Балансировочный станок



Балансировочный станок
Балансировочный станок

 


Владельцы патента RU 2561249:

Общество с ограниченной ответственностью "ДИАМЕХ 2000" (RU)

Изобретение относится к измерительному оборудованию, а именно к балансировочным станкам, и может быть использовано для определения дисбаланса роторов турбин, компрессоров, насосов и т.д. в дорезонансном, резонансом и зарезонансном режимах. Балансировочный станок содержит станину, привод вращения балансируемого ротора и два опорных узла. Каждый опорный узел включает кронштейн с датчиком колебаний и опорными роликами для установки балансируемого ротора и датчик веса, соединенный с блоком управления. Каждый опорный узел также содержит линейную направляющую с установленными на ней основной кареткой и по бокам от нее вспомогательными каретками. На основной каретке закреплен кронштейн. На вспомогательных каретках со стороны основной каретки расположены поджимные пружины. Вспомогательные каретки снабжены фиксирующими элементами с противоположно направленными резьбами. Фиксирующие элементы установлены на снабженном резьбой стержне, который связан с валом электродвигателя. Вспомогательные каретки обеспечивают возможность регулируемого поджатия и освобождения основной каретки в соответствии с сигналом, подаваемым блоком управления на электродвигатель. Изобретение позволяет расширить функциональные возможности устройства за счет обеспечения возможности автоматического перехода в оптимальный режим работы. 2 ил.

 

Изобретение относится к измерительному оборудованию, а именно к балансировочным станкам, и может быть использовано для определения дисбаланса роторов турбин, компрессоров, насосов и т.д. в дорезонансном, резонансом и зарезонансном режимах.

Из уровня техники известен балансировочный станок, содержащий станину, два опорных узла с поджимными пружинами ручной регулировки, каждый из которых включает рычаг с опорными роликами для установки балансируемого ротора, привод вращения балансируемого ротора и механизм регистрации колебаний (см. патент GB 446481, кл. G01M 1/04, опубл. 30.04.1936). Недостатками известного устройства являются низкая точность определения дисбаланса и сложность управления.

Наиболее близким по технической сущности к заявленном изобретению является балансировочный станок, содержащий станину, два опорных узла с поджимными пружинами, каждый из которых включает кронштейн с опорными роликами для установки балансируемого ротора, привод вращения балансируемого ротора и датчики колебаний (см. патент BY04419, кл. G01M 1/04, опубл. 30.03.2002). Недостатками известного устройства являются недостаточные точность и быстродействие, обусловленные невозможностью варьирования режимов балансировки, т.е. перехода из дорезонансного в резонансный и зарезонансный режимы.

Задачей изобретения является устранение указанных недостатков. Технический результат заключается в расширении функциональных возможностей устройства за счет обеспечения возможности автоматического перехода в оптимальный режим работы. Поставленная задача решается, а технический результат достигается тем, что в балансировочном станке, содержащем станину, привод вращения балансируемого ротора, два опорных узла с поджимными пружинами, каждый из которых включает кронштейн с датчиком колебаний и опорными роликами для установки балансируемого ротора, каждый опорный узел также включает датчик веса, соединенный с блоком управления, и линейную направляющую с установленными на ней основной кареткой, на которой закреплен кронштейн, и по бокам от нее вспомогательными каретками, на которых со стороны основной каретки расположены поджимные пружины, причем вспомогательные каретки снабжены фиксирующими элементами с противоположно направленными резьбами, установленными на снабженном резьбой стержне, связанным с валом электродвигателя, и обеспечивают возможность регулируемого поджатия и освобождения основной каретки в соответствии с сигналом, подаваемым блоком управления на электродвигатель.

На фиг.1 представлен предлагаемый балансировочный станок, вид сбоку;

на фиг.2 - вид спереди.

Предлагаемый балансировочный станок содержит станину 1 и два опорных узла. Каждый опорный узел включает основание опоры 2 и плиту опоры 3, установленную на датчике веса 4. На каждой плите 3 расположена линейная направляющая 5, на которой установлены основная каретка 6 и по бокам от нее вспомогательные каретки 7, и держатель 8.

В держателе 8 установлен снабженный резьбой стержень 9, проходящий через фиксирующие элементы 10 вспомогательных кареток 7 с противоположно направленными резьбами. Стержень 9 связан с валом электродвигателя 11, а вспомогательные каретки 7 со стороны основной каретки 6 оснащены поджимными пружинами 12.

На каждой основной каретке 6 установлен кронштейн 13 с опорными роликами 14 и датчиком колебаний 15 для установки и анализа вибраций балансируемого ротора 16. Ротор 16 связан с приводом вращения (на чертежах не показан).

Работа предлагаемого балансировочного станка контролируется блоком управления 17, который соединен с датчиками веса 4 и электродвигателем 11. При подаче соответствующего сигнала от блока управления 17 на электродвигатель 11 вспомогательные каретки 7 за счет разнонаправленного перемещения фиксирующих элементов 10 по стержню 9 обеспечивают возможность регулируемого поджатия пружинами 12 или освобождения основной каретки 6.

Предлагаемый балансировочный станок работает следующим образом.

Допустим, величина массы и начального дисбаланса неизвестны, а технические требования по остаточному дисбалансу высокие, т.е. требуется очень точная балансировка. В этом случае выполняются следующие последовательные операции.

Ротор 16 укладывают на опорные ролики 14 и определяют его массу с помощью датчиков веса 4. На основе сигнала от датчиков веса 4 блок управления 17 определяет предпочтительный режим работы, например дорезонансный, как наиболее удобный при большом исходном дисбалансе. Для переведения станка в дорезонансный режим работы пружины 12 с помощью электродвигателя 11, стержня 9 и фиксирующих элементов 10 сжимают до упора. После этого назначают скорость балансировки из ряда средних величин, разгоняют ротор 16 до выбранной частоты вращения и регистрируют его вибрации с помощью датчиков колебаний 15. По зарегистрированному сигналу определяют дисбаланс и устраняют его.

Затем выбирают следующий режим работы - зарезонансный как наиболее удобный для деталей с высокими требованиями по точности балансировки. В зависимости от массы ротора 16 определяют первую собственную резонансную частоту колебательной системы. Основную каретку 6 полностью освобождают, так что пружины 12 образуют с ней зазор Δ. После этого выбирают скорость балансировки из ряда малых величин, разгоняют ротор 16 до выбранной частоты вращения и регистрируют его вибрации с помощью датчиков колебаний 15. По зарегистрированному сигналу определяют дисбаланс и устраняют его.

Затем выбирают заключительный режим - резонансный, на котором достигается предельно максимальная точность балансировки. Для этого пружины 12 с помощью электродвигателя 11, стержня 9 и фиксирующих элементов 10 устанавливают в любое промежуточное поджатое состояние. Ротор 16 запрограммированно медленно разгоняют до установленной частоты вращения, проходят резонанс и регистрируют колебания ротора 16 с помощью датчиков колебаний. По зарегистрированному сигналу определяют остаточный дисбаланс очень малой величины и устраняют его.

Изобретение позволяет повысить точность балансировки за счет обеспечения возможности работы балансировочного станка в дорезонансном, резонансном и зарезонансном режимах без снятия ротора со станка, а также автоматизировать все процессы (механические, расчетные, управление, выбора технологической скорости балансировки) при переводе балансировочного станка в другой режим работы.

Балансировочный станок, содержащий станину, привод вращения балансируемого ротора, два опорных узла с поджимными пружинами, каждый из которых включает кронштейн с датчиком колебаний и опорными роликами для установки балансируемого ротора, отличающийся тем, что каждый опорный узел включает датчик веса, соединенный с блоком управления, и линейную направляющую с установленными на ней основной кареткой, на которой закреплен кронштейн, и по бокам от нее вспомогательными каретками, на которых со стороны основной каретки расположены поджимные пружины, причем вспомогательные каретки снабжены фиксирующими элементами с противоположно направленными резьбами, установленными на снабженном резьбой стержне, связанным с валом электродвигателя, и обеспечивают возможность регулируемого поджатия и освобождения основной каретки в соответствии с сигналом, подаваемым блоком управления на электродвигатель.



 

Похожие патенты:

Изобретение относится к области диагностики технического состояния машин и механизмов и может быть использовано, например, для оценки технического состояния металлорежущих станков и их элементов конструкций.

Заявленные изобретения относятся к измерительной технике и могут быть использованы в балансировочной технике, в частности для балансировки ротора. Инструмент пошагового перемещения проверки балансировки содержит поверхность держателя ротора, расположенную на проверяемом роторе, содержащую кинематические соединительные элементы держателя ротора, и приемное устройство держателя ротора, при этом приемное устройство держателя ротора содержит соответствующие кинематические соединительные элементы приемного устройства держателя ротора.

Группа изобретений относится к машиностроению. Демпфирующее устройство (1) содержит: поддерживающий корпус (6), элемент (11) с кольцеобразным отверстием (12).

Изобретение относится к машиностроению и может быть использовано при монтаже сборных роторов газоперекачивающих агрегатов. При сборке ротора балансируют вал и все его элементы, балансируют собранный ротор и крепят его к валам двигателя и компрессора, производят коррекцию монтажных дисбалансов установкой грузиков, их массу определяют исходя из масс частей сборного ротора, дисбалансы которых корректируют в данных плоскостях, величин биений балансировочных поверхностей ротора и удаления места установки грузика от оси вращения.

Изобретение относится к области машиностроения и предназначено для использования в технологических процессах балансировки роторов. Способ заключается в том, что измеряют дисбалансы, определяют параметры корректирующих воздействий для каждой плоскости коррекции и производят корректировку масс, параметры корректирующих воздействий, отвечающих условию равенства нулю остаточных дисбалансов в номинальных плоскостях коррекции.

Изобретение относится к испытательной технике, в частности к испытаниям плоских и пространственных железобетонных рамно-стержневых конструктивных систем. Способ реализуется следующим образом.

Изобретение относится к области строительства атомных электрических станций и, в частности, к этапу преднапряжения герметичных защитных оболочек реакторных отделений с реактором ВВР-1000 (1250, 1500).

Изобретение относится к балансировочной технике, в частности к балансировочному устройству, и может быть использовано для устранения дисбаланса испытываемого образца.

Изобретения относятся к измерительному оборудованию, а именно к средствам и методам балансировки, и могут быть использованы для определения дисбаланса роторов турбин, компрессоров.

Изобретение относится к устройствам и способам автоматического подавления вибрации и может быть использовано в помольно-смесительных агрегатах с автоматической балансировкой.

Изобретение относится к области измерительной техники, в частности к измерению массо-инерционных характеристик различных изделий. Стенд содержит станину, три установленные на шарнирах рамы, динамометрическую платформу, пружины и устройства задания колебаний, фиксаторы и установленные на раме, к которой крепится изделие, три высокоселективных датчика углового ускорения, оси которых ориентированы параллельно осям вращения подвижных внутренней, внешней и нижней рам стенда. Технический результат заключается в повышении точности измерений. 15 ил.

Изобретение относится к области измерительной техники и может быть использовано для измерения массы, координат центра масс и моментов инерции объектов машиностроения. Устройство состоит из динамометрической платформы для измерения массы изделия, пятикомпонентного динамометрического элемента, устройства задания колебаний, состоящего из подвижных рам, соединенных шарнирами и системой пружин, соединенных с рамами, при этом оси шарниров соединены с осями датчиков углов. Также стенд снабжен фиксаторами, обеспечивающими колебания только вокруг той оси, относительно которой выполняется измерение момента инерции. При этом пятикомпонентный динамометрический элемент состоит из четырех стоек квадратного сечения, ориентированных вдоль координатных осей стенда, верхнего основания, на которое установлен физический объект посредством крестовины, и нижнего основания, закрепленного на динамометрической платформе, на гранях каждой стойки у верхнего основания и у нижнего основания наклеены тензорезисторы, соединенные в пять мостов для измерения моментов вокруг координатных осей стенда и двух боковых сил. Технический результат заключается в увеличении точности измерения моментов инерции и координат центра масс объектов. 12 ил.

Изобретение относится к ракетно-космической технике и может быть использовано при установке и снятии с испытательных стендов (ИС) ступеней ракет-носителей (РН). Устройство для установки ступени РН на ИС и снятия ступени РН с ИС содержит ИС с основанием с ограничителями, подвижными цапфами с фиксаторами, приемной платформой с компенсирующей прокладкой из резины, и агрегатной рамой с силовой фермой с блоком и подъемным оборудованием в виде лебедки с реверсивным электроприводом, транспортную тележку (ТТ) с передним и задним опорными узлами, балластной емкостью со штуцерами для подсоединения к ним шлангов подачи и слива жидкости, технологические приспособления на ступени РН, подъемное оборудование, кронштейны с проушинами и упорами. Объем балластной емкости зависит от размещения центра масс ступени РН ниже продольных осей подвижных цапф. Ступень РН укладывают в горизонтальном положении на ТТ, устанавливают и крепят балластную емкость к ТТ, закрепляют ступень РН на ТТ, подкатывают ТТ к ИС, открепляют ступень РН от ТТ, крепят подъемное оборудование к ступени РН, переводят ступень РН из горизонтального положения в вертикальное положение и опускают ступень РН на приемную платформу, крепят ступень РН к приемной платформе, открепляют подъемное оборудование от ступени РН. Изобретение позволяет исключить повреждения ступени РН при кантовании и проводить испытания ступени РН в бескрановых помещениях. 2 н. и 2 з.п ф-лы, 7 ил.

Изобретение относится к испытательной технике, в частности к наземным испытаниям механизмов, предназначенных для работы в невесомости, и может быть использовано для обезвешивания крупногабаритных трансформируемых конструкций. Устройство состоит из блока управления на основе компьютера и микроконтроллера и необходимого количества модулей, установленных один над другим. Каждый модуль включает в себя два сервопривода, расположенных с его торцевой части, шкивы которых работают на общий зубчатый ремень, и на нем через пассивные шкивы крепится каретка, перемещающаяся по направляющим, и тележка, закрепленная на общем зубчатом ремне и перемещающаяся по собственной направляющей. При этом на тележке имеется шкив, через который проходит гибкая связь, соединяющая подвешенный через блоки компенсирующий груз с обезвешиваемым элементом. Также на тележке имеется датчик-инклинометр, определяющий вертикальное положение гибкой связи, по сигналам с которого блок управления включает сервопривода устройства и перемещает каретку и тележку, поддерживая вертикальность гибкой связи по отношению к объекту обезвешивания. Количество модулей и размеры каждого модуля подбираются исходя из геометрии и необходимого числа точек приложения усилия обезвешивания применительно к конкретному объекту. Технический результат заключается в упрощении конструкции, возможности имитации невесомости для подвижных элементов трансформируемых механизмов с большим количество точек приложения усилий обезвешивания к подвижным элементам. 3 ил.

Изобретение относится к способам автоматизации подавления вибраций и может быть использовано, в частности, для подавления вибраций помольно-смесительных агрегатов. Способ заключается в том, что посредством программируемого контроллера 27 собирают и анализируют информацию о величине вибрации. Программируемый контроллер 27 осуществляет трехпозиционное регулирование с фиксированными позициями, в соответствии с которым происходит включение одной из двух электромагнитных муфт 25 и перемещение дополнительного противовеса 17 в направлении, зависящем от управляющего воздействия. При этом способ осуществляют по разомкнутому принципу, а программируемый контроллер 27 реализует трехпозиционное регулирование с адаптацией крайних позиций. Средняя позиция является фиксированной и настроенной под нагрузку, причем в случае выбега регулируемой величины за пределы заданной зоны нечувствительности для недействующей крайней позиции в текущий момент осуществляют изменение в сторону средней позиции. Для реализации значений крайних позиций генерируют управляющие воздействия в виде ШИМ-импульсов различной скважности, подаваемых после усиления на первую или вторую электромагнитные муфты 25. Генерирование осуществляют до обеспечения заданных пороговых значений, при достижении которых генерация управляющих ШИМ-импульсов остается постоянной, причем при нахождении регулируемой величины в зоне нечувствительности генерирование управляющих ШИМ-импульсов не осуществляют. Подавление вибраций на помольно-смесительном агрегате обеспечивает продление ресурса работы его узлов и деталей, а также снижение энергоемкости. 2 ил.

Заявляемое изобретение относится к авиационной технике, а именно к способам и устройствам определения центра масс летательного аппарата (ЛА) в полете. Способ основан на измерении параметров полета летательного аппарата. Сущность способа определения координат центра масс самолета состоит в нахождении взаимосвязи приращения абсолютного линейного ускорения аппарата в его произвольной точке по отношению к ускорению его центра масс в процессе маневра ЛА. Для этого первоначально измеряют величины угла атаки, угла скольжения и скорости, а также углы крена и тангажа. Далее измеряемыми величинами являются только угловые скорости, измеренные при помощи трехосевого блока датчиков угловых скоростей, и кажущиеся ускорения вдоль связанных осей, измеренные трехосевым блоком акселерометров, причем координаты установки датчиков на борту являются известными. На следующем шаге определяют ошибки измерения ускорения из-за смещения центра масс и снова определяют величины угла атаки, угла скольжения и скорости, а также углы крена и тангажа. Сравнивая эти величины, определенные по сигналам датчиков без поправки, с результатами вычислений, находят критерий для минимизации. Решая численную задачу по минимизации заданного функционала итеративным способом, находят искомые координаты центра масс ЛА. Причем определение координат центра масс самолета осуществляют при выполнении маневра типа «змейка». Данные способ и устройство просты в реализации и применении, обладают достаточно высокой точностью и могут быть использованы во всех типах ЛА для определения координат местоположения центра масс ЛА. Технический результат - упрощение и удешевление способа и устройства, также повышение точности измерения координат центра масс ЛА. 2 н.п. ф-лы, 1 ил.

Изобретение относится к области горного дела и может быть использовано для исследования сыпучих свойств геоматериалов. Устройство представляет собой сварную конструкцию башенного типа, устанавливаемую на верхней предварительно спланированной площадке отработанного карьера с обеспечением вертикальной устойчивости. В ее верхней части размещены приемный бункер, затем колосниковый виброгрохот, секторный затвор, перфорированная качающаяся дека, воздухораспределительный контур и два приемных бункера. Технический результат - повышение достоверности определения фракционного и вещественного состава защитной подушки. 1 ил.

Изобретение относится к измерительной и испытательной технике, в частности к способам определения тензора инерции тела. Сущность предлагаемого способа заключается в определении массы тела, координат центра масс и шести осевых центральных моментов инерции, по которым определяется тензор инерции тела. Для этого хронометрическим методом измеряют угловое ускорение тела и одновременно активный крутящий момент - по углу закручивания торсионного вала. По известным крутящим моментам и соответствующим угловым ускорениям определяют шесть осевых центральных моментов инерции. Техническим результатом изобретения является возможность определения тензора инерции тел, к которым неприменима модель твердого тела. 4 ил.

Изобретение относится к области строительства и эксплуатации атомных электрических станций и, в частности, к периоду преднапряжения, испытания и последующей эксплуатации герметичных защитных оболочек реакторных отделений с реактором. Способ заключается в маркировании по заданным сечениям защитной герметичной оболочки контролируемых точек и выполнении поцикловых определений их положения. При этом геодезическое обоснование создается с привязкой к осям или образующим капитальных строительных конструкций защитной герметичной оболочки или конструктивных элементов технологического оборудования, установленного в гермообъеме. В процессе контроля внутренние и (или) внешние геометрические параметры защитной герметичной оболочки определяют на этапах после полного возведения герметичной защитной оболочки, после выполнения полной программы ее напряжения. При испытании на этапе создания максимального внутреннего давления и в последствии при эксплуатации в период каждого планового предупредительного ремонта, по полученным поэтапным результатам определяют величины межэтапных параметров перемещений исследуемых точек. По параметрам межэтапных перемещений контролируемых точек определяют коэффициент запаса прочности строительных конструкций защитной герметичной оболочки и определяют условие соответствия эксплуатационной надежности защитной герметичной оболочки. Технический результат заключается в повышении точности оценки эксплуатационной надежности защитных герметичных оболочек по результатам их преднапряжения, испытания и в последующий эксплуатационный период. 9 ил.

Изобретение относится к испытательной технике, в частности к устройствам для испытаний сепарационного оборудования, используемого для процессов добычи и подготовки газа в нефтегазовой отрасли. Технический результат заключается в снижении энергозатрат поддержания рабочих режимов испытаний. В предлагаемом изобретении осуществляют подачу полученной двухфазной или трехфазной смеси по линии всасывания в нагнетательный блок, сепарацию двухфазной или трехфазной смеси испытуемым сепарационным блоком, поступление отсепарированной жидкости или смеси в накопительную емкость, а очищенного газа в атмосферу или на вход сепаратора. Сепарацию двухфазной или трехфазной смеси осуществляют при постоянном контроле давления на входе и на выходе газа сепаратора, контролируя расходомером расход газа, поступающего в сепаратор по трубопроводу для ввода газа из атмосферы. Степень сепарации определяют как отношение отсепарированной двухфазной или трехфазной смеси к введенному количеству. 1 ил.
Наверх