Система имитации невесомости



Система имитации невесомости
Система имитации невесомости
Система имитации невесомости
Система имитации невесомости

 


Владельцы патента RU 2565807:

Акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнёва" (RU)

Изобретение относится к испытательной технике, в частности к наземным испытаниям механизмов, предназначенных для работы в невесомости, и может быть использовано для обезвешивания крупногабаритных трансформируемых конструкций. Устройство состоит из блока управления на основе компьютера и микроконтроллера и необходимого количества модулей, установленных один над другим. Каждый модуль включает в себя два сервопривода, расположенных с его торцевой части, шкивы которых работают на общий зубчатый ремень, и на нем через пассивные шкивы крепится каретка, перемещающаяся по направляющим, и тележка, закрепленная на общем зубчатом ремне и перемещающаяся по собственной направляющей. При этом на тележке имеется шкив, через который проходит гибкая связь, соединяющая подвешенный через блоки компенсирующий груз с обезвешиваемым элементом. Также на тележке имеется датчик-инклинометр, определяющий вертикальное положение гибкой связи, по сигналам с которого блок управления включает сервопривода устройства и перемещает каретку и тележку, поддерживая вертикальность гибкой связи по отношению к объекту обезвешивания. Количество модулей и размеры каждого модуля подбираются исходя из геометрии и необходимого числа точек приложения усилия обезвешивания применительно к конкретному объекту. Технический результат заключается в упрощении конструкции, возможности имитации невесомости для подвижных элементов трансформируемых механизмов с большим количество точек приложения усилий обезвешивания к подвижным элементам. 3 ил.

 

Изобретение относится к различным областям промышленности, прежде всего авиационной и ракетно-космической. В частности, изобретение относится к испытательной технике, к наземным испытаниям механизмов, имеющих гибкую, многозвенную конструкцию, рассчитанную на работу в невесомости.

Подобные конструкции (складные панели солнечных батарей космических аппаратов, раскрываемые многозвенные антенные конструкции и т.п.) необходимо равномерно «обезвешивать», прилагая усилие к каждому звену конструкции, в процессе перемещения этих звеньев относительно друг друга. Изобретение может быть использовано для «обезвешивания» крупногабаритных трансформируемых конструкций и устранения деформаций или разрушения под действием силы земного тяготения при наземных испытаниях (экспериментального уточнения или идентификации параметров математической модели конструкции механизмов на Земле) или при физической отработке и проверке работы систем управления трансформируемыми конструкциями на Земле до проведения летных испытаний.

Известно обезвешивающее устройство (см. заявку №98104331 RU, G01M 1/00). Оно выполнено в виде двухплечего рычага, шарнирно закрепленного в точке равновесия, на одном конце которого закреплен обезвешиваемый объект, а на другом - уравновешивающий груз, плечи рычага выполнены раздвижными и кинематически связанными. Возможно снабжение устройства вертикальной осью вращения, установление в подвесе испытываемого объекта датчика ошибки разгружающей силы и гироскопического датчика отклонения подвеса от вертикали. Обезвешивающее устройство может содержать несколько двухплечих рычагов.

Недостатком устройства является то, что его трудно применить при больших габаритах обезвешиваемой конструкции и нескольких перемещающихся относительно друг друга точках приложения усилия. Система рычагов получится неоправданно сложной, малогабаритной и нетехнологичной.

Известно также "Устройство обезвешивания элементов" (см. патент SU 1828261 A1, G01M 19/00). Оно содержит шестистепенное газостатическое устройство подвеса, включающее, например, сферическую газостатическую опору, плоскую газостатическую опору, подпятник которой находится в камере с газом, и следящую систему по поддерживанию заданного давления газа, в которую входят последовательно соединенные датчик давления, блок управления и исполнительный орган по регулировке давления; три следящие системы, обеспечивающие перемещение шестистепенного газостатического устройства подвеса соответственно по вертикали и в плоскости горизонта, причем следящая система по вертикали содержит привод вертикального перемещения, соединенный через блок управления с датчиком относительного вертикального перемещения подпятника плоской газовой опоры относительно корпуса камеры с газом, а два привода для горизонтального перемещения соединены через соответствующий блок управления с соответствующим датчиком, измеряющим относительное горизонтальное перемещение обезвешиваемого элемента конструкции относительно подпятника плоской газовой опоры.

Недостатком указанного аналога является чрезмерная сложность конструкции, обусловленная, в том числе, и применением газа под регулируемым давлением.

В качестве прототипа выбрана "Система имитации невесомости многозвенных механизмов" (см. патент RU 2402470 С2, G01M 19/00), состоящая из блока управления, в состав которого входят персональный компьютер, микроконтроллер, и соответствующее программное обеспечение, система содержит и три исполнительных механизма, каждый из которых состоит из весоизмерительной ячейки, соединенной с платформой с датчиком угла горизонтального отклонения стропа и электроприводом, редуктор которого связан с катушкой, на которой намотан строп, идущий на тросоукладчик, на котором установлены датчик угла, определяющий его вертикальное отклонение, и датчик расхода стропа. Концы стропа с исполнительных механизмов соединяются, образуя точку подвеса обезвешиваемого элемента.

Недостатком системы является необходимость располагать исполнительные механизмы на расстоянии, равном длине пути раскрытия обезвешиваемого объекта, что делает невозможным применение подобной системы в случае, если точек приложения усилия несколько и они первоначально расположены рядом. Кроме этого стропы находятся под углом к обезвешиваемому элементу, что легко может привести к нештатному нагружению системы раскрытия боковым усилием.

Отличительной особенностью технологического процесса раскрытия крупногабаритных трансформируемых конструкций является то, что первоначально, когда конструкция находится в сложенном положении, точки приложения усилий обезвешивания расположены компактно, а затем, по мере раскрытия и приведения в рабочее состояние, эти точки удаляются друг от друга, и каждая по самостоятельной траектории проходит свое расстояние. Создание универсальной системы имитации невесомости для подобных конструкций предполагает способность такой системы обеспечивать необходимое количество точек приложения усилия, и в то же время разумные габариты всего устройства по вертикали, учитывая значительные размеры обезвешиваемых конструкций. Все привода, механизмы в отличие от приведенных выше аналогов должны иметь специфическую компоновку, позволяющую разместить все оборудование таким образом, чтобы имелась возможность присоединить необходимое количество тросов системы к обезвешиваемому объекту. Для компенсации весовой составляющей желательно прикладывать усилие перпендикулярно вверх на всем диапазоне раскрытия объекта, чтобы исключить нештатное нагружение объекта раскрытия боковыми усилиями.

Задачей изобретения является упрощение и унификация конструкции, создание возможности имитации невесомости в наземных условиях для подвижных элементов трансформируемых механизмов, когда необходимо большое количество точек приложения усилий обезвешивания к подвижным элементам, предназначенным для работы в состоянии невесомости.

Указанная цель достигается тем, что в предлагаемой системе имитации невесомости имеется блок управления на основе компьютера и микроконтроллера и необходимое количество модулей, установленных один над другим. Каждый модуль включает в себя два сервопривода, расположенных с его торцевой части, шкивы которых работают на общий зубчатый ремень, и на нем через пассивные шкивы крепится каретка, перемещающаяся по оси X по направляющим, и тележка, закрепленная на общем зубчатом ремне и перемещающаяся по оси Y по собственной направляющей. На тележке имеется шкив, через который проходит гибкая связь, соединяющая подвешенный через блоки компенсирующий груз с обезвешиваемым элементом, и также на тележке имеется датчик-инклинометр, определяющий вертикальное положение гибкой связи, по сигналам с которого блок управления включает сервопривода устройства и перемещает каретку и тележку, поддерживая вертикальность гибкой связи по отношению к объекту «обезвешивания». Количество модулей и размеры каждого модуля подбираются исходя из геометрии и необходимого числа точек приложения усилия «обезвешивания» применительно к конкретному объекту.

Модульный принцип построения позволяет адаптировать систему под различные характеристики из небольшого, экономически обоснованного количества типоразмеров модулей.

Сущность изобретения поясняется чертежами, где на фиг.1 представлена система имитации в исходном положении, на фиг.2 - в конечном положении, на фиг.3 представлена кинематическая схема модуля - вид сверху, на фиг 4 - кинематическая схема модуля, вид сбоку.

Система включает в себя (см. фиг.1) блок управления 1 и необходимое количество модулей 2 (для примера на рисунке показана система с шестью модулями). Каждый модуль (см. фиг.3 и фиг.4) включает в себя два сервопривода 3 (M1 и М2), рабочие шкивы 4 которых работают на общий зубчатый ремень 5, на котором через пассивные шкивы 6 крепится каретка 7, перемещающаяся по двум направляющим 8, и тележка 9, закрепленная на ремне 5 и перемещающаяся по направляющей 10. На тележке 9 имеется шкив 11, через который проходит гибкая связь 12, соединяющая подвешенный через блок 13 компенсирующий груз 14 с объектом обезвешивания 17, причем для уменьшения сопротивления от трения гибкой связи шкив 11 и блок 13 установлены с возможностью поворота в горизонтальной плоскости при перемещениях гибкой связи. Также на тележке имеется датчик-инклинометр 16, определяющий величину отклонения гибкой связи от вертикального положения по двум направлениям. Сигналы от датчика-инклинометра 16 поступают в систему управления 1, в которой задается алгоритм и динамические характеристики сервопривода 3 (M1 и М2) системы и скорости, ускорения, с целью отслеживания поддержания вертикальности гибкой связи.

Предлагаемый модуль работает следующим образом: система управления 1 формирует алгоритм одновременной работы сервоприводов модуля таким образом, что имеется возможность:

- перемещать каретку 7 синхронным разнонаправленным вращением шкивов 4 сервоприводов 3,

- перемещать тележку 9 синхронным однонаправленным вращением шкивов 4 сервоприводов 3,

- выполнять одновременное движение каретки 7 и тележки 9 при включении одного из сервоприводов 3 либо при вращении шкивов сервоприводов 4 с разной скоростью. Таким образом, два привода, компактно расположенные с торца модуля, позволяют осуществлять одновременное позиционирование тележки и каретки модуля.

Предлагаемая система имитации невесомости работает следующим образом.

Перед процессом раскрытия устанавливаются необходимое количество компенсирующих грузов 14, гибкие связи 12 присоединяются к элементам обезвешиваемого объекта, находящегося в сложенном положении (см. фиг.1 «Исходное положение»). При раскрытии - элементы объекта начинают поступательное движение, система имитации невесомости по сигналам с датчиков 16 осуществляет позиционирование тележек 9 таким образом, чтобы гибкие связи 11 всех тележек системы были вертикальны по отношению к объекту обезвешивания 17 вплоть до конечного расположения системы (см. рис.2 «Конечное положение»).

Таким образом, заявленная система имитации невесомости ориентирована на различные скорости движения элементов обезвешиваемой конструкции, а также имеет возможность удерживать весь объект в целом в обезвешенном состоянии. Система имитации невесомости позволяет обезвешивать элементы конструкции, имеющие разную скорость движения в процессе раскрытия, так как работает в следящем режиме по сигналам с датчиков инклинометров, и каждый модуль системы работает на каждый отдельный элемент обезвешиваемой конструкции.

Система имитации невесомости, состоящая из блока управления на основе компьютера и микроконтроллера и необходимого количества модулей, установленных один над другим, отличающаяся тем, что каждый модуль включает в себя два сервопривода, расположенных с его торцевой части, шкивы которых работают на общий зубчатый ремень, и на нем через пассивные шкивы крепится каретка, перемещающаяся по оси X по направляющим, и тележка, закрепленная на общем зубчатом ремне и перемещающаяся по оси Y по собственной направляющей, причем на тележке имеется шкив, через который проходит гибкая связь, соединяющая подвешенный через блоки компенсирующий груз с обезвешиваемым элементом, и также на тележке имеется датчик-инклинометр, определяющий вертикальное положение гибкой связи, по сигналам с которого блок управления включает сервопривода устройства и перемещает каретку и тележку, поддерживая вертикальность гибкой связи по отношению к объекту «обезвешивания», причем количество модулей и размеры каждого модуля подбираются исходя из геометрии и необходимого числа точек приложения усилия «обезвешивания» применительно к конкретному объекту.



 

Похожие патенты:

Изобретение относится к ракетно-космической технике и может быть использовано при установке и снятии с испытательных стендов (ИС) ступеней ракет-носителей (РН). Устройство для установки ступени РН на ИС и снятия ступени РН с ИС содержит ИС с основанием с ограничителями, подвижными цапфами с фиксаторами, приемной платформой с компенсирующей прокладкой из резины, и агрегатной рамой с силовой фермой с блоком и подъемным оборудованием в виде лебедки с реверсивным электроприводом, транспортную тележку (ТТ) с передним и задним опорными узлами, балластной емкостью со штуцерами для подсоединения к ним шлангов подачи и слива жидкости, технологические приспособления на ступени РН, подъемное оборудование, кронштейны с проушинами и упорами.

Изобретение относится к области измерительной техники и может быть использовано для измерения массы, координат центра масс и моментов инерции объектов машиностроения.

Изобретение относится к области измерительной техники, в частности к измерению массо-инерционных характеристик различных изделий. Стенд содержит станину, три установленные на шарнирах рамы, динамометрическую платформу, пружины и устройства задания колебаний, фиксаторы и установленные на раме, к которой крепится изделие, три высокоселективных датчика углового ускорения, оси которых ориентированы параллельно осям вращения подвижных внутренней, внешней и нижней рам стенда.

Изобретение относится к измерительному оборудованию, а именно к балансировочным станкам, и может быть использовано для определения дисбаланса роторов турбин, компрессоров, насосов и т.д.

Изобретение относится к области диагностики технического состояния машин и механизмов и может быть использовано, например, для оценки технического состояния металлорежущих станков и их элементов конструкций.

Заявленные изобретения относятся к измерительной технике и могут быть использованы в балансировочной технике, в частности для балансировки ротора. Инструмент пошагового перемещения проверки балансировки содержит поверхность держателя ротора, расположенную на проверяемом роторе, содержащую кинематические соединительные элементы держателя ротора, и приемное устройство держателя ротора, при этом приемное устройство держателя ротора содержит соответствующие кинематические соединительные элементы приемного устройства держателя ротора.

Группа изобретений относится к машиностроению. Демпфирующее устройство (1) содержит: поддерживающий корпус (6), элемент (11) с кольцеобразным отверстием (12).

Изобретение относится к машиностроению и может быть использовано при монтаже сборных роторов газоперекачивающих агрегатов. При сборке ротора балансируют вал и все его элементы, балансируют собранный ротор и крепят его к валам двигателя и компрессора, производят коррекцию монтажных дисбалансов установкой грузиков, их массу определяют исходя из масс частей сборного ротора, дисбалансы которых корректируют в данных плоскостях, величин биений балансировочных поверхностей ротора и удаления места установки грузика от оси вращения.

Изобретение относится к области машиностроения и предназначено для использования в технологических процессах балансировки роторов. Способ заключается в том, что измеряют дисбалансы, определяют параметры корректирующих воздействий для каждой плоскости коррекции и производят корректировку масс, параметры корректирующих воздействий, отвечающих условию равенства нулю остаточных дисбалансов в номинальных плоскостях коррекции.

Изобретение относится к испытательной технике, в частности к испытаниям плоских и пространственных железобетонных рамно-стержневых конструктивных систем. Способ реализуется следующим образом.

Изобретение относится к способам автоматизации подавления вибраций и может быть использовано, в частности, для подавления вибраций помольно-смесительных агрегатов. Способ заключается в том, что посредством программируемого контроллера 27 собирают и анализируют информацию о величине вибрации. Программируемый контроллер 27 осуществляет трехпозиционное регулирование с фиксированными позициями, в соответствии с которым происходит включение одной из двух электромагнитных муфт 25 и перемещение дополнительного противовеса 17 в направлении, зависящем от управляющего воздействия. При этом способ осуществляют по разомкнутому принципу, а программируемый контроллер 27 реализует трехпозиционное регулирование с адаптацией крайних позиций. Средняя позиция является фиксированной и настроенной под нагрузку, причем в случае выбега регулируемой величины за пределы заданной зоны нечувствительности для недействующей крайней позиции в текущий момент осуществляют изменение в сторону средней позиции. Для реализации значений крайних позиций генерируют управляющие воздействия в виде ШИМ-импульсов различной скважности, подаваемых после усиления на первую или вторую электромагнитные муфты 25. Генерирование осуществляют до обеспечения заданных пороговых значений, при достижении которых генерация управляющих ШИМ-импульсов остается постоянной, причем при нахождении регулируемой величины в зоне нечувствительности генерирование управляющих ШИМ-импульсов не осуществляют. Подавление вибраций на помольно-смесительном агрегате обеспечивает продление ресурса работы его узлов и деталей, а также снижение энергоемкости. 2 ил.

Заявляемое изобретение относится к авиационной технике, а именно к способам и устройствам определения центра масс летательного аппарата (ЛА) в полете. Способ основан на измерении параметров полета летательного аппарата. Сущность способа определения координат центра масс самолета состоит в нахождении взаимосвязи приращения абсолютного линейного ускорения аппарата в его произвольной точке по отношению к ускорению его центра масс в процессе маневра ЛА. Для этого первоначально измеряют величины угла атаки, угла скольжения и скорости, а также углы крена и тангажа. Далее измеряемыми величинами являются только угловые скорости, измеренные при помощи трехосевого блока датчиков угловых скоростей, и кажущиеся ускорения вдоль связанных осей, измеренные трехосевым блоком акселерометров, причем координаты установки датчиков на борту являются известными. На следующем шаге определяют ошибки измерения ускорения из-за смещения центра масс и снова определяют величины угла атаки, угла скольжения и скорости, а также углы крена и тангажа. Сравнивая эти величины, определенные по сигналам датчиков без поправки, с результатами вычислений, находят критерий для минимизации. Решая численную задачу по минимизации заданного функционала итеративным способом, находят искомые координаты центра масс ЛА. Причем определение координат центра масс самолета осуществляют при выполнении маневра типа «змейка». Данные способ и устройство просты в реализации и применении, обладают достаточно высокой точностью и могут быть использованы во всех типах ЛА для определения координат местоположения центра масс ЛА. Технический результат - упрощение и удешевление способа и устройства, также повышение точности измерения координат центра масс ЛА. 2 н.п. ф-лы, 1 ил.

Изобретение относится к области горного дела и может быть использовано для исследования сыпучих свойств геоматериалов. Устройство представляет собой сварную конструкцию башенного типа, устанавливаемую на верхней предварительно спланированной площадке отработанного карьера с обеспечением вертикальной устойчивости. В ее верхней части размещены приемный бункер, затем колосниковый виброгрохот, секторный затвор, перфорированная качающаяся дека, воздухораспределительный контур и два приемных бункера. Технический результат - повышение достоверности определения фракционного и вещественного состава защитной подушки. 1 ил.

Изобретение относится к измерительной и испытательной технике, в частности к способам определения тензора инерции тела. Сущность предлагаемого способа заключается в определении массы тела, координат центра масс и шести осевых центральных моментов инерции, по которым определяется тензор инерции тела. Для этого хронометрическим методом измеряют угловое ускорение тела и одновременно активный крутящий момент - по углу закручивания торсионного вала. По известным крутящим моментам и соответствующим угловым ускорениям определяют шесть осевых центральных моментов инерции. Техническим результатом изобретения является возможность определения тензора инерции тел, к которым неприменима модель твердого тела. 4 ил.

Изобретение относится к области строительства и эксплуатации атомных электрических станций и, в частности, к периоду преднапряжения, испытания и последующей эксплуатации герметичных защитных оболочек реакторных отделений с реактором. Способ заключается в маркировании по заданным сечениям защитной герметичной оболочки контролируемых точек и выполнении поцикловых определений их положения. При этом геодезическое обоснование создается с привязкой к осям или образующим капитальных строительных конструкций защитной герметичной оболочки или конструктивных элементов технологического оборудования, установленного в гермообъеме. В процессе контроля внутренние и (или) внешние геометрические параметры защитной герметичной оболочки определяют на этапах после полного возведения герметичной защитной оболочки, после выполнения полной программы ее напряжения. При испытании на этапе создания максимального внутреннего давления и в последствии при эксплуатации в период каждого планового предупредительного ремонта, по полученным поэтапным результатам определяют величины межэтапных параметров перемещений исследуемых точек. По параметрам межэтапных перемещений контролируемых точек определяют коэффициент запаса прочности строительных конструкций защитной герметичной оболочки и определяют условие соответствия эксплуатационной надежности защитной герметичной оболочки. Технический результат заключается в повышении точности оценки эксплуатационной надежности защитных герметичных оболочек по результатам их преднапряжения, испытания и в последующий эксплуатационный период. 9 ил.

Изобретение относится к испытательной технике, в частности к устройствам для испытаний сепарационного оборудования, используемого для процессов добычи и подготовки газа в нефтегазовой отрасли. Технический результат заключается в снижении энергозатрат поддержания рабочих режимов испытаний. В предлагаемом изобретении осуществляют подачу полученной двухфазной или трехфазной смеси по линии всасывания в нагнетательный блок, сепарацию двухфазной или трехфазной смеси испытуемым сепарационным блоком, поступление отсепарированной жидкости или смеси в накопительную емкость, а очищенного газа в атмосферу или на вход сепаратора. Сепарацию двухфазной или трехфазной смеси осуществляют при постоянном контроле давления на входе и на выходе газа сепаратора, контролируя расходомером расход газа, поступающего в сепаратор по трубопроводу для ввода газа из атмосферы. Степень сепарации определяют как отношение отсепарированной двухфазной или трехфазной смеси к введенному количеству. 1 ил.

Изобретения относятся к машиностроению, а именно к способам и устройствам определения координат центра масс преимущественно крупногабаритных изделий. Способ заключается в том, что изделие устанавливают на переходник, шарнирно установленный на трех опорах, и уравновешивают изделие с переходником путем приведения в состояние неустойчивого равновесия относительно оси наклона, проходящей через шарниры первых двух опор. Установку изделия на переходник производят с заведомым смещением от оси наклона, уравновешивание изделия с переходником производят путем наклона переходника с изделием с помощью привода третьей опоры при различных положениях изделия относительно оси наклона, при достижении состояния неустойчивого равновесия измеряют угол наклона переходника. Дополнительно измеряют угол наклона переходника с изделием в состоянии неустойчивого равновесия с прикрепленным к переходнику грузом с известными массой и положением центра масс. Устройство для осуществления способа содержит переходник для установки изделия, шарнирно соединенный с тремя опорами, одна из которых имеет подвижную часть, выполненную с возможностью вертикального перемещения посредством привода, датчик наклона переходника относительно оси, проходящей через шарниры первых двух опор, поворотную платформу на переходнике, ось поворота которой является скрещивающейся с осью наклона и отстоящей от нее на заданном расстоянии. Также переходник снабжен съемным грузом с известной массой и положением центра масс, прикрепляемым к переходнику на известном расстоянии от оси наклона. Переходник выполнен сбалансированным относительно оси наклона. Технический результат заключается в расширении диапазона измерений массы и центра масс, повышении точности измерений. 2 н. и 1 з.п. ф-лы, 7 ил.

Изобретение относится к машиностроению, а именно к способам определения статического дисбаланса ротора на балансировочных ножах, и может быть использовано для статической балансировки различных роторов. Заявленный способ определения статического дисбаланса ротора на балансировочных ножах, при котором производят изменение дисбаланса ротора относительно зоны контакта ротора с опорными поверхностями ножей и измеряют параметр, характеризующий величину дисбаланса, приводящего ротор к движению, затем переустанавливают ротор на ножах в другое угловое положение и повторяют изменение дисбаланса и измерение параметра, при этом в качестве измеряемого параметра используют угол наклона балансировочных ножей от первоначального горизонтального положения, изменение дисбаланса производят синхронным вращением ножей относительно оси, совпадающей с осью ротора, а измерение угла наклона ножей производят в момент начала движения ротора. Технический результат заключается в уменьшении трудоемкости и длительности за счет перехода от операций подбора масс несбалансированных грузов, поворачивающих ротор на определенный угол, к измерению четырех углов наклона ножей при одной переустановке ротора. 7 ил.

Изобретение относится к испытанию керамических обтекателей летательных аппаратов на разрушение. Способ включает создание избыточного давления во внутренней полости обтекателя. Предварительно на наружной поверхности обтекателя монтируют упругий перфорированный прозрачный чехол, на внутреннюю поверхность которого нанесен липкий слой, обеспечивающий возможность фиксации осколков обтекателя при его разрушении, и перфорированный защитный кожух, при этом пространство между наружной поверхностью упомянутого чехла и внутренней поверхностью кожуха заполняют резиновым материалом. Липкий слой на внутреннюю поверхность упругого чехла может быть нанесен двусторонним скотчем. Может быть использован резиновый материал в виде шариков. Обеспечивается возможность восстановления картины разрушения обтекателя при проведении опрессовки. 2 з.п. ф-лы, 1 ил.

Изобретение относится к технике для изучения процессов добычи и подготовки газа в нефтегазовой отрасли. Технический результат изобретения заключается в повышении точности результатов проводимых газогидродинамических экспериментов и уменьшении времени их анализа, повышении наглядности проведения экспериментальных исследований. Устройство содержит сепарационный блок (1) со сливным патрубком (2), подводящий (3) и отводящий патрубки (4) соответственно, разъемное соединение (5), сосуд (6) сферической формы, отвод, включающий изогнутый (7) и вертикальный участки (8), экран (9) с эталонными отверстиями (10), емкость (11) для всасывания жидкости и/или механических примесей, узел подачи и регулирования жидкости и/или механических примесей (12), емкость для хранения жидкости и/или механических примесей (13), блок всасывания/нагнетания (14), энергоблок (15), выкидной трубопровод (16), узел замера (расходомера) газового потока (17), импульсный источник излучения (18), фотовидеорегистрирующую аппаратуру (19), накопительную емкость (20). 1 з.п. ф-лы, 1 ил.
Наверх