Способ полетной калибровки мультиспектральной аппаратуры космического базирования

Изобретение относится к способу калибровки элементов внутреннего ориентирования съемочной аппаратуры космического базирования, которая включает в себя мультиспектральный и монохроматический каналы. Способ включает предварительную калибровку монохроматического канала; съемку одного и того же района земной поверхности как монохроматическим каналом, так и мультиспектральным каналами; трансформацию мультиспектрального изображения в монохроматическое; приведение трансформированного изображения к масштабу монохроматического изображения. Далее определяют смещение и разворот указанных изображений относительно друг друга. Производят уточнение углов между осями системы автономной ориентации космического аппарата и осями мультиспектрального канала с учетом полученных смещений и разворота. На основании этого определяют истинное угловое положение мультиспектрального канала в инерциальной системе координат. Технический результат состоит в повышении точности калибровки элементов внутреннего ориентирования мультиспектральной съемочной аппаратуры космического аппарата в процессе его полета по околоземной орбите. 4 з.п. ф-лы.

 

Предлагаемый способ полетной калибровки мультиспектральной аппаратуры космического базирования относится к космической технике и фотограмметрии, а именно к обработке изображений поверхности Земли при дистанционном ее зондировании, и может быть использован для калибровки элементов внутреннего ориентирования (ЭВО) мультиспектральной съемочной аппаратуры (МСА) космического базирования в процессе полета по околоземной орбите. Системы дистанционного зондирования Земли (ДЗЗ) проходят предполетную калибровку характеристик съемочной аппаратуры (СА): геометрических - измерение ЭВО (фокусное расстояние, дисторсия объектива, конструктивный угол между системой ориентирования космического аппарата (КА) в пространстве и оптической осью СА, а также геометрические искажения), радиометрических (разброс чувствительности, нулевых уровней и отношения сигнал/шум приемников излучения) и спектрометрических. В ходе запуска космического аппарата (КА) и в процессе его эксплуатации геометрические, радиометрические и спектрометрические характеристики могут значительно изменяться относительно параметров, измеренных при наземной калибровке. Поэтому необходимо с определенной периодичностью проводить полетную калибровку съемочных устройств. Так как изменения геометрических характеристик МСА наиболее сильно влияют на точность определения геодезических координат, то задача их калибровки, связанная определением элементов внутреннего ориентирования МСА КА, является одной из важнейших задач полетной калибровки.

Известен способ калибровки дисторсии оптико-электронного устройства (патент РФ №2321888, МПК (2006.01) G06K 9/32, G01M 11/02, 16.10.2006), заключающийся в перемещении оптико-электронного устройства вдоль оси на фиксированную величину и получении в каждом из зафиксированных положений изображения, измерении в каждом из зафиксированных положений оптико-электронного устройства реальных координат одной и той же контрольной точки получаемого изображения, вычислении по полученным координатам коэффициентов дисторсии.

Недостатком этого способа является недостаточная точность калибровки из-за не учета всех геометрических искажений, вносимых ЭВО, и низкая точность калибровки всех геометрических характеристик СА.

Известен также способ полетной калибровки (Аншаков Г.П., Голяков А.Д., Петрищев В.Ф., Фурсов В.А. Автономная навигация космических аппаратов (под ред. А.Н. Кирилина) - Самара: Государственный научно-производственный ракетно-космический центр «ЦСКБ - Прогресс», 2011. 486 с.), позволяющий определить угловые и линейные элементы внешнего ориентирования (установочные углы между визирной осью СА и ориентацией КА) и учесть геометрические искажения СА в процессе эксплуатации.

Использование этого способа для полетной калибровки МСА, являющейся СА среднего и низкого пространственного разрешения, дает неудовлетворительные результаты из-за недостаточного разрешения.

Наиболее близким по технической сущности является способ полетной калибровки монохроматической оптико-электронной системы высокого пространственного разрешения (О.А. Гомозов. Методы и технологии геометрической обработки космической видеоинформации от оптико-электронных систем высокого пространственного разрешения. Автореферат диссертации на соискание ученой степени кандидата технических наук, Рязань, 2005 г.) по множеству изображений полигона калибровки (т.е. наборов специально оборудованных наземных участков, каждый из которых имеет определенные устойчивые характеристики (спектральные, яркостные, геометрические и иные), которые используются для контроля параметров бортовых технических средств ДЗЗ в процессе полета и их калибровки, валидации спутниковых снимков, разработки и сертификации методик решения тематических задач ДЗЗ и проведения других научных исследований), который заключается в определении элементов внутреннего и внешнего ориентирования. После получения множества изображений полигона калибровки оценивают достоверность полученных значений параметров по изображениям контрольного полигона, полученным, например, отличным от изображений полигона калибровки способом. Затем осуществляют съемку района наблюдения, при которой используют значения параметров калибровки.

Недостатком этого способа является его низкая точность при калибровке МСА, являющейся СА низкого пространственного разрешения.

Технический результат предлагаемого изобретения состоит в повышении точности калибровки элементов внутреннего ориентирования мультиспектральной аппаратуры космического базирования в процессе полета по околоземной орбите.

Для достижения технического результата в способ полетной калибровки мультиспектральной аппаратуры космического базирования, при котором определяют элементы внутреннего и внешнего ориентирования монохроматического канала высокого пространственного разрешения (КМХВР) и производят съемку района наблюдения этим каналом, дополнительно вводят съемку мультиспектральным каналом низкого пространственного разрешения (КМСНР) того же района наблюдения, что и монохроматическим каналом высокого пространственного разрешения, затем полутоновое мультиспектральное изображение трансформируют в полутоновое монохроматическое, после чего трансформированное изображение приводят к масштабу исходного монохроматического изображения и совмещают с исходным монохроматическим, определяя при этом смещение и разворот относительно друг друга, а полученные значения смещений и разворота используют в каждом спектральном диапазоне для пересчета координат каждого элемента полутонового мультиспектрального изображения, пересчитанные координаты элементов масштабированного мультиспектрального изображения используют для уточнения конструктивных углов между осями системы автономной ориентации космического аппарата и осями мультиспектрального канала, затем с учетом этих данных определяют истинное угловое положение мультиспектрального канала в инерциальной системе координат, которое совместно с полученными координатами элементов трансформированного мультиспектрального изображения используют для пересчета координат элементов мультиспектрального изображения в геодезические координаты широты и долготы этих элементов.

Способ полетной калибровки мультиспектральной аппаратуры космического базирования реализуется следующим образом.

В МСА, содержащей КМХВР и КМСНР, осуществляют полетную калибровку КМХВР одним из перечисленных способов: либо по наземным тестовым объектам, либо по звездам, либо по топографическим картам и планам, либо на основе статистической обработки полученных снимков. Суть полетной калибровки состоит в определении угловых и линейных элементов внутреннего ориентирования. После завершения калибровки КМХВР, осуществляют съемку одного и того же района наблюдения как КМХВР, так и КМСНР. Затем полутоновое мультиспектральное изображение низкого пространственного разрешения трансформируют в полутоновое монохроматическое, например, путем усреднения значений яркости элементов изображения с одинаковыми координатами по всем спектральным диапазонам.

После этого оба изображения совмещают друг с другом. Для пространственного совмещения данных трансформированного монохроматического изображения низкого пространственного разрешения и исходного монохроматического высокого пространственного разрешения эти изображения приводят к единому масштабу. При масштабировании изображений осуществляют яркостную интерполяцию, целью которой является определение яркости неопределенной точки в частой решетке, используя яркости окружающих ее ближайших точек. Операцию масштабирования проводят для изображений в каждом спектральном диапазоне исходного мультиспектрального изображения.

Для совмещения масштабированного трансформированного изображения с исходным монохроматическим высокого разрешения находят одноименные элементы изображений либо вручную, либо путем корреляционно-экстремального поиска.

При совмещении масштабированного трансформированного изображения с исходным монохроматическим высокого разрешения определяют относительные сдвиги и развороты элементов изображений. Полученные значения сдвигов и разворотов используют для определения поправок к установочному углу между монохроматическим и мультиспектральным каналами и для пересчета координат элементов масштабированного мультиспектрального изображения в систему координат КМХВР. Пересчитанные координаты элементов масштабированного мультиспектрального изображения служат для уточнения конструктивных углов между осями системы автономной ориентации КА, в качестве которой могут быть использованы, например, приборы определении координат звезд (ПОКЗ), и осями МСА. Затем с учетом этих данных определяют истинное угловое положение МСА в инерциальной системе координат (ИСК). Полученные координаты элементов изображения МСА с учетом истинного углового положения визирной оси МСА используют для пересчета координат изображения МСА в геодезические координаты широты и долготы этих элементов изображения.

Технический результат предлагаемого изобретения состоит в повышении точности калибровки элементов внутреннего ориентирования мультиспектральной аппаратуры космического базирования в процессе полета по околоземной орбите.

1. Способ полетной калибровки мультиспектральной аппаратуры космического базирования, заключающийся в определении элементов внутреннего и внешнего ориентирования монохроматического канала высокого пространственного разрешения и съемке района наблюдения этим каналом, отличающийся тем, что мультиспектральным каналом низкого пространственного разрешения осуществляют съемку того же района наблюдения, что и монохроматическим каналом высокого пространственного разрешения, затем полутоновое мультиспектральное изображение трансформируют в полутоновое монохроматическое, после чего трансформированное изображение приводят к масштабу исходного монохроматического изображения и совмещают с исходным монохроматическим, при этом определяют смещение и разворот относительно друг друга, а полученные значения смещений и разворота используют в каждом спектральном диапазоне для пересчета координат каждого элемента полутонового мультиспектрального изображения, пересчитанные координаты элементов масштабированного мультиспектрального изображения используют для уточнения конструктивных углов между осями системы автономной ориентации космического аппарата и осями мультиспектрального канала, затем с учетом этих данных определяют истинное угловое положение мультиспектрального канала в инерциальной системе координат, которое совместно с полученными координатами элементов трансформированного мультиспектрального изображения используют для пересчета координат элементов мультиспектрального изображения в геодезические координаты широты и долготы этих элементов.

2. Способ по п. 1, отличающийся тем, что полетную калибровку монохроматического канала высокого пространственного разрешения осуществляют либо по наземным тестовым объектам, либо по звездам, либо по топографическим картам и планам, либо на основе статистической обработки полученных снимков.

3. Способ по п. 1, отличающийся тем, что трансформирование полутонового мультиспектрального изображения в полутоновое монохроматическое осуществляют путем усреднения значений яркости элементов изображения с одинаковыми координатами по всем спектральным диапазонам.

4. Способ по п. 1, отличающийся тем, что при масштабировании трансформированного полутонового монохроматического изображения для определения яркости неопределенной точки в частой решетке используют яркости окружающих ее ближайших точек, по которым осуществляют интерполяцию.

5. Способ по п. 1, отличающийся тем, что совмещение исходного полутонового монохроматического изображения с трансформированным полутоновым осуществляют либо вручную по характерным точкам, либо путем корреляционно-экстремального поиска одноименных элементов.



 

Похожие патенты:

Изобретение предлагает способ определения местоположения одного или более образцов ткани по существу круглой формы, размещенных на твердом носителе. Способ включает этапы подачи света с заданной длиной волны на образец ткани, в котором этот свет вызывает автофлуоресценцию, идентификацию положения центра образца ткани на основе использования автофлуоресцентного света, корреляцию координат положения центра образца ткани на твердом носителе на основе использования системы координат х, у и составление карты координат образца ткани на твердом носителе для различения областей, содержащих образец ткани, и незаполненных областей на твердом носителе.

Изобретение относится к способу и устройству для считывания физических характеристик объекта. Техническим результатом является обеспечение позиционирования интересующей области, откуда считывается физическая характеристика объекта при регистрации выходных данных объекта для упорядочивания и стандартизации.
Изобретение относится к способам формирования изображения. .
Изобретение относится к мобильным коммуникационным устройствам, оборудованным фотокамерой, в частности к мобильным телефонам, коммуникаторам и т.д. .

Изобретение относится к вычислительной технике для определения и приведения к заданным значениям параметров видеокамер, работающих в составе системы технического зрения, состоящей из трех видеокамер, две из которых получают детализированное изображение, а третья является обзорной.

Изобретение относится к вычислительной технике и может быть использовано для распознавания выигрышного номера сектора игрового колеса рулетки. .

Изобретение относится к вычислительной технике и может быть использовано для коррекции искажений, вносимых в изображение оптической системой оптико-электронного устройства (видеокамеры, фотоаппарата, проекционного дисплея), и последующего ввода исправленного изображения в ЭВМ или другое цифровое устройство обработки изображения.

Изобретение относится к вычислительной технике и может быть использовано для позиционирования видеокамеры, работающей в составе системы технического зрения, обеспечивающей распознавание номеров на игровой рулетке.

Изобретение относится к вычислительной технике и может быть использовано для определения и коррекции дисторсии оптических подсистем видеокамер и систем технического зрения, использующих матричные приемники изображения.

Устройство для базирования линз в цилиндрических оправах предназначено для вращения оправ и измерения децентрировок оптических поверхностей линз. Устройство содержит втулку, в которой проточена базовая плоскость в виде кольца для базирования торца цилиндрической оправы линзы.

Изобретение относится к области фотометрии и касается способа учета влияния нестабильности лазера при воспроизведении и передаче единицы мощности. При проведении измерений используют два измерительных преобразователя, постоянные времени которых отличаются не менее чем на два порядка.

Изобретение может быть использовано в оптических системах наблюдения, фоторегистрации, а также в голографических системах. Способ включает использование корректирующего голограммного оптического элемента, выполненного в виде цифровой голограммы.

Комплекс предназначен для контроля и измерения параметров тепловизионных приборов. Комплекс содержит объектив, сменную миру, расположенную в фокальной плоскости объектива, фоновый излучатель, расположенный за мирой и снабженный исполнительным элементом, устройство управления, выход которого подключен к исполнительному элементу фонового излучателя, процессор температурный, выход которого подключен к входу устройства управления, устройство измерения температуры миры, выход которого подключен к первому входу процессора температурного.

Устройство может быть использовано для контроля лазерного дальномера с концентричным расположением передающего и приемного каналов. Устройство содержит входную собирающую и выходную коллимирующую оптические системы, связанные между собой волоконно-оптической линией задержки, выполненной в виде световода.

Изобретение касается идентификации оптических волокон. Сущность заявленного решения заключается в том, что в каждое волокно оптической линии вводят оптический зондирующий сигнал.

Способ включает установку линзы сферической рабочей поверхностью на опорный буртик цилиндрического отверстия промежуточной цилиндрической части, размещаемой на опорном буртике цилиндрического отверстия основной оправы.

Способ включает установку линзы на плоский буртик промежуточной части оправы, размещаемой на буртике цилиндрического отверстия основной оправы с возможностью наклона.

Изобретение относится к волоконной оптике, в частности к распределенным волоконно-оптическим датчикам, в которых измеряются параметры оптического волокна, находящегося под воздействием внешних физических полей.

Способ включает использование автоколлимационного плоского зеркала, установленного перед последней по ходу лучей от фокальной плоскости оптической поверхностью объектива.

Группа изобретений относится к горному делу и может быть использована для определения и контроля местоположения элементов конструкции выемочного комплекса в очистном забое.
Наверх