Оптико-электронный локатор

Изобретение относится к оптико-электронному приборостроению и, в частности, к локационным устройствам. Оптико-электронный модуль и лазерный дальномер жестко связаны между собой. Наведение визирной оси лазерного дальномера на выбранный объект в поле зрения оптико-электронного модуля осуществляют поворотами оптических клиньев, которые установлены перед лазерным дальномером. Угловые координаты выбранного объекта вычисляют электронным способом. Технический результат - повышение точности измерения угловых координат выбранных объектов и дальности до них. 1 з.п. ф-лы, 2 ил.

 

Предлагаемое изобретение относится к оптико-электронному приборостроению, в частности к устройствам измерения угловых координат и дальности до выбранных объектов, и может быть использовано при создании комплексов контроля движения судов в акватории морского порта и зон взлета/посадки самолетов в аэропортах.

При обзоре окружающего пространства проблемным является измерение дальности до объектов лазерными дальномерами (ЛД), имеющими очень малое поле зрения - единицы угловых минут, в то время как поле зрения устройств технического зрения, например, теле- или тепловизионных оптико-электронных модулей, составляет единицы и даже десятки градусов. Сложность измерения дальности возрастает при работе по малоразмерным объектам (катера, лодки, самолеты, вертолеты), находящимся на больших расстояниях, когда требуется непрерывное наведение ЛД на объекты. При этом погрешность наведения на объекты должна быть менее угла расходимости лазерного излучения.

Известны оптико-локационные устройства кругового обзора [В.Г. Архипов, Ю.В. Чжан. Оптический локатор кругового обзора, патент РФ №2352957 от 22.01.2007 г.; Ю.В. Чжан. Оптический локатор кругового обзора, патент РФ №2453866 от 27.05.2009 г.], в которых применены оптико-электронные модули (ОЭМ) технического зрения и ЛД. Основной недостаток этих локаторов заключается в том, что наведение визирной оси ЛД на объект осуществляется поворотами зеркал по двум осям, при этом механические погрешности узлов поворота зеркал удваивают погрешность наведения, что существенно ужесточает требования к конструкции и увеличивает вероятность пропуска объекта. Погрешности карданных подвесов, в которых устанавливают зеркала для наведения визирной оси ОЭМ на объект, особенно в условиях переменных ветровых нагрузок, снижают точность измерения угловых координат объекта.

Для исключения погрешностей карданных подвесов при обнаружении объектов в зоне обзора в оптико-пеленгационной системе кругового обзора [В.В. Тарасов и др., Оптико-пеленгационная система кругового обзора, патент РФ №2356063 от 27.11.2007 г.] применены N оптико-электронных каналов электронного сканирования, объективы которых стационарно закреплены и равномерно расположены в азимутальной плоскости на окружности с радиальным расположением их оптических осей. Суммарное поле обзора этих объективов перекрывает сканируемое пространство в азимутальной плоскости без пропусков. Недостаток этой системы заключается в том, что наведение визирной оси дальномера на выбранный объект осуществляют поворотным зеркалом, закрепленным в двухосном карданном подвесе, что приводит к погрешности наведения визирной оси дальномера.

Также известно применение оптических клиньев для сканирования [М.М. Мирошников «Теоретические основы оптико-электронных приборов», Ленинград, «Машиностроение», Ленинградское отделение, 1983, §6.2, стр.104-106] и компенсации сдвига изображения объекта на фоточувствительной поверхности фотоприемного устройства при сканировании [А.Я. Прилипко, Н.И. Павлов. Теплопеленгатор, патент РФ №24583 56 от 15.04.2011 г.].

Техническим результатом предлагаемого изобретения является повышение точности измерений угловых координат и снижение вероятности пропуска объектов при измерении дальности до них.

Этот результат достигается тем, что, во-первых, ОЭМ и ЛД жестко соединены между собой и неподвижны в процессе измерений, что исключает погрешности карданных подвесов, возникающие в процессе механического наведения и слежения за объектом; во-вторых, для наведения визирной оси ЛД на объект применены оптические клинья, обеспечивающие оптическую редукцию, при которой влияние механических погрешностей на точность наведения визирной оси снижается в несколько раз [М.М. Мирошников «Теоретические основы оптико-электронных приборов», Ленинград, «Машиностроение», Ленинградское отделение, 1983, §6.2, стр.106]: в-третьих, угловые координаты объектов в поле зрения ОЭМ определяются электронными средствами, что позволяет снизить погрешность измерения угловых координат до десятых долей угловых минут.

Конструктивно результат обеспечивается жесткой установкой ОЭМ и ЛД на общую платформу и размещением перед ЛД узла, выполненного в виде двух оптических клиньев, закрепленных в поворотные обоймы и механически связанных друг с другом через механизм передачи вращения, обеспечивающий вращение обойм с оптическими клиньями в противоположные стороны на равные углы. Механизм передачи вращения снабжен приводом и датчиком углового положения. Обоймы с оптическими клиньями, привод и датчик углового положения установлены во вращающийся цилиндр, снабженный своими приводом и датчиком углового положения. Управление оптико-электронным локатором осуществляется вычислительным блоком через шину последовательного обмена. Видеокадры контролируемой зоны выводятся на экран монитора вычислительного блока.

Выбор объекта осуществляет оператор с помощью устройства выбора объекта, например, компьютерной «мыши», наведением на него курсора. Вычислительный блок определяет вертикальные и горизонтальные координаты выбранного объекта в координатной системе, связанной с полем зрения ОЭМ. Причем начало этой системы координат смещено по диагонали на половину поля зрения W/2 ОЭМ относительно его оптической оси. На этот же угол оптическая ось ЛД наклонена относительно оптической оси ОЭМ, т.е. оптическая ось ЛД проходит через начало системы координат.

По полученным значениям угловых координат выбранного объекта вычислительный блок вычисляет углы поворота клиньев для наведения визирной оси ЛД на выбранный объект.

На основании [М.М. Мирошников «Теоретические основы оптико-электронных приборов», Ленинград, «Машиностроение», Ленинградское отделение, 1983, §6.2, стр.104-105] можно показать, что угол φn между оптической и визирной осями ЛД равен:

ϕ n = 2 σ ( n 1 ) cos ϑ ,

где σ - угол при вершине оптических клиньев,

n - показатель преломления материала клиньев,

ϑ - угол поворота каждого клина, равный:

ϑ = arccos [ ( α n 2 + β n 2 ) 2 σ ( n 1 ) ] ,

где αn - горизонтальная угловая координата объекта,

βn - вертикальная угловая координата объекта.

Угол поворота плоскости отклонения визирной оси ψn, необходимый для наведения визирной оси дальномера на выбранный объект, обеспечивается совместным поворотом оптических клиньев и равен:

После поворота клиньев на углы ϑ и ψn визирная ось ЛД будет наведена на выбранный объект.

На фиг.1 показана функциональная схема устройства. На фиг.2 приведен пример положения объектов на экране монитора и соответствующие этому положению угловые координаты выбранного объекта.

Оптико-электронный локатор содержит платформу 1 (фиг.1), на которой жестко закреплены ОЭМ 2 и модуль лазерного дальномера 3 с ЛД 4, а также электронный блок 5 с вычислительным блоком 6, монитором 7 и устройством выбора объектов 8. Электронный блок 5 может быть расположен в любом, удобном для оператора месте. Оптическая ось ЛД 4 наклонена относительно визирной оси ОЭМ 2 по диагонали на угол, равный половине поля зрения W/2 ОЭМ 2.

ОЭМ 2 содержит объектив 10, в фокальной плоскости которого расположена фоточувствительная поверхность фотоприемной матрицы телекамеры 11. Телекамера 11 через шину последовательного обмена 9 подключена к вычислительному блоку 6.

Модуль лазерного дальномера 3 содержит ЛД 4, соединенный через шину последовательного обмена 9 с вычислительным блоком 6, и узел оптических клиньев 12, установленный перед ЛД4. Узел оптических клиньев 12 содержит оптические клинья 13 и 14, закрепленные в поворотные обоймы 15 и 16 соответственно, которые связаны друг с другом механизмом вращения 17, обеспечивающим вращение поворотных обойм 15 и 16 в противоположные стороны на равные углы. В простейшем случае механизмом вращения может быть коническая передача. Механизм вращения 17 соединен с приводом 18 и датчиком углового положения (ДУП) 19, которые через шину последовательного обмена 9 подключены к вычислительному блоку 6.

Обоймы 15 и 16 с оптическими клиньями 13 и 14, привод 18 и ДУП 19 установлены во вращающийся цилиндр 20, соединенный зубчатыми передачами 21 и 22 с приводом 23 и ДУП 24 соответственно. Привод 23 и ДУП 24 через шину последовательного обмена 9 соединены с вычислительным блоком 6.

В начальном положении вершины клиньев 13, 14 развернуты в противоположные стороны (ϑ=90 градусов), а вращающийся цилиндр 20 развернут в исходное положение (φn=0). При этом визирная ось ЛД совпадает с его оптической осью и находится в начале координат.

Оптико-электронный локатор работает следующим образом.

Оператор просматривает видеоизображение зоны обзора на экране монитора 7 (фиг.2), с помощью устройства выбора объекта 8 (например, компьютерной «мыши») наводит курсор вычислительного блока 6 на изображение выбранного объекта «n» и дает команду на определение угловых координат объекта и дальности до него. По этой команде вычислительный блок 6 определяет горизонтальную αn и вертикальную βn координаты объекта относительно начала координат αo, βo.

Вычислительный блок 6 подает значение угла поворота клиньев ϑ на привод 18. Привод 18 поворачивает обоймы 15 и 16 с клиньями 13 и 14 на вычисленный угол ϑ. Поворот обойм контролируется ДУМ 19.

Значение угла поворота плоскости отклонения визирной оси ψn подается на привод 23, который поворачивает цилиндр 20 на этот угол. Поворот цилиндра 20 контролируется ДУП 24.

После выполнения операции поворота визирной оси ЛД на вычисленные углы ϑ и ψn, вычислительный блок 6 выдает ЛД 4 команду на замер дальности.

Измеренные значения дальности до объекта и координаты αn и βn заносят в память вычислительного блока 6; они могут быть вызваны внешними устройствами через шину последовательного обмена 9.

1. Оптико-электронный локатор, содержащий оптико-электронный модуль с объективом и телекамерой, лазерный дальномер, механически жестко соединенный с оптико-электронным модулем, монитор, устройство выбора объекта, узел оптических клиньев с приводами и датчиками углового положения, вычислительное устройство, соединенное своими входами/выходами через шину последовательного обмена с входами/выходами телекамеры, лазерного дальномера, монитора, устройства выбора объекта, приводов и датчиков углового положения, отличающийся тем, что узел оптических клиньев выполнен в виде двух оптических клиньев, закрепленных в поворотные обоймы, механически связанных друг с другом через механизм передачи вращения, обеспечивающий вращение обойм с оптическими клиньями в противоположные стороны на равные углы и соединенный с приводом и датчиком углового положения, подключенными через шину последовательного обмена к вычислительному устройству, причем обоймы с оптическими клиньями, привод и датчик углового положения установлены во вращающийся цилиндр, снабженный своими приводом и датчиком углового положения, подключенными через шину последовательного обмена к вычислительному устройству.

2. Оптико-электронный локатор по п.1, отличающийся тем, что оптическая ось лазерного дальномера наклонена по диагонали относительно оптической оси оптико-электронного модуля на угол, равный половине его поля зрения.



 

Похожие патенты:

Устройство пеленгации источников лазерного излучения относится к области оптико-электронного приборостроения, а более конкретно к устройствам обнаружения и пеленгации источников лазерного излучения для систем защиты подвижных объектов военной техники.

Предлагаемое изобретение относится к оптико-электронному приборостроению, в частности к способам формирования электронного изображения окружающего пространства при его непрерывном сканировании.

Изобретение относится к оптико-электронным приборам для поиска теплоизлучающих объектов. Система содержит обтекатель, сканирующее зеркало, теплопеленгационный (ТП) канал с оптической системой и фотоприемным устройством, лазерный канал дальнометрирования с излучателем, приемной оптической системой и фотоприемным устройством, лазерный канал помехового излучения и телевизионный канал для получения изображения пространства объектов.

Изобретение относится к области оптического приборостроения и касается датчика направленности света. Датчик направленности света содержит фотоприемное устройство, состоящее из множества фоточувствительных элементов.

Изобретение относится к навигационной технике, а именно к пеленгаторам, определяющим угловое положение источника света. Устройство определения углового положения источника света содержит четыре одинаковых фотодетектора и электрическую схему.

Изобретение относится к методам обработки сигналов, позволяющих обнаруживать и измерять импульсы от точечных объектов со сканирующих оптико-электронных устройств.

Изобретение может быть использовано для определения координат беспилотных летательных аппаратов (БЛА) в автоматическом режиме. Способ автоматизированного определения координат беспилотных летательных аппаратов заключается в том, что по отраженному лазерному излучению от беспилотного летательного аппарата определяются дальность, вертикальные и горизонтальные углы, с помощью которых затем определяется точное местоположение в пространстве БЛА, при этом автоматизированная система обработки информации позволяет определять направление движения БЛА.

Изобретение относится к методам обнаружения тепловых объектов на маскирующем атмосферном фоне в условиях ночного неба с использованием оптико-электронных средств.

Изобретение относится к выносным индикаторным постам (ВИП) для мониторинга и управления воздушным движением. Технический результат - сокращение времени развертывания ВИП. Для этого ВИП выполнен мобильным и содержит кузов, установленный на шасси автомобиля, и прицепную электростанцию. Кузов содержит аппаратный отсек, агрегатный отсек и отсек дополнительного оборудования. В аппаратном отсеке установлено не менее одного автоматизированного рабочего места (АРМ) оператора, шкаф обработки радиолокационной информации (РЛИ), шкаф радиосвязи, АРМ начальника связи и отопительные воздуховоды. В агрегатном отсеке установлен кондиционер, соединенный по очищенному воздуху с отопительными воздуховодами аппаратного отсека. В отсеке дополнительного оборудования расположены выносные средства сопряжения, кабельное и выносное беспроводное оборудование для быстрого дистанционного соединения с источниками РЛИ. Также имеются складная спутниковая антенна, первая антенна беспроводной связи с источниками РЛИ, вторая антенна беспроводной связи с источниками РЛИ, а также две мачты, с установленными на них антеннами радиосвязи с воздушными судами и антенна радиорелейной связи с потребителями РЛИ. 1 з.п. ф-лы, 6 ил.

Маска // 2578267
Изобретение относится к области оптического приборостроения и касается маски, которая накладывается на чувствительную поверхность сдвоенного пироэлектрического датчика. Маска представляет собой лист, выполненный из блокирующего инфракрасное излучение материала. В маске выполнены сквозные отверстия, сформированные таким образом, чтобы обеспечивать возможность изменения процентных долей соответствующих облученных инфракрасными лучами областей двух пироэлектрических элементов при перемещении источника излучения по двум координатным осям. Отверстия формируют две области апертур. При этом граница одной из областей апертур выступает по направлению, перпендикулярному расположению пироэлектрических элементов дальше, чем граница другой области апертур. Технический результат заключается в увеличении чувствительности и обеспечении возможности регистрации перемещения объекта одновременно по двум координатным осям. 5 з.п. ф-лы. 40 ил.

Изобретение относится к области фотоэлектронной измерительной техники и касается способа формирования апертурной характеристики датчика позиции отдаленного источника излучения. Способ заключается в размещении базового фотодиода на фундаментальном посадочном месте мобильного объекта, установке ортогонально его открытой чувствительной поверхности светонепроницаемых стенок, размещении с обратных сторон стенок дополнительных фотодиодов и регистрации токов всех диодов. Полученные токи преобразуют в напряжение и подают на входы аналого-цифрового преобразователя. На выходе преобразователя получают относительную апертурную характеристику устройства. Технический результат заключается в упрощении устройства и обеспечении возможности формирования величины углового сектора обзора. 2 н. и 11 з.п. ф-лы, 8 ил.

Детектор позиции отдаленного источника лучистого потока включает в себя фотодиоды, которые разнонаправлено ориентированы, имеют плоские чувствительные поверхности. Фотодиоды расположены на внешних гранях куба и преобразуют падающие на них лучи в электротоки, которые передаются на преобразователи «ток-напряжение», сумматор, формирующий опорный сигнал, и инвертор напряжений. Дополнительно детектор содержит преобразователь «аналог-цифра», преобразующий сочетания амплитуд сигналов в цифровой код, являющийся результатом позиции отдаленного источника лучистого потока в виде пеленгационной характеристики. При этом электроника и активные компоненты детектора размещены во внутренней полости куба. Технический результат заключается в расширении поля обзора, повышении линейности пеленгационной характеристики, уменьшении массы, объёма и электропотребления. 2 н. и 7 з.п. ф-лы, 10 ил.

Изобретение относится к оптико-электронным приборам и может использоваться для поиска, обнаружения и определения координат теплоизлучающих объектов в полусферической зоне обзора. Технический результат заключается в создании компактного быстродействующего теплопеленгатора с уменьшенными габаритными размерами, массой и энергопотреблением. Указанный результат достигается за счет того, что устройство содержит сферический обтекатель, сканирующий элемент в виде прямоугольной призмы с приводами электродвигателей и датчиками углового положения, оптическую систему, содержащую входной и выходной компоненты, а также матричное фотоприемное устройство с охлаждаемой диафрагмой, подключенное к устройству вычисления и управления. Обзор требуемой зоны пространства осуществляется за счет вращения призмы с постоянной угловой скоростью вокруг вертикальной оси и колебательного движения относительно горизонтальной оси. Сущность изобретения состоит в том, что входной компонент оптической системы является фокусирующим объективом и размещен внутри полых роторов электродвигателей приводов сканирующего элемента, а выходной компонент оптической системы является проекционным объективом. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области оптико-электронного приборостроения и может быть использовано для обнаружения и видеорегистрации воздушных и наземных объектов, а также в области активной и пассивной локации. Достигаемый технический результат – увеличение времени экспонирования наблюдаемого пространства. Указанный результат достигается за счет того, что устройство кругового обзора содержит азимутальную платформу с приводом и датчиком угла, на которой размещены оптико-электронные приборы и тепловизоры, обеспечивающие круговой обзор и видеорегистрацию воздушных и наземных объектов, а также приборы активной и пассивной локации при непрерывном круговом обзоре с увеличенным временем экспонирования наблюдаемого пространства, при этом увеличение времени экспонирования достигается путем ускоренного перемещения призмы оптического компенсатора в начало зоны рабочих углов с помощью механизма прерывистого движения, выполненного, например, в виде мальтийского механизма и дифференциального устройства в виде планетарного механизма, причем начало и конец экспонирования изображения наблюдаемого пространства синхронизируется с началом и концом зоны рабочих углов оптического компенсатора. 2 з.п. ф-лы, 1 ил.

Изобретение относится к области приборостроения и касается дальнейшего совершенствования амплитудных датчиков фасеточного типа, участвующих в решении задач навигации, ориентации, стабилизации и положения мобильных объектов по Солнцу или источнику иной интенсивности. Способ разрешает проблему синтеза положенной относительной пеленгационной характеристики датчика, которая определяет позицию энергетического центра отдаленного лучистого источника относительно главной оси прямоугольной системы координат мобильного объекта. Сущность способа заключается в замене пассивных детекторов излучения - фотонных приемников датчика на гибридные пассивные модули, включающие пассивный детектор излучения с фронтально-плоской чувствительной поверхностью и пару тонких светонепроницаемых вертикальных стенок, расположенных по бокам вдоль угловой оси прямоугольной системы координат датчика, синтезировании с помощью гибридных пассивных модулей положенной относительной пеленгационной характеристики. Синтезирование - объединение конкретного набора гибридных модулей, что разрешает оптимизировать измерительные параметры датчика под решаемую задачу. Устройство - датчик (пассивный пеленгатор), реализующее способ, демонстрирует при соответствующем конструктивном и технологическом подходе построения путь получения минимальных значений величин массы, объема и электропотребления. Способ и устройство, реализующее способ, открывают новое направление построения пассивных фотоэлектрических пеленгаторов с обзорными окнами 10-360 градусов, по каждой координате, при минимальной погрешности угловых измерений в них. 2 н. и 9 з.п. ф-лы, 8 ил.

Изобретение относится к области оптико-электронного приборостроения и касается многоспектрального оптико-электронного устройства разведки целей. Устройство включает в себя входную оптическую систему, солнечно-слепой ультрафиолетовый пеленгатор, три фотоприемных устройства и электронный блок управления, соединенный с фотоприемными устройствами. Электронный блок управления выполнен с возможностью анализа время-импульсной модуляции сигнала на выходе фотоприемных устройств, который используется для распознавания целей "свой-чужой". Диапазон чувствительности трех фотоприемных устройств соответственно равен 0,3-1,1 мкм, 0,9-2,5 мкм и 2-14 мкм. Технический результат заключается в расширении диапазона регистрируемого излучения и сокращении времени обнаружения целей. 4 з.п. ф-лы, 1 ил.

Изобретение относится к области измерительной техники и касается оптико-электронной системы для определения спектроэнергетических параметров и координат источника лазерного излучения. Система включает в себя два оптических канала, матричный фотоприемник, систему охлаждения, регистрирующий, координатный и спектральный блоки. Первый оптический канал включает в себя оптическое устройство с широким углом поля зрения, интерферометр и первый объектив. Второй оптический канал состоит из второго объектива и прозрачной пластины с френелевским отражением, установленной под углом 45° к оптической оси второго объектива. Изображение источника лазерного излучения и формируемая первым оптическим каналом интерферограмма одновременно проецируются на фоточувствительную поверхность фотоприемника. Координатный и спектральный блоки обеспечивают одновременное определение спектроэнергетических параметров и координат источника лазерного излучения по одному видеокадру с изображениями этого источника и интерферограммы. Технический результат заключается в обеспечении возможности одновременного определения спектроэнергетических параметров и координат источника лазерного излучения. 3 з.п. ф-лы, 3 ил.

Изобретение относится к измерительной технике, в частности к пеленгаторам. Предложено устройство для определения пеленга и дальности до источника сигнала, содержащее первую антенну, первый и второй микробарометры, а также пять аналого-цифровых преобразователей (АЦП), подключенных к персональной электронно-вычислительной машине (ПЭВМ), дополнительно содержит блок системы единого времени и блок связи с абонентами, подключенные к ПЭВМ, последовательно соединенные первый усилитель, первый фильтр, второй усилитель, первый пороговый блок и схему ИЛИ, последовательно соединенные вторую антенну, третий усилитель, второй фильтр, четвертый усилитель и второй пороговый блок, последовательно соединенные третью антенну, пятый усилитель, третий фильтр, шестой усилитель и третий пороговый блок, последовательно соединенные седьмой усилитель, четвертый фильтр, восьмой усилитель, пятый фильтр, четвертый пороговый блок и первую схему И, последовательно соединенные первый цифро-аналоговый преобразователь (ЦАП) и первый калибратор, последовательно соединенные второй ЦАП и второй калибратор, последовательно соединенные третий ЦАП и третий калибратор, последовательно соединенные четвертый ЦАП и четвертый калибратор, последовательно соединенные пятый ЦАП и первый формирователь, последовательно соединенные шестой ЦАП и второй формирователь, последовательно соединенные первый таймер, вторую схему И и первый счетчик, последовательно соединенные девятый усилитель, шестой фильтр, десятый усилитель, седьмой фильтр, пятый пороговый блок и третью схему И, последовательно соединенные седьмой ЦАП и пятый калибратор, последовательно соединенные восьмой ЦАП и третий формирователь, последовательно соединенные второй таймер, четвертую схему И и второй счетчик, а также первый тактовый генератор, подключенный ко вторым входам второй и четвертой схем И, третий и четвертый таймеры, последовательно соединенные аналоговые первый квадратор, сумматор и первый делитель, последовательно соединенные шестой пороговый блок и пятую схему И, последовательно соединенные пятый таймер, шестую схему И и третий счетчик, а также шестой АЦП, второй тактовый генератор, подключенный ко второму входу шестой схемы И, и аналоговые второй и третий квадраторы, подключенные входами соответственно ко второму и третьему фильтрам, а выходами подключенные соответственно ко второму входу сумматора и ко второму входу первого делителя, последовательно соединенные второй делитель, корректор нелинейности, первый блок вычисления модуля, первый блок вычитания, второй блок вычисления модуля, седьмой пороговый блок и инверсный вход седьмой схемы И, последовательно соединенные первый ключ, первое запоминающее устройство и третий блок вычисления модуля, подключенный ко второму входу первого блока вычитания, последовательно соединенные восьмую схему И и первый одновибратор, подключенный к управляющему входу первого ключа, а также седьмой АЦП и блок сравнения знаков, подключенный входами к корректору нелинейности и к первому запоминающему устройству, а выходом подключенный ко второму входу седьмой схемы И, последовательно соединенные второй ключ, второе запоминающее устройство, второй блок вычитания и четвертый блок вычисления модуля, а также второй одновибратор, подключенный входом к восьмой схеме И, а выходом подключенный к управляющему входу второго ключа, причем первая, вторая и третья антенны выполнены магнитными и размещены взаимно перпендикулярно друг к другу, первый, второй и третий формирователи выполнены в виде сглаживающего звена с усилителем мощности, корректор нелинейности выполнен в виде усилителя с автоматической регулировкой усиления, первый, второй, третий, четвертый, пятый, шестой и седьмой пороговые блоки выполнены с управлением по порогу, первый, второй, третий, четвертый, пятый, шестой и седьмой фильтры выполнены с управлением по полосе пропускания, первый, второй, третий, четвертый, пятый, шестой, седьмой, восьмой, девятый и десятый усилители выполнены с управлением по фазе и чувствительности, первый, второй, третий, четвертый и пятый таймеры выполнены с управлением по длительности выходного сигнала, первый, второй, третий и четвертый блоки вычисления модуля выполнены в виде инверсных усилителей с диодами для преобразования сигналов любой полярности в сигналы положительной полярности, первая схема И подключена вторым входом к первому таймеру, третьим входом подключена к третьему таймеру, а выходом подключена ко входу останова первого счетчика, третья схема И подключена вторым входом ко второму таймеру, третьим входом подключена к четвертому таймеру, а выходом подключена ко входу останова второго счетчика, пятая схема И подключена вторым входом к пятому таймеру, а выходом подключена ко входу останова третьего счетчика, шестой АЦП подключен входом к выходу первого делителя, а выходом подключен к ПЭВМ, седьмой АЦП подключен входом к выходу корректора нелинейности, а выходом подключен к ПЭВМ, схема ИЛИ подключена вторым и третьим входами соответственно ко второму и третьему пороговым блокам, а выходом подключена к ПЭВМ и к первому, второму и пятому таймерам, первый квадратор подключен к выходу первого фильтра, первая антенна подключена к первому усилителю, первый микробарометр подключен выходом к седьмому усилителю, а входом акустически связан с четвертым калибратором, второй микробарометр подключен выходом к девятому усилителю, а входом акустически связан с пятым калибратором, первый формирователь подключен к управляющим входам первого, второго и третьего фильтров, второй формирователь подключен к управляющим входам четвертого и пятого фильтров, третий формирователь подключен к управляющим входам шестого и седьмого фильтров, входы первого, второго, третьего, четвертого и пятого АЦП подключены соответственно к первому, второму, третьему, четвертому и шестому фильтрам, выходы первого, второго и третьего калибраторов подключены соответственно к первой, второй и третьей антеннам, восьмая схема И подключена первым входом к схеме ИЛИ, а инверсным входом подключена к пятому таймеру, второй делитель подключен входами к первому и второму фильтрам, вход первого ключа подключен к корректору нелинейности, выход седьмой схемы И подключен к третьему входу пятой схемы И, вход второго ключа и второй вход второго блока вычитания подключены к первому делителю, выход четвертого блока вычисления модуля подключен к шестому пороговому блоку, а входы всех ЦАП, управляющие входы всех усилителей, управляющие входы всех пороговых блоков, выходы первого, второго и третьего счетчиков, выходы и управляющие входы первого, второго и пятого таймеров, а также входы запуска и управляющие входы третьего и четвертого таймеров подключены к ПЭВМ. Технический результат - уменьшение погрешности при использовании на однопозиционном пункте наблюдения или на средстве передвижения и увеличение помехоустойчивости устройства при наличии мешающих сигналов, поступающих с других азимутов. 1 ил.

Изобретение относится к оптико-электронному приборостроению и, в частности, к локационным устройствам. Оптико-электронный модуль и лазерный дальномер жестко связаны между собой. Наведение визирной оси лазерного дальномера на выбранный объект в поле зрения оптико-электронного модуля осуществляют поворотами оптических клиньев, которые установлены перед лазерным дальномером. Угловые координаты выбранного объекта вычисляют электронным способом. Технический результат - повышение точности измерения угловых координат выбранных объектов и дальности до них. 1 з.п. ф-лы, 2 ил.

Наверх