Способ автоматизированного определение координат беспилотных летательных аппаратов



Способ автоматизированного определение координат беспилотных летательных аппаратов
Способ автоматизированного определение координат беспилотных летательных аппаратов
Способ автоматизированного определение координат беспилотных летательных аппаратов

 


Владельцы патента RU 2523446:

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ВОЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ ВОЕННЫЙ УЧЕБНО-НАУЧНЫЙ ЦЕНТР СУХОПУТНЫХ ВОЙСК "ОБЩЕВОЙСКОВАЯ АКАДЕМИЯ ВООРУЖЕННЫХ СИЛ РОССИЙСКОЙ ФЕДЕРАЦИИ" (ОВА ВС РФ) (RU)

Изобретение может быть использовано для определения координат беспилотных летательных аппаратов (БЛА) в автоматическом режиме. Способ автоматизированного определения координат беспилотных летательных аппаратов заключается в том, что по отраженному лазерному излучению от беспилотного летательного аппарата определяются дальность, вертикальные и горизонтальные углы, с помощью которых затем определяется точное местоположение в пространстве БЛА, при этом автоматизированная система обработки информации позволяет определять направление движения БЛА. Достигаемый технический результат - обеспечение передачи разведывательной информации и поражения БЛА противника, сокращение времени обнаружения БЛА и определения координат, повышение точности определения координат БЛА. 3 ил.

 

Изобретение относится к способу определения координат беспилотных летательных аппаратов и может быть использовано для определения координат беспилотных летательных аппаратов в автоматическом режиме.

Анализ процесса пеленгации и определения координат беспилотных летательных аппаратов (БЛА) в особых условиях показывает, что использование спутниковой навигационной системы не всегда возможно, поэтому необходимо применять наземные средства определения пространственных координат [1,2].

Применение БЛА позволяет выполнять поиск и обнаружениЕ цели, корректировку огня по ней и контроль результатов поражения цели в едином технологическом цикле. При этом основным недостатком системы является определение координат БЛА в пространстве.

Изобретение предлагает способ автоматизированного определения координат беспилотных летательных аппаратов. Прототипом данного изобретения является изобретение SU 1172374 А1 (МКИ G01S 3/78) от 26.03.84 г. и патент №2349864 от 20.03.09 г. [3,4].

В настоящее время используются различные виды БЛА, при использовании которых возникает проблема определения пространственных координат (использование спутниковой навигационной системы не всегда возможно, это связано с подавлением сигналов средствами радиоэлектронной борьбы и т.д.) [5]. А определение координат с помощью углоизмерительных устройств связано со сложной работой оператора по точному прицеливанию на БЛА и определения его местоположения в пространстве с последующим расчетом его координат вручную.

На этот процесс у оператора уходит много времени и до принятия решения БЛА исчезает из прямой видимости, что делает невозможным получить информацию о координатах БЛА.

Таким образом, существующие аналоги не в состоянии определить точные пространственные координаты БЛА, не затрачивая большое количество времени и ресурсов, что является подтверждением необходимости использования способа автоматизированного определения координат беспилотных летательных аппаратов.

Целью изобретения является автоматизированное определение координат беспилотных летательных аппаратов по вертикальным и горизонтальным углам видеомонитора ЭВМ и по отраженному лазерному излучению, на основе определения дальности (фиг.1).

Изобретение позволяет: 1) в автоматическом режиме определять координаты БЛА для управления и передачи разведывательной информации, а также поражения БЛА противника; 2) сократить время обнаружения БЛА и определения координат; 3) снизить среднюю ошибку определения координат, которая будет сведена к инструментальной ошибке средств измерения; 4) исключить мероприятия по визуальному определению полярных координат БЛА; 5) обеспечить независимость времени обнаружения БЛА, определения координат и обработки информации, что позволяет в автоматизированном режиме поддерживать связь прямую и обратную с БЛА.

Данная цель достигается применением камер кругового обзора с видеомонитором, ориентированным в пространстве, ЭВМ и лазерного дальномера для подсветки БЛА.

Развитие современной элементной базы, в том числе малогабаритных приемников (видеокамер) и малогабаритных мощных источников излучения, позволяет их разместить в качестве перспективных разведывательных систем для обнаружения и распознавания БЛА и определения их пространственных координат [7, 8].

Автоматическое определение координат беспилотных летательных аппаратов в пространстве в зоне ответственности оператора осуществляется с помощью телекамер 1 (фиг.1), размещенных симметрично и направленных в разные стороны, так чтобы вести наблюдение на 360°. Камеры работают посекторно в оптическом диапазоне электромагнитных волн и днем, и ночью. Появление БЛА фиксируется автоматически как помеха 2, возникающая на кадре видеопоследовательности относительно предыдущего. Полученные данные обрабатываются на ЭВМ, где вырабатываются угловые значения местонахождения БЛА по высоте и по горизонту относительно центра углоизмерительного устройства 3. Углоизмерительное устройство по данным ЭВМ и с помощью поворотных механизмов отрабатывает в направлении БЛА излучатель, размещенный на подвижной головке 6. Излучатель испускает лазерный импульс 4, отраженный сигнал 5 с помощью приемника (размещенного на подвижной головке 6 вместе с излучателем) фиксируют время прохождения излучения до БЛА и обратно (излучатель подсвечивает БЛА, а приемник принимает сигнал (измерения дальности от БЛА)).

Измеренная дальность от БЛА поступает на устройство обработки и отображения информации (ЭВМ) о координатах БЛА 7, где происходит автоматизированное определение координат беспилотных летательных аппаратов: XБЛА; YБЛА; ZБЛА.

Измерение углов на местности - это измерение углов между проекциями этих направлений на горизонтальную плоскость при измерении горизонтальных углов или на вертикальную плоскость при измерении вертикальных углов и углов наклона (фиг.2).

Именно эти углы необходимы для вычисления взаимного положения пунктов А и В на земной поверхности в определенной системе координат.

Так, если ∠АОВ - угол на местности между наклонными направлениями ОА и OB, то его горизонтальная проекция ∠A'OB' получится в результате проецирования точек А и В на горизонтальную плоскость (точки А' и В').

Мерой этого угла будет линейный угол β, называемый горизонтальным углом.

Для получения превышений между пунктами на земной поверхности АОВ проецируется на вертикальную плоскость (точки А” и В). Полученный угол ξ называется вертикальным углом.

Угол в вертикальной плоскости, образованный горизонтальной плоскостью, проходящей через точку О, и направлением на какой-либо объект, называется углом наклона. На фиг.2 показаны два угла наклона:

- для направления ОА - ∠γA;

- для направления О В - ∠γB.

На устройстве обработки и отображения информации (ЭВМ) о координатах БЛА и объектов высвечиваются рассчитанные пространственные координаты X, Y, Z (фиг.4).

Описание с формулами определения координат

Дана точка 1 с координатами (X1, Y1, Z1), расстояние между точками 1 и 2 равно D, горизонтальный угол α1 и вертикальный угол α2 с точки 1 на точку 2 (фиг.3).

Необходимо определить координаты точки 2 (Х2, Y2, Z2).

Проекции D на оси координат будут соответствовать ΔХ, ΔY и ΔZ.

Тогда:

X2=X1+ΔХ;

Y2=Y1+ΔY;

Z2=Z1+ΔZ.

Величины ΔХ, ΔY и ΔZ называются приращениями координат. Их значения определяются следующим образом

ΔX=Dcos(α1);

ΔY=Dsin(α1);

ΔZ=Dsin(α2).

Использованная литература

1. Дмитриенко А.Г., Плющ А.А., Блинов А.В., Пархоменко А.В. Воздушная разведка в интересах артиллерии; под общ. ред. А.В.Пархоменко. - Пенза: ПАИИ, 2010. - 255 с.: ил.

2. Ростопчин В.В. Элементарные основы оценки эффективности применения беспилотных авиационных систем для воздушной разведки. http://dpla.ru/otklikrostopchin.htm.

3. Авт.свидетельство SU 1172374 A1 от 26.03.84. Оптическая система наведения подвижного объекта. МКИ G01S 3/78.

4. Пархоменко А.В., Шишков С.В. и др. Нашлемная разведывательная система пассивного дальнеметрирования объектов. - ФИПС. Патент №2349864 от 20.03.09.

5. Пархоменко А.В., Шишков С.В. и др. Насадка к оптико-электронным приборам для визирования объектов при больших углах места. - ФИПС. Патент на полезную модель №83603, 10.06.09.

6. Пархоменко А.В., Шишков С.В. и др.. Устройство разведки объектов методом комбинированного стереоэффекта. - ФИПС. Патент на полезную модель №84539 по заявке на изобретение №2008152592 от 29.12.2008. Опубл. 10.07.2009. Бюл. №19.

7. Пархоменко А.В., Шишков С. В. и др. Устройство разведки объектов методом анаглифов. - ФИПС. Патент на полезную модель №86295 от 27.9.09 по заявке №№2008152594 от 29.12. 2008. Опубл. 27.9.09. Бюл. №24.

Способ автоматизированного определения координат беспилотных летательных аппаратов с применением камер кругового обзора, видеомонитора, ориентированного в пространстве, ЭВМ и лазерного дальномера для подсветки БЛА, отличающийся тем, что камеры кругового обзора размещены симметрично и направлены в разные стороны, так чтобы вести наблюдение на 360° в оптическом диапазоне электромагнитных волн днем и ночью, и появление БЛА фиксируется автоматически как помеха, возникающая на кадре видеопоследовательности относительно предыдущего, а полученные данные обрабатываются на ЭВМ, где вырабатываются угловые значения местонахождения БЛА по высоте и по горизонту относительно центра углоизмерительного устройства, которое с помощью поворотных механизмов направляет лазерный дальномер на БЛА для измерения дальности до него, затем измеренная дальность от БЛА поступает на устройство обработки и отображения информации (ЭВМ), где происходит автоматизированное определение пространственных координат XБЛА, YБЛА, ZБЛА беспилотных летательных аппаратов.



 

Похожие патенты:

Изобретение относится к методам обнаружения тепловых объектов на маскирующем атмосферном фоне в условиях ночного неба с использованием оптико-электронных средств.

Изобретение относится к методам обнаружения тепловых объектов на сложном атмосферном фоне в условиях ночного неба с использованием оптико-электронной системы (ОЭС), работающей в инфракрасном диапазоне волн.

Изобретение относится к технике инфракрасных (ИК) систем оптического приборостроения для использования в наблюдательных и прицельных системах кругового обзора. .

Изобретение относится к области оптико-электронного приборостроения. .

Изобретение относится к области оптико-электронного приборостроения и может быть использовано в прицельно-обзорных оптико-электронных системах, в частности в теплопеленгаторах кругового обзора с матричным фотоприемным устройством.

Изобретение относится к сфере научных и технических проблем, изучаемых в радиоастрономии, астрофизике, астрометрии, геодезии и навигации, для привязки радионеба к оптическому небу для создания фундаментального каталога опорных радиоисточников высокой плотности, имеющих оптические отождествления, для целей космической навигации, для исследования природы небесных объектов в широком диапазоне длин волн, для изучения радиорефракции в космическом пространстве и уточнения ранее полученных сведений о космических объектах в радиодиапазоне для исследования характеристик Межзвездной и Межгалактической сред (МЗС, МГС).

Изобретение относится к оптико-электронному обнаружению движущихся объектов. .

Изобретение относится к методам обнаружения теплового объекта на двумерном фоноцелевом изображении. .

Изобретение относится к методам обработки сигналов, позволяющих обнаруживать и измерять импульсы от точечных объектов со сканирующих оптико-электронных устройств. Достигаемый технический результат - обнаружение электрических импульсов от точечных объектов при неизвестном уровне шума в широком диапазоне длительности импульсов. Сущность изобретения заключается в том, что используют модель полезного сигнала от цели в дальней зоне, фильтруют сигналы фильтром, который обеспечивает для полезных импульсов определенные соотношения между соседними по времени импульсами разной полярности, измеряют величину положительных и отрицательных импульсов, сравнивают между собой величину положительных и отрицательных импульсов на соседних по времени интервалах и по их соотношению отбирают импульсы, которые с высокой вероятностью не могут быть отнесены к полезным (помеховые импульсы) и импульсы, которые, возможно, могут быть отнесены к полезным (импульсы от цели), усредняют величины отобранных помеховых импульсов, используют усредненное их значение для задания порогового уровня и принимают решение об обнаружении импульса от цели и об измерении других параметров данного импульса, если величина этого импульса превышает пороговый уровень. Оценка величины импульса делается суммированием текущих значений импульса. Эквивалентную частоту импульса определяют делением суммы квадратов текущих значений импульса на квадрат суммы текущих значений импульса. 3 з.п. ф-лы, 5 ил.

Изобретение относится к навигационной технике, а именно к пеленгаторам, определяющим угловое положение источника света. Устройство определения углового положения источника света содержит четыре одинаковых фотодетектора и электрическую схему. Фотодетекторы воспринимают поток излучения от источника света, попарно противоположно ориентированы относительно продольной оси устройства и также попарно включены в электрическую схему. Детекторы одной пары подключены параллельно и однополярно, а другой - однополярно, но раздельно через переключатель. Способ определения углового положения источника света заключается в одновременной регистрации двух составляющих светового потока с помощью двух пар противоположно ориентированных фотодетекторов и определении по результатам регистрации направления на источник. Для одной пары детекторов определяют четно-симметричную пеленгационную характеристику, а для другой - нечетно-симметричную пеленгационную характеристику, смещенную по оси ординат. Технический результат - снижение массы, размеров и энергопотребления устройства определения углового положения источника света. 2 н. и 8 з.п. ф-лы, 5 ил.

Изобретение относится к области оптического приборостроения и касается датчика направленности света. Датчик направленности света содержит фотоприемное устройство, состоящее из множества фоточувствительных элементов. На фотоприемном устройстве расположена матрица светопоглощающих структур. Светопоглощающие структуры имеют варьирующиеся структурные характеристики. Варьирующиеся структурные характеристики достигаются посредством формирования каждой отдельной структуры последовательности так, что она дает возможность восприятия света в пределах различных интервалов углов относительно матрицы. При этом, каждая из светопоглощающих структур включает разное количество фоточувствительных элементов. Технический результат заключается в уменьшении размеров и повышении надежности устройства. 3 н. и 12 з.п. ф-лы, 13 ил., 1 табл.

Изобретение относится к оптико-электронным приборам для поиска теплоизлучающих объектов. Система содержит обтекатель, сканирующее зеркало, теплопеленгационный (ТП) канал с оптической системой и фотоприемным устройством, лазерный канал дальнометрирования с излучателем, приемной оптической системой и фотоприемным устройством, лазерный канал помехового излучения и телевизионный канал для получения изображения пространства объектов. В режиме обзора осуществляется непрерывный просмотр заданной зоны пространства с помощью сканирующего зеркала. В оптическую систему ТП канала вводится компонент, обеспечивающий ее широкое поле зрения, что позволяет уменьшить время просмотра зоны обзора. После обнаружения цели система переходит в режим слежения, в процессе которого изображение цели совмещается с оптической осью ТП канала. При переходе из режима обзора в режим слежения в оптическую систему ТП канала вводится компонент, сужающий ее поле зрения, в результате чего уменьшается элементарное поле зрения системы и повышается точность слежения. Технический результат - уменьшение времени обзора пространства, повышение вероятности наведения лазерного излучения на цель, расширение функциональных возможностей. 2 з.п. ф-лы, 1 ил.

Предлагаемое изобретение относится к оптико-электронному приборостроению, в частности к способам формирования электронного изображения окружающего пространства при его непрерывном сканировании. Достигаемый технический результат изобретения - возможность измерения дальности до объекта лазерным дальномером при непрерывном сканировании с большими скоростями окружающего пространства, в том числе и кругового. Указанный результат достигается тем, что окружающее пространство сканируют в азимутальной плоскости, выбирают видеокадр с объектом, до которого требуется измерить расстояние, измеряют вертикальную и горизонтальную координаты изображения объекта относительно координат начала видеокадра, устанавливают визирную ось лазерного дальномера по вычисленным координатам объекта, а замер дальности до объекта проводят при следующем цикле сканирования в момент начала формирования видеокадра с выбранным объектом. Реализация способа обеспечивается установкой на сканирующую платформу, снабженную приводом и датчиком углового положения, оптико-электронного модуля и лазерного дальномера, а перед лазерным дальномером размещают два оптических клина, каждый из которых снабжен приводом и датчиком углового положения. 2 н.п. ф-лы, 2 ил.

Устройство пеленгации источников лазерного излучения относится к области оптико-электронного приборостроения, а более конкретно к устройствам обнаружения и пеленгации источников лазерного излучения для систем защиты подвижных объектов военной техники. Устройство содержит приемную оптическую систему, оптически связанный с ней многоэлементный фотоприемник, n каналов обработки сигналов, каждый из которых состоит из предусилителя, порогового устройства и двухвходовой схемы «ИЛИ», ждущий мультивибратор, n формирователей сигналов контроля, каждый из которых содержит двухвходовую схему «И», аналоговый ключ, схему нормирования длительности импульса и стабилизированный источник напряжения. Достигаемый технический результат - обеспечение проверки правильности обработки выходных сигналов фотоприемника в эксплуатации без использования источника излучения, находящегося в поле зрения устройства. 1 ил.

Изобретение относится к оптико-электронному приборостроению и, в частности, к локационным устройствам. Оптико-электронный модуль и лазерный дальномер жестко связаны между собой. Наведение визирной оси лазерного дальномера на выбранный объект в поле зрения оптико-электронного модуля осуществляют поворотами оптических клиньев, которые установлены перед лазерным дальномером. Угловые координаты выбранного объекта вычисляют электронным способом. Технический результат - повышение точности измерения угловых координат выбранных объектов и дальности до них. 1 з.п. ф-лы, 2 ил.

Изобретение относится к выносным индикаторным постам (ВИП) для мониторинга и управления воздушным движением. Технический результат - сокращение времени развертывания ВИП. Для этого ВИП выполнен мобильным и содержит кузов, установленный на шасси автомобиля, и прицепную электростанцию. Кузов содержит аппаратный отсек, агрегатный отсек и отсек дополнительного оборудования. В аппаратном отсеке установлено не менее одного автоматизированного рабочего места (АРМ) оператора, шкаф обработки радиолокационной информации (РЛИ), шкаф радиосвязи, АРМ начальника связи и отопительные воздуховоды. В агрегатном отсеке установлен кондиционер, соединенный по очищенному воздуху с отопительными воздуховодами аппаратного отсека. В отсеке дополнительного оборудования расположены выносные средства сопряжения, кабельное и выносное беспроводное оборудование для быстрого дистанционного соединения с источниками РЛИ. Также имеются складная спутниковая антенна, первая антенна беспроводной связи с источниками РЛИ, вторая антенна беспроводной связи с источниками РЛИ, а также две мачты, с установленными на них антеннами радиосвязи с воздушными судами и антенна радиорелейной связи с потребителями РЛИ. 1 з.п. ф-лы, 6 ил.

Маска // 2578267
Изобретение относится к области оптического приборостроения и касается маски, которая накладывается на чувствительную поверхность сдвоенного пироэлектрического датчика. Маска представляет собой лист, выполненный из блокирующего инфракрасное излучение материала. В маске выполнены сквозные отверстия, сформированные таким образом, чтобы обеспечивать возможность изменения процентных долей соответствующих облученных инфракрасными лучами областей двух пироэлектрических элементов при перемещении источника излучения по двум координатным осям. Отверстия формируют две области апертур. При этом граница одной из областей апертур выступает по направлению, перпендикулярному расположению пироэлектрических элементов дальше, чем граница другой области апертур. Технический результат заключается в увеличении чувствительности и обеспечении возможности регистрации перемещения объекта одновременно по двум координатным осям. 5 з.п. ф-лы. 40 ил.
Наверх