышленности.

Изобретение относится к средствам захоронения и утилизации жидких радиоактивных отходов и может быть использовано на предприятиях, хранящих радиоактивные отходы (РАО) низкой и средней активности в хранилищах различного типа, а также в зонах радиационных загрязнений с потенциальным выходом компонентов РАО в окружающую среду.

Изобретение относится к сельскому хозяйству и защите окружающей среды, в частности к средствам для дезактивации почв, зараженных радиоактивными элементами. Средство для дезактивации почв, зараженных радиоактивными элементами, содержит в своем составе поли-N,N-диалкил-3,4-диметиленпирролидиний галогенид общей формулы в которой R1 и R2 означают независимо друг от друга линейный или разветвленный алкил с 1-6 атомами углерода и X означает фтор, хлор, бром, йод или тетрафторборат, причем средняя молекулярная масса полимера составляет от 75000 до 100000 г/моль. Заявлен также способ дезактивации почв, зараженных радиоактивными элементами, с применением указанных средств. Технический результат - заявленное вещество связывает радиоактивные элементы, снижает содержание их водорастворимых форм, продолжительно действует на структуру почв и урожайность, упрощает процесс дезактивации земель, зараженных радиоактивными элементами. 2 н. и 6 з.п. ф-лы, 8 табл., 6 пр.

Изобретение относится к способу очистки жидких радиоактивных отходов (ЖРО). Заявленный способ предусматривает дозированное введение в кубовый остаток ЖРО перекиси водорода, обработку кубового остатка УФ-излучением ксеноновой лампы, микрофильтрацию с отделением шлама, содержащего радиоактивный кобальт, железо, марганец, и сорбцию для удаления радиоактивного цезия. При этом кубовый остаток ЖРО предварительно фильтруют на сетчатом фильтрующем материале, затем озонируют в контактной камере противоточного типа, а обработку УФ-излучением ксеноновой лампы осуществляют импульсами длительностью 10…500 мкс, при этом используют УФ-излучение сплошного спектра с интегральной плотностью излучения на поверхности ксеноновой лампы в спектральном диапазоне 190…300 нм не менее 1·107 Вт/м2. Техническим результатом является повышение эффективности и производительности процесса очистки ЖРО от радионуклидов и активированных продуктов коррозии. 8 з.п. ф-лы, 1 ил., 4 табл.
Изобретение относится к средствам иммобилизации высокоактивных отходов от переработки отработанного ядерного топлива в керамические материалы с последующим захоронением в геологических формациях. В заявленном способе при иммобилизации Sr-Cs-фракции высокоактивных отходов путем включения в геокерамические матрицы проводят кальцинацию высокоактивных отходов с добавкой алюмосиликатного минерала, в качестве которого используют боксит, с их предварительным фосфатированием и кальцинацию также предварительно фосфатированных хвостов обогащения апатитовой руды. Затем оба кальцината смешивают и измельчают до фракции 1-5 мкм в жидкой органической фазе, которую затем удаляют при медленном прокаливании, а полученную гомогенную шихту после формования спекают при температуре 900-920°С. Полученные геокерамические матрицы имеют высокую химическую стойкость, определяемую средней скоростью выщелачивания Cs и Sr, составляющей 10-6 г/см2·сут. Техническим результатом является улучшение иммобилизационных характеристик геокерамических матриц, упрощение процесса получения геокерамик, повышение плотности и однородности геокерамических блоков. 2 пр.

Изобретение предназначено для комплексной очистки почвогрунтов, загрязненных ртутью (амальгамой) или/и радионуклидами. Способ очистки почвогрунта от загрязнений включает приготовление пульпы путем перемешивания почвогрунта с водой на месте отбора почвогрунта с отделением фракции с размером фрагментов более 100 мм в модуле приготовления пульпы, дезинтеграцию пульпы и почвенных агрегатов в модуле дезинтеграции с выделением растительных остатков и фракции с размером фрагментов более 10 мм. Проводят сгущение пульпы. Пульпу в модуле гидроклассификации разделяют на песковую и тонкодисперсную фракции, а тонкодисперсную фракцию направляют в модуль обезвоживания, выполненный в виде концентратора, где проводят ее сгущение и обезвоживание с последующим ее захоронением. В случае наличия ртути и амальгам в почвогрунте их выделяют в модуле сгущения. Технический результат - реализация малоотходной безреагентной технологии очистки почвогрунтов от ртути, ее водонерастворимых форм, амальгамы или/и радионуклидов в едином технологическом процессе без переналадки оборудования, выделение металлической ртути или ее амальгамы. 2 н. и 4 з.п. ф-лы, 1 ил.

Изобретение относится к охране окружающей среды и может найти применение для дезактивации металлических поверхностей радиоактивных отходов. Установка включает токоподвод к обрабатываемой поверхности, соединенный с источником тока, емкость для электролита, насос, сборник электролита. В устройстве используется анодное устройство, выполненное из неэлектрорастворимого материала в виде коаксиально расположенного самоцентрирующегося электрода, соединенное стационарно с верхним токопроводом, распределенным по окружности электрода выше уровня электролита и фрагмента, соединенного с отрицательным полюсом источника тока. Открытый электролизер снабжен кольцевым отсосом для хлора и рубашкой с теплоносителем. В нижней части установлена опорная плита с отверстиями для установки подставки под корзину для дезактивируемого фрагмента и электрода. Дно аппарата коническое, снабженное двумя шиберными затворами для выгрузки мелкодисперсного шлама. Технический результат - снижение потерь металла, увеличение срока службы электролита. 1 з.п. ф-лы, 1 ил.

Изобретение относится к ядерной энергетике, в частности к обращению с жидкими радиоактивными отходами (ЖРО), и может быть использовано при переработке кубовых остатков (КО) выпарных аппаратов установок переработки трапных вод атомных электростанций (АЭС). Ультрафиолетовый реактор выполнен в виде цилиндра, в котором установлена ультрафиолетовая полая лампа, окруженная полостью для отходов. Внутренняя полость УФ лампы сообщена по потоку с верхней частью емкости через осушитель с помощью газового насоса и с нижней частью емкости через насадку. Полость для отходов сообщена по потоку с нижней частью емкости с помощью жидкостного насоса и с верхней частью емкости через распылитель, установленный над поверхностью жидких отходов. При этом устройство для инжектирования воздуха установлено на линии сообщения нижней части емкости и полости для отходов. Технический результат - повышение производительности реактора. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области атомной энергетики и может быть использовано для дезактивации радиоактивных отходов, загрязненного оборудования и конструкционных элементов на атомных электрических станциях. Способ включает облучение радиоактивных отходов рентгеновским излучением в изолированном объеме, внутренняя поверхность которого экранирована свинцом, поглощающим γ-излучение, при этом радиоактивные отходы облучают посредством импульсных рентгеновских аппаратов, расположенных в изолированном объеме, которые излучают пачки рентгеновских фотонов высокой плотности, около 1018 фотонов/с, при этом используют частоты поглощающего спектра, соответствующие составу атомов дезактивируемых радиоактивных отходов, при этом активированный экранирующий материал периодически заменяют на новый, закладывая в хранилища отработанный и используя естественную его дезактивацию. Изобретение обеспечивает простую, ускоренную, эффективную и экологически чистую дезактивацию радиоактивных отходов, а также возврат в повторное использование высокоценных материалов. 2 ил.

Изобретение относится к атомной промышленности в части переработки радиоактивных отходов, а именно к устройствам для освобождения емкостей-хранилищ от радиоактивных осадков. Устройство содержит оголовок, присоединенный к приводу с возвратно-поступательным движением, подшипниковую опору, смонтированную на фланце, и установленный на оголовке зажим. К оголовку присоединена штанга, к которой шарнирно присоединены две консоли, расположенные под углом друг к другу и присоединенные посредством канатов к рукояткам, расположенным в пазах, выполненных в штанге. Консоли выполнены в виде пластин, а рукоятки расположены на высоте, превышающей высоту защитного перекрытия емкости. Угол между пластинами составляет 90-120°. В вариантах исполнения в качестве привода с возвратно-поступательным движением используется грузоподъемное устройство, а в качестве привода поворота - ручной привод. Технический результат - сокращение удельных затрат рабочей жидкости на единицу удаляемого осадка за счет его сбора и перемешивания в области всасывающего патрубка насоса. 4 з.п. ф-лы, 4 ил.

Изобретение относится к средствам локализации радиоактивных отходов, в частности донных отложений, загрязненных радионуклидами. Заявленный способ кондиционирования донных отложений включает их смешение с веществом, обеспечивающим их заключение в керамическую матрицу (калий-магний-фосфатную матрицу), и выдержку до окончания схватывания. Смешение матричных материалов проводят последовательно с суспензией, содержащий донные отложения. При этом в качестве вещества, обеспечивающего заключение донных отложений в форму керамической матрицы используют такие компоненты, как дигидрофосфат калия, оксид магния и воду, а также замедлитель при следующем соотношении компонентов: KH2PO4:Н2О:Fe(NO3):донное отложение:(MgO:Н2О)=3:0,6:0,04:1,5:2,4. В качестве замедлителя используется Fe(NO3)·9H2O в соотношении дигидрофосфат калия замедлитель 25:1. После заполнения контейнера проводят вибрационное воздействие на смесь до выравнивания температуры по объему контейнера. Техническим результатом является отсутствие повышения скорости выщелачивания радионуклидов из керамической матрицы после длительного пребывания в воде, что обеспечивает экологическую безопасность при долговременном хранении отходов. 2 з.п. ф-лы, 1 ил., 2 табл.
Изобретение относится к способам обращения с радиоактивными отходами, в частности к способам фиксации пульпы путем засыпки грунтом. Способ включает разделение бассейна дамбой, достигающей его дна, на участки с пониженной и повышенной толщинами донных отложений (ТДО) и, соответственно, их активностью. На участке с пониженной ТДО перед ледоставом перекачивают декантат до превышения глубиной промерзания суммарной ТДО и защитного слоя декантата над ними, а при достижении льдом дна бассейна засыпают участок наталкиванием на лед грунта. На участке с повышенной ТДО, разделенном поперечными дамбами на ячейки, в которых глубина промерзания после выдачи декантата не достигла дна бассейна, перед таянием на лед ячеек принимают защитный слой воды, а перед следующим ледоставом вновь откачивают декантат из ячеек до превышения глубиной промерзания суммарной ТДО и защитного слоя декантата над ними. Фиксацию пульпы проводят аналогично ее фиксации на участке с пониженной ТДО. Технический результат - уменьшение высоты капиллярного подъема пульпы в насыпанном грунте за счет повышения ее плотности при выделении из донных отложений связанной воды промораживанием. 2 з.п. ф-лы.
Наверх