Жидкостная ракетная двигательная установка

Изобретение относится к области ракетостроения, в частности к жидкостным ракетным двигательным установкам (ЖРДУ) с дожиганием генераторного газа. ЖРДУ включает баки окислителя и горючего, несколько модульных ЖРД, общую силовую раму и рулевые гидроприводы, при этом каждый модульный двигатель содержит камеру сгорания и сопло, турбонасосный агрегат, состоящий из турбины, насосов горючего и окислителя, газогенератор, агрегаты автоматики, трубопроводы подачи горючего и окислителя в газогенератор и камеру сгорания и карданный подвес с рулевыми гидроприводами для изменения положения ракеты в пространстве, при этом в качестве модульных двигателей применены жидкостные ракетные двигатели (ЖРД), выполненные по схеме с дожиганием генераторного газа, причем камера двигателя закреплена относительно силовой рамы в карданном подвесе, имеющем сильфонный узел, который через газовод соединен с выходом из турбины, а другой стороной соосно соединен с головкой камеры сгорания, при этом силовая рама представляет собой цельносварную ферменную конструкцию, состоящую из четырех равнозначных секций, выполненных из силовых стержней, и квадратной секции, в углах которой закреплены опорные площадки, а соединение силовой рамы с кольцом шпангоута ракеты осуществлено четырьмя силовыми стержнями, одни концы которых закреплены на каждой опорной площадке, а другие концы - пяты - прикреплены к кольцу шпангоута ракеты, причем указанные силовые стержни равномерно расположены по кольцу шпангоута, при этом соединение силовой рамы с двигателями выполнено с помощью опорных цилиндров, размещенных между опорными площадками и опорными кольцами сильфонного узла в месте крепления газовода, при этом ось опорных цилиндров совпадает с осью камер двигателей. Изобретение обеспечивает повышение жесткости и прочности конструкции. 6 з.п. ф-лы, 5 ил.

 

Область техники

Данное изобретение относится к области ракетостроения и, в частности, к жидкостной ракетной двигательной установке (ЖРДУ), включающей несколько модульных жидкостных ракетных двигателей (ЖРД), выполненных по схеме с дожиганием генераторного газа, камеры которых закреплены на карданных подвесах.

Предшествующий уровень техники

Известна жидкостная ракетная двигательная установка (ЖРДУ) ракеты-носителя «Сатурн-5» (США), включающая баки компонентов топлива, пять модульных жидкостных ракетных двигателей, силовую раму для крепления двигателей и передачи тяги, развиваемой двигателями, на силовой шпангоут корпуса ракеты, при этом каждый двигатель выполнен по схеме без дожигания генераторного газа и состоит из камеры сгорания, газогенератора, турбонасосного агрегата (ТНА), агрегатов автоматики и узла крепления к силовой раме. Указанная рама выполнена из двух пересекающихся под прямым углом балок прямоугольного сечения, создающих крестообразную платформу. Один из пяти модульных двигателей жестко прикреплен к силовой раме в центре крестовины, четыре боковых двигателя качаются в карданном подвесе в одной плоскости на периферии балок, создавая три управляющих момента (по курсу, тангажу и крену), при повороте на ±6°. Качание четырех двигателей обеспечивают силовые гидроприводы (см. кн. А.А. Козлов и др. «Системы питания и управления жидкостных ракетных двигателей», Москва, Машиностроение, с. 305, рис. 4.27, 1988 г.).

Недостатки: качание двигателей на угол ±6° снижает маневренность ЖРДУ; применение силовой рамы балочной конструкции увеличивает массу ЖРДУ.

Известна ЖРДУ, включающая баки окислителя и горючего, два модульных ЖРД, выполненных по открытой схеме, в каждый из которых входят по две камеры сгорания, турбонасосный агрегат, трубопроводы подачи окислителя и горючего в газогенератор и камеры сгорания, комплект агрегатов автоматики и узлов общей сборки, общую силовую раму, к которой прикреплены модульные двигатели и рулевые приводы, обеспечивающие поворот периферийных рулей, установленных на срезе сопел камер двигателей.

Рама двигательной установки представляет собой цельносварную герметичную конструкцию из стержней (труб). В верхней части рамы в местах стыков труб вварено восемь опорных пят. Нижняя часть рамы образует замкнутый сварной пояс, состоящий из четырех треугольных равносторонних трубчатых рам, соединенных между собой. К нижнему поясу рамы приварены двенадцать резьбовых втулок, которые служат для крепления камер сгорания к раме двигателя с помощью шаровых опор (Альбом конструкций ЖРД, часть 4, под руководством акад. В.П. Глушко, Военное издательство, М.О. СССР, Москва, стр. 139, Фиг. 297, 298, 1972 г., ЖРДУ. ВК 65 - прототип).

К недостаткам прототипа можно отнести следующее. При сборке двигательной установки сложно фиксировать нулевое положение камер при наличии трех шарнирных опор. Нижний пояс рамы имеет сложную конструкцию, и при ее изготовлении понадобится применение большого количества сварных швов. Кроме того, такая рама обладает низкими прочностными свойствами.

Раскрытие изобретения

Задачей изобретения является исключение указанных недостатков.

Эта задача решена за счет того, что в ЖРДУ, включающей баки окислителя и горючего, несколько модульных ЖРД, общую силовую раму и рулевые гидроприводы, при этом каждый модульный двигатель содержит камеру сгорания и сопло, турбонасосный агрегат, состоящий из турбины, насосов горючего и окислителя, газогенератор, агрегаты автоматики, трубопроводы подачи горючего и окислителя в газогенератор и камеру сгорания и карданный подвес с рулевыми гидроприводами для изменения положения ракеты в пространстве, согласно изобретению в качестве модульных двигателей применены ЖРД, выполненные по схеме с дожиганием генераторного газа, причем камера двигателя закреплена относительно силовой рамы в карданном подвесе, имеющем сильфонный узел, который через газовод соединен с выходом из турбины, а другой стороной соосно соединен с головкой камеры сгорания, при этом силовая рама представляет собой цельносварную ферменную конструкцию, состоящую из четырех равнозначных секций, выполненных из силовых стержней, и квадратной секции, в углах которой закреплены опорные площадки, а соединение силовой рамы с кольцом шпангоута ракеты осуществлено четырьмя силовыми стержнями, одни концы которых закреплены на каждой опорной площадке, а другие концы - пяты - прикреплены к кольцу шпангоута ракеты, причем указанные силовые стержни равномерно расположены по кольцу шпангоута, при этом соединение силовой рамы с двигателями выполнено с помощью опорных цилиндров, размещенных между опорными площадками и опорными кольцами сильфонного узла в месте крепления газовода, при этом ось опорных цилиндров совпадает с осью камер двигателей.

Другими отличиями являются:

- каждый опорный цилиндр имеет на цилиндрической поверхности вырез, через который проходит изогнутая часть газовода;

- опорные цилиндры прикреплены к опорным площадкам и к сильфонному узлу с помощью фланцев;

- опорные цилиндры прикреплены к опорным площадкам и к сильфонному узлу с помощью сварки;

- на внешней поверхности опорных цилиндров выполнены продольные ребра жесткости;

- в качестве силовых стержней могут быть использованы трубы разного сечения;

- в качестве горючего используется жидкий метан, а в качестве окислителя - жидкий кислород.

Технический результат состоит в том, что предлагаемое техническое решение позволяет создать достаточно жесткую и легкую конструкцию рамы и узла, передающую силу тяги от четырех двигателей на опорные площадки рамы.

Перечень чертежей

На Фиг. 1 представлен общий вид ЖРДУ.

На Фиг. 2 представлен вид по А Фиг. 1.

На Фиг. 3 - сильфонный узел карданного подвеса.

На Фиг. 4 - рама ЖРДУ.

На Фиг. 5 - вид В (Фиг. 4) на раму ЖРДУ.

Пример осуществления изобретения

ЖРДУ включает четыре модульных ЖРД 1, выполненных по схеме с дожиганием генераторного газа. Каждый двигатель содержит камеру сгорания 2 и сопло 3, турбонасосный агрегат 4, имеющий турбину 5 с насосами горючего и окислителя, газогенератор 6, газовод 7, общую силовую раму 8, комплект агрегатов автоматики, трубопроводы подачи окислителя и горючего в газогенератор и камеру сгорания и узлы общей сборки. Газовод 7 одним концом соединен с выходом из турбины, а другим концом соединен сильфонным узлом качания карданного типа 9. Указанный узел качания соосно установлен с камерой 2 двигателя, а полость сильфона соединена с головкой 10 камеры сгорания.

Сильфонный узел качания 9 (фиг. 3) включает сильфон 11 с опорными кольцами 12 и 13 на концах и карданный механизм.

Карданный механизм содержит раму 14, которая через шарниры 15 и 16, образующие две поворотные оси 17 и 18, соединена вилками 19 и 20 с опорными кольцами 12 и 13 сильфона. В результате камеры каждого двигателя закрепляются в карданных подвесах, что позволяет отклонять их в двух взаимно перпендикулярных плоскостях для создания на активном участке полета управляющих моментов для изменения положения ракеты в пространстве.

Общая силовая рама 8 служит для неподвижного крепления двигателей к корпусу ракеты и передачи силы тяги, развиваемой двигателями, на кольца шпангоута ракеты. Общая силовая рама состоит из четырех равнозначных секций, выполненных из силовых стержней 21, 22 и 23, 24, и квадратной секции 25, в углах которой закреплены опорные площадки 26. Крепление опорных площадок 26 к квадратной секции 25 осуществляется сваркой.

Соединение силовой рамы с кольцом шпангоута ракеты осуществлено четырьмя силовыми стержнями 21, 22 и 23, 24, одни концы которых закреплены на каждой опорной площадке 26, а другие концы - пяты 28, 29, 30, 31 - прикреплены к кольцу 27 шпангоута ракеты.

Причем указанные силовые стержни равномерно расположены по кольцу 27 шпангоута ракеты. Соединение силовой рамы 8 с двигателями выполнено с помощью опорных цилиндров 32, размещенных между опорными площадками 26 и опорными кольцами 12 сильфонного узла в месте крепления газовода 7. При этом ось опорных цилиндров совпадает с осью камеры двигателя. Опорные цилиндры 32 снабжены фланцами 33 и 34 и имеют вырез 35 на цилиндрической поверхности для прохода изогнутого участка газовода 7. При этом ось опорных цилиндров совпадает с осью камер двигателя. Для повышения прочностных свойств опорных цилиндров 32 на их поверхностях выполнены продольные ребра 36 жесткости.

Для углового поворота камер сгорания используются рулевые гидроприводы (условно не показаны для упрощения компоновочного изображения), по два привода на каждую камеру.

В качестве окислителя в ДУ применяется жидкий кислород, а в качестве горючего - жидкий метан.

Работа устройства

Работает ЖРДУ следующим образом. Вначале проводят заправку баков ракеты окислителем и горючим от наземной системы. Далее по программе запуска производят открытие входных клапанов, и компоненты топлива под воздействием гидростатического напора и давления наддува заполняют полости насосов. Затем открывают главные клапаны, и компоненты поступают в газогенераторы каждого двигателя, а горючее (жидкий метан) через охлаждающие тракты поступает в смесительные камеры сгорания четырех двигателей. В течение некоторого времени задержки в газогенераторах начинается процесс горения, и генераторный газ раскручивает турбины 5 четырех ТНА. С выхода турбин генераторный газ поступает по газоводам 7 в сильфонные узлы 9 карданных подвесов, а затем - в смесительные головки камер сгорания 2. В результате чего двигатель выходит на режим номинальной тяги.

Сила тяги от каждой камеры передается на силовую раму 8 через опорные цилиндры 32. Эти усилия через силовую раму 8 и пяты 28, 29 и 30, 31 передаются на кольцо 27 шпангоута ракеты.

При необходимости отклонения камер от номинального углового положения срабатывают рулевые приводы (условно не показаны), и камеры поворачиваются вокруг центров 0 своих узлов качания с карданным механизмом.

Выполнение силовой рамы из четырех равнозначных секций и квадратной рамы, в углах которой размещены опорные площадки, и применение опорных цилиндров, установленных между опорными площадками и опорными кольцами сильфонного узла, обеспечивает раме необходимую жесткость и прочность с меньшим количеством силовых стержней. Это позволяет упростить компоновку двигательной установки, снизить ее массу и габариты. Все это, несомненно, даст экономический эффект за счет новой наиболее эффективной рамы.

Соосное расположение узла качания и камеры сгорания позволяет разгрузить карданный механизм на основном режиме работы двигателя путем подбора среднего диаметра сильфона, чтобы растягивающие силы внутреннего давления генераторного газа соответствовали сжимающей силе тяги камеры сгорания.

Качание камер на карданном подвесе позволяет сократить диаметральные размеры двигательной установки, снизить мощность рулевых приводов и увеличить угол отклонения камеры.

Промышленное применение

Наиболее успешно заявленная двигательная установка найдет применение на ракетах-носителях тяжелого класса.

1. Жидкостная ракетная двигательная установка (ЖРДУ), включающая баки окислителя и горючего, несколько модульных ЖРД, общую силовую раму и рулевые гидроприводы, при этом каждый модульный двигатель содержит камеру сгорания и сопло, турбонасосный агрегат, состоящий из турбины, насосов горючего и окислителя, газогенератор, агрегаты автоматики, трубопроводы подачи горючего и окислителя в газогенератор и камеру сгорания и карданный подвес с рулевыми гидроприводами для изменения положения ракеты в пространстве, отличающаяся тем, что в качестве модульных двигателей применены ЖРД, выполненные по схеме с дожиганием генераторного газа, причем камера двигателя закреплена относительно силовой рамы в карданном подвесе, имеющем сильфонный узел, который через газовод соединен с выходом из турбины, а другой стороной соосно соединен с головкой камеры сгорания, при этом силовая рама представляет собой цельносварную ферменную конструкцию, состоящую из четырех равнозначных секций, выполненных из силовых стержней, и квадратной секции, в углах которой закреплены опорные площадки, а соединение силовой рамы с кольцом шпангоута ракеты осуществлено четырьмя силовыми стержнями, одни концы которых закреплены на каждой опорной площадке, а другие концы - пяты - прикреплены к кольцу шпангоута ракеты, причем указанные силовые стержни равномерно расположены по кольцу шпангоута, при этом соединение силовой рамы с двигателями выполнено с помощью опорных цилиндров, размещенных между опорными площадками и опорными кольцами сильфонного узла в месте крепления газовода, при этом ось опорных цилиндров совпадает с осью камер двигателей.

2. ЖРДУ по п. 1, отличающаяся тем, что каждый опорный цилиндр имеет на цилиндрической поверхности вырез, через который проходит изогнутая часть газовода.

3. ЖРДУ по п. 1, отличающаяся тем, что опорные цилиндры прикреплены к опорным площадкам и к сильфонному узлу с помощью фланцев.

4. ЖРДУ по п. 1, отличающаяся тем, что опорные цилиндры прикреплены к опорным площадкам и к сильфонному узлу с помощью сварки.

5. ЖРДУ по п. 1, отличающаяся тем, что на внешней поверхности опорных цилиндров выполнены продольные ребра жесткости.

6. ЖРДУ по п. 1, отличающаяся тем, что в качестве силовых стержней использованы трубы разного сечения.

7. ЖРДУ по п. 1, отличающаяся тем, что в качестве горючего используется жидкий метан, а в качестве окислителя - жидкий кислород.



 

Похожие патенты:

Изобретение относится к ракетно-космической технике. Способ повышения эффективности ракет космического назначения (РКН) с маршевыми жидкостными ракетными двигателями (ЖРД) основан на использовании невыработанных жидких остатков компонентов ракетного топлива (КРТ) в баках отделяющихся частей (ОЧ) ступеней РКН с помощью системы извлечения и реализации энергетических ресурсов (СИРЭР).

Изобретение относится к жидкостным ракетным двигателям (ЖРД) и может быть использовано при их огневой стендовой отработке для повышения надежности работы камеры сгорания.

Изобретение относится к области ракетной техники, а именно к двигателестроению, и может быть использовано при создании камер жидкостных ракетных двигателей (ЖРД). ЖРД содержит камеру со смесительной головкой, турбонасосный агрегат, газогенератор, агрегаты питания и регулирования.

Изобретение относится к ракетной технике и может быть использовано в конструкции двигательных установок ракетных блоков, использующих криогенные компоненты топлива для питания жидкостного ракетного двигателя и импульсных двигателей систем стабилизации ориентации и обеспечения запуска.

Изобретение относится к ракетному двигателестроению и может быть использовано при проектировании жидкостных ракетных двигателей (ЖРД). ЖРД имеет в составе камеру сгорания, газогенератор, турбонасосный агрегат, бустерный турбонасосный агрегат с газовой турбиной и теплообменник, согласно изобретению вход в холодный контур теплообменника сообщен с выходом из насоса окислителя, а выход из холодного контура теплообменника посредством магистрали подачи газа в турбину бустерного турбонасосного агрегата - с входом в турбину бустерного турбонасосного агрегата, выход из которой сообщен с входной магистралью окислителя.

Изобретение относится к ракетному двигателестроению и может быть использовано при проектировании жидкостных ракетных двигателей (ЖРД). Турбонасосный агрегат (ТНА), имеющий в своем составе ротор и статор, согласно изобретению, снабжен размещенным в статоре подвижным в осевом направлении управляемым плунжером с рабочим торцом, а на роторе предусмотрен ответный торец, причем в рабочем положении плунжера оба торца находятся в силовом контакте для удержания ротора в неподвижном положении.
Ракетный двигатель содержит камеру сгорания, в которую подают боран, или силан, или фосфин, или герман, или другие гидриды, имеющие положительную энтальпию образования из простых веществ, или их смесь.

Изобретение относится к ракетной технике, а конкретно к кислородно-керосиновым жидкостным ракетным двигателям (ЖРД) замкнутой или открытой схем. Способ работы кислородно-керосиновых ЖРД и ракетная двигательная установка, основанный на введении в чистый керосин полимерной противотурбулентной присадки (ПТП), используемой в качестве агента снижающего гидродинамические потери в магистрали горючего, предусматривающий подачу окислителя и горючего в камеру сгорания двигателя для образования продуктов сгорания и расширения их в реактивном сопле, создавая тягу двигателя, причем полимерную ПТП вводят из дополнительного бачка и смешивают с потоком чистого керосина, поступающего во входную магистраль горючего двигателя в процессе запуска и работы двигателя в смесителе, установленном в этой магистрали.

Изобретение относится к ракетно-космической технике и может быть применено в конструкциях систем питания импульсных ракетных двигателей двигательных установок, использующих жидкие криогенные компоненты топлива и предназначенных для реактивных систем управления летательных аппаратов.

Изобретение относится к средствам создания тяги и может быть использовано в реактивных двигателях (РД). Двигательное устройство содержит корпус, конусообразную камеру сгорания, выхлопную трубу, два пружинных клапана между выхлопной трубой и камерой сгорания, блок управления с гидравлическими выходами.

Изобретение относится к ракетной технике и может быть использовано при изготовлении жидкостных ракетных двигателей (ЖРД). ЖРД содержит четыре камеры, турбонасосный агрегат (ТНА), газогенератор, бустерные турбонасосные агрегаты окислителя (БТНАО) и горючего (БТНАГ), газоводы, магистрали окислителя и горючего, системы продувки и управления, агрегаты регулирования и управления, сильфоны в газоводах, при этом в его магистралях перед входом окислителя в БТНАО и входом окислителя на его гидротурбину, в автомат осевой разгрузки ТНА перед входом окислителя в газогенератор неподвижно установлены фильтры с сеткой тонкостью фильтрации 0,03-0,05 мм и отверстиями диаметром 0,13-0,2 мм, предотвращающими прохождение частиц засорений диаметром, большим ячеек фильтров, и общей площадью поверхности фильтрации, превышающей внутренний диаметр магистрали или трубопровода в 1,5-2 раза. Предложено также использование охлаждаемых сильфонов в газоводах блоков гибких трубопроводов, в системе запуска на входе в пусковой баллон установлена решетка, в системе управления на входе и выходе электропневмоклапанов установлены сетчатые фильтры, в магистрали подвода горючего установлен фильтр, на входе горючего в головку камеры сгорания установлены два фильтра. Изобретение обеспечивает повышение надежности работы систем и агрегатов ЖРД. 5 з.п. ф-лы, 21 ил.
Ракетный двигатель содержит камеру сгорания, в которую под давлением подается смесь борана и гидразина, или раствор или эмульсия борана в жидком гидразине. Компоненты подаются в следующем соотношении: диборан 46,33±10%, гидразин 53,67±10%. В камеру сгорания дополнительно подается 0,0001-1% от массы реагирующих веществ мелкодисперсного угля и/или сажи, и/или графита, и/или метана. В другом варианте ракетный двигатель содержит камеру сгорания или корпус с соплом, работающий на жидком или твердом топливе. В камеру сгорания или в корпус дополнительно подается выхлоп двигателя, работающего на диборане или тетраборане и гидразине. Группа изобретений позволяет повысить удельный импульс ракетного двигателя. 2 н. и 2 з.п. ф-лы.
Ракетный двигатель содержит камеру сгорания, в которую под давлением подается смесь борана и аммиака, или раствор или эмульсия борана в жидком аммиаке. Компоненты подаются в следующем соотношении: диборан 44,8±10%, аммиак 55,2±10%. В камеру сгорания дополнительно подается 0,0001-1% от массы реагирующих веществ мелкодисперсного угля и/или сажи, и/или графита, и/или метана. В другом варианте ракетный двигатель содержит камеру сгорания или корпус с соплом, работающий на жидком или твердом топливе. В камеру сгорания или в корпус дополнительно подается выхлоп двигателя, работающего на диборане или тетраборане и аммиаке. Группа изобретений позволяет повысить удельный импульс ракетного двигателя. 2 н. и 2 з.п. ф-лы.
Ракетный двигатель содержит камеру сгорания с соплом. В камеру сгорания подается расплавленного гидрида бериллия 40,81±20% и 59,19±20% кислорода или компоненты в следующем соотношении: диборана 10,10%, гидрида бериллия 24,16%, азотной кислоты 23,0% и метана 42,74%. В другом варианте ракетный двигатель содержит корпус с реактивным соплом. В корпусе находится гидрид или смесь гидридов, и вещества или смесь веществ, содержащие кислород в связанном состоянии, причем кислород имеется в таком количестве, чтобы в результате реакции выделялся водород. При этом ракетный двигатель используется в качестве водородовыделяющей шашки для жидкостного или твердотопливного ракетного двигателя. Группа изобретений позволяет повысить удельный импульс ракетного двигателя. 2 н. и 9 з.п. ф-лы.

Изобретение относится к области ракетного двигателестроения и может быть использовано в системах дренажа жидкостных ракетных двигателей (ЖРД) для удаления утечек топливных компонентов, паров и других отходов, выделяемых при функционировании агрегатов. Дренажное устройство ЖРД, содержащее корпуса дренажей, приваренные к корпусам элементы трубопроводной арматуры для подсоединения к ним труб дренажей, установленные в корпусах заглушки консервации, резиновые прокладки, крышка, пластина, в нем дренажные трубы объединены в две группы: окислителя и горючего, и пристыкованы к угольникам на корпусах коробок дренажей окислителя и горючего соответственно, при этом заглушки консервации выполнены съемными и закреплены в корпусах при помощи резьбовых крепежных элементов и загерметизированы при помощи уплотнительных прокладок, на выходе из угольников выполнены цилиндрические отверстия с классом шероховатости поверхностей Н9 (не менее 0,8) для подсоединения наконечников стендовых трубопроводов, снабженных уплотнительными кольцами, снаружи фланца на выходе из коробки дренажей горючего выполнена резьба, на которую наворачивается технологическая заглушка, а снаружи фланца на выходе из коробки дренажей окислителя выполнен бурт с шестью резьбовыми отверстиями для установки винтов крепления и технологической заглушки. Изобретение обеспечивает улучшение условий заполнения полостей горючим за счет их вакуумирования и условия запуска двигателя. 2 з.п. ф-лы, 22 ил.

Изобретение относится к ракетным двигателям. Многоступенчатая камера сгорания жидкостного ракетного двигателя состоит из последовательности элементарных камер сгорания, каждая из которых оснащена своими форсунками подачи рабочего тела и своими воспламенителями подаваемого рабочего тела. Изобретение обеспечивает повышение скорости истечения отработанного рабочего тела за счет повышения расхода рабочего тела в единицу времени. 1 ил.

Изобретение относится к области двигателестроения и может быть использовано в космической технике или авиации. Двигатель содержит систему агрегатов формирования и подачи рабочего тела в сопло, при этом сопло имеет входную часть, выполненную в виде полого цилиндра с тангенциальными подводами рабочего тела, расположенными равномерно в поперечной плоскости. Выходная часть сопла имеет конический раструб, переходящий в полый цилиндр. Изобретение обеспечивает упрощение конструкции, снижение массы двигателя. 1 з.п. ф-лы, 4 ил.

Изобретение относится к космической технике и может быть использовано в двигателях космических объектов (КО). Капиллярная система хранения и отбора жидкости в ракетный двигатель КО содержит топливный бак с крышкой и нижним днищем, радиальные перфорированные перегородки, кронштейны, трубопровод с теплообменником, хомуты, коническую обечайку, гайку, стрежень с резьбой и площадкой, заборное устройство с корпусом в виде расположенных друг над другом и соединённых ребрами верхнего плоского кольца с внутренней кромкой, выполненной в виде утолщения с лабиринтными кольцевыми выступами, и нижнего кольца с центральными отверстиями или корпусом с большим конусом, переходящим в малый конус с расходным фланцем, накопителем капиллярного типа с капиллярной сеткой, теплообменником, тарелью в виде плоского кольца, конической обечайкой, дозирующим устройством, капиллярной сеткой, крепежными элементами, расходным клапаном, несущим диском с периферийными и центральным отверстиями и радиальными окнами, полой осью с верхней чашей с прорезами и нижней чашей с прорезями и площадкой. Изобретение позволяет повысить надежность двигательной установки (ДУ) КО, уменьшить массу ДУ КО. 2 н.п. ф-лы, 6 ил.
Ракетный двигатель содержит камеру сгорания с соплом, в которую под давлением подается газообразный, или жидкий, или расплавленный гидрид и вода или антифриз на основе воды, или водяной пар. В камеру сгорания подается расплавленного гидрида бериллия 37,93±20% и воды 62,07±20%. В другом варианте ракетный двигатель содержит корпус с реактивным соплом. В корпусе находится гидрид или смесь гидридов и вещества или смесь веществ, содержащие воду в связанном состоянии. В качестве веществ, содержащих воду в связанном состоянии, используют квасцы, или силикагель, или буру, или сульфат магния, или хлорид кальция. Группа изобретений позволяет повысить удельный импульс ракетного двигателя. 2 н. и 3 з.п. ф-лы.
Ракетный двигатель содержит камеру сгорания с соплом. В камеру сгорания подают жидкий металл и воду. В камеру сгорания подают расплавленного бериллия 33,3±20% и воды 66,7±20%. В другом варианте ракетный двигатель содержит корпус с реактивным соплом. В корпусе находится бериллия 20,38% и кристаллогидрата сульфата магния 79,62%. Группа изобретений позволяет повысить удельный импульс ракетного двигателя. 2 н. и 5 з.п. ф-лы.
Наверх