Способ создания тяги двигателя и конструкция двигателя



Способ создания тяги двигателя и конструкция двигателя
Способ создания тяги двигателя и конструкция двигателя
Способ создания тяги двигателя и конструкция двигателя
Способ создания тяги двигателя и конструкция двигателя
Способ создания тяги двигателя и конструкция двигателя

 


Владельцы патента RU 2578236:

Рудаков Александр Иванович (RU)

Изобретение относится к области двигателестроения и может быть использовано в космической технике или авиации. Двигатель содержит систему агрегатов формирования и подачи рабочего тела в сопло, при этом сопло имеет входную часть, выполненную в виде полого цилиндра с тангенциальными подводами рабочего тела, расположенными равномерно в поперечной плоскости. Выходная часть сопла имеет конический раструб, переходящий в полый цилиндр. Изобретение обеспечивает упрощение конструкции, снижение массы двигателя. 1 з.п. ф-лы, 4 ил.

 

Конструкция двигателя

Предлагаемое изобретение относится к области двигателестроения и может быть использовано, например, в космической технике или авиации.

По сведениям открытой печати, известные двигатели с соплом Лаваля широко применяются в отечественных и зарубежных ракетах различных классов. Обзор и расчеты таких двигателей приведены в ряде литературных источников: «Иностранные ракетные двигатели». Справочник, ЦИАМ, 1967 г.; «ЖРД на кислороде и керосине».

Обзор №195, ГОНТИ-3, 1964 г.; «Зарубежное военное обозрение» №5 и 6, 2001 г.; Труды НПО «Энергомаш», т. 21, Москва, 2003 г.; Волков Е.Б. и др. «Жидкостные ракетные двигатели». М, Воениздат, 1970 г.

Недостатком выше перечисленных аналогов является сравнительно низкая экономичность двигателя, приводящая к большому расходу топлива, размерам и массе двигателя.

Известен двигатель (прототип), который освещен в книге Алемасова В.Е. и др. «Теория ракетных двигателей». Изд. «Машиностроение», Москва, 1969 г. Прототип содержит камеру сгорания с соплом Лаваля. Тяга образуется за счет сгорания топлива в камере при высокой температуре и сверхзвуковом истечении продуктов сгорания из сопла Лаваля. Недостатками его являются:

1. Большие расходы топлива увеличивают размеры и массу двигателя.

2. Сравнительно низкий коэффициент использования топлива, так как большая масса продуктов сгорания при высокой температуре выбрасывается в окружающую среду.

3. Применение высоких степеней расширения сопла, вызванных высокими скоростями истечения, приводят к увеличению длины и массы сопла и осевого габарита двигателя.

4. Использование в камере и сопле высокотемпературного рабочего тела - продуктов сгорания.

Задачей предлагаемого изобретения является снижение влияния указанных недостатков и повышение экономичности.

Поставленная задача в предлагаемом решении выполняется двигателем, содержащим систему агрегатов формирования и подачи рабочего тела в сопло, отличающимся тем, что сопло имеет входную часть, выполненную в виде полого цилиндра с тангенциальными подводами рабочего тела, расположенными равномерно в поперечной плоскости, а выходная часть имеет конический раструб, переходящий в полый цилиндр.

Образуются окружная и осевая скорости. Окружная скорость, благодаря центробежному полю, создает в полости сопла избыточное давление, которое в сочетании с площадью среза сопла образует основную долю тяги. Осевая скорость по известному уравнению создает дополнительную долю тяги, меньшую основной.

Таким образом, предлагаемое решение отличается от известного тем, что основная доля тяги образуется за счет площади среза сопла и давления в нем при дозвуковом вихревом движении потока, а в известном за счет расхода топлива, высокой скорости и температуры при сверхзвуковом, плоско-параллельном и осевом истечении потока из сопла.

Для кратности изложения вводим следующие понятия по характеру скорости: для известного решения - «сверхзвуковой двигатель», «сверхзвуковое сопло» и т.д.; для предлагаемого решения - «дозвуковой двигатель», «дозвуковое сопло» и т.д.

Теоретическое обоснование создания тяги при дозвуковых скоростях истечения рабочего тела изложено Абрамовичем Г.Н. в издании «Прикладная газовая динамика», изд. Наука, Москва, 1969 г.

График зависимости удельного импульса тяги от коэффициента скорости представлен на фиг. 1.

, где

J - удельный импульс тяги;

k - адиабатический коэффициент расширения;

Wкp - критическая скорость тангенциального подвода;

λ - коэффициент скорости истечения.

Из графика фиг. 1 следует:

- участок кривой определяется сверхзвуковым соплом, а участок - дозвуковым соплом;

- предельное значение удельного импульса тяги сверхзвукового двигателя (точка 1) ограничено диаметром среза сопла, а дозвукового двигателя (точка 3) ограничено давлением у среза сопла.

- в дозвуковом решении возможно получение более высокого удельного импульса тяги (точка 3). Расчеты эффективности подтверждают это.

Эффективность предлагаемого решения оценивается сравнительным расчетом, выполненным по известным уравнениям, приведенным Абрамовичем Г.Н. в своем издании:

1. Исходные данные сверхзвукового двигателя-прототипа:

- тяга двигателя (основное уравнение);

- расход через двигатель;

Wa=3644 м/сек - скорость на срезе сопла;

Wкр=1179 м/сек - скорость в критике;

Ра=594 кгс/м2 - давление на срезе сопла;

Fa=0,4642 м2 - площадь среза сопла;

- газодинамическая функция;

- коэффициент скорости на срезе сопла.

2. Условия сравнения Ra=Rн=8036 кгс, Fa=Fн=0,4642 м2. Индекс «а» относится к сверхзвуковому двигателю, «н» - дозвуковому.

3. Расчет диапазона изменения давления у среза сопла и определение среднего давления дозвукового двигателя.

Минимальное давление определяется расходом , коэффициентом скорости истечения ; ; Wна=380 м/сек, где индекс «на» означает параметр дозвукового двигателя на срезе сопла.

; ;

Максимальное давление - из условия

; .

4. Расчет коэффициента скорости при среднем давлении:

; ; ; Wна ср=263 м/сек.

5. Расчет среднего расхода:

Снижение расхода от применения дозвукового двигателя - 25%.

6. Проверка:

Таким образом, из графика фиг. 1 и расчета эффективности следует, что при одной и той же пустотной тяге и площади среза сопла дозвуковой двигатель имеет более низкий расход топлива и более низкую скорость истечения у среза сопла. Физически это объясняется тем, что основная доля тяги дозвукового двигателя создается за счет площади среза сопла и давления, а не расхода и скорости в сверхзвуковом двигателе.

При разработке использовался опыт научно-исследовательских и экспериментальных работ, приведенных в источниках - Абрамович Т.Н. «Прикладная газовая динамика». «Наука», Москва, 1969 г; Вуколович М.П. «Техническая термодинамика». «Энергия». Москва, 1968 г.; Меркулов А.П., Колмыков Н.Д. «Экспериментальная проверка гипотезы взаимодействия вихрей». Доклад Всесоюзной конференции, ОГИПХН, Одесса, 1962 г. и др. Кроме того, проведены «холодные» продувки упрощенной модели сопла на установке фиг. 4, которые показали необходимость продолжения работ.

Сущность предлагаемого двигателя иллюстрируется кинематическими схемами фиг. 2 и 3, где

rb, rba - радиус распространения вихря в приосевую область входной и выходной части раструба;

1 - система подачи топлива;

2 - агрегат формирования рабочего тела (камера сгорания);

3 - сопло;

4 - входная часть сопла;

5 - подводы рабочего тела в сопло;

6 - раструб выходной части сопла;

7 - полый цилиндр выходной части сопла;

A1 - зона минимального значения давления в полости сопла, равная давлению окружающей среды.

Принципиальная конструкция предлагаемого двигателя состоит из агрегатов системы подачи топлива 1, агрегатов формирования рабочего тела 2 и сопла 3, состоящего из входной части сопла 4 с несколькими, например, восьми подводами 5 продуктов истечения, расположенными в поперечной плоскости равномерно и тангенциально относительно оси сопла, раструба 6, переходящий в полый цилиндр 7.

Такая комплектация целесообразна для двигателей средних и больших тяг. Для двигателей небольших тяг агрегат формирования рабочего тела (камера) 2 может отсутствовать. Источником газообразных продуктов может служить газогенератор или запасы сжатого рабочего тела на борту PH, например воздуха.

В предлагаемом изобретении большинство узлов можно использовать из известного аналога, а оригинальный узел - сопло конструктивно уплощено и не требует значительных затрат и дополнительного оснащения производства.

Работа газа по образованию тяги. Рабочее тело поступает во входное сопло 4 через тангенциально расположенные подводы 5 с критической скоростью и, закручиваясь, движется с большой окружной и малой осевой скоростями. Закрутка создает в полости сопла центробежное силовое поле, которое приводит к созданию в полости сопла избыточного давления. Затем поток поступает в конический раструб 6 и далее в полый цилиндр 7, где притормаживается, увеличивая давление и тем самым увеличивая основную долю тяги. Торможение потока в раструбе обеспечивается сохранением постоянства момента окружной скорости в вихревом движении Wφa=WφH·rн/ra, где Wφa, WφH - окружные скорости на входе и выходе раструба;

rн, ra - радиусы на входе и выходе раструба.

Исходя из того, что окружные скорости не влияют на потери тяги от угла раскрытия раструба, а осевые скорости малы (5% от окружных), то нет необходимости в профилировании сопла. Поэтому в целях сокращения его длины целесообразно уширение его, например, на угол 45° (фиг. 3), что упростит конструкцию и снизит массу сопла.

Результатом внедрения предлагаемого решения является следующее.

1. Исключение высоких скоростей истечения рабочего тела снижает температуру, расход топлива и упрощает конструкцию.

2. Снижение расходов увеличит коэффициент использования топлива, так как меньше его выбрасывается в окружающую среду.

3. Применение окружной и малой осевой скоростей уменьшает сопротивление газового тракта и исключает необходимость профилирования сопла, что уменьшает его длину, упрощает конструкцию.

Таким образом, техническим результатом является разработка дозвукового двигателя с конструктивно несложным вихревым соплом и дозвуковыми скоростями истечения рабочего тела, которые улучшат энергомассовые характеристики и упростят конструкцию.

Это решение открывает широкие возможности использования нового двигателя во многих отраслях народного хозяйства.

1. Двигатель, содержащий систему агрегатов формирования и подачи рабочего тела в сопло, отличающийся тем, что сопло имеет входную часть, выполненную в виде полого цилиндра с тангенциальными подводами рабочего тела, расположенными равномерно в поперечной плоскости.

2. Двигатель по п. 1, отличающийся тем, что выходная часть сопла имеет конический раструб, переходящий в полый цилиндр.



 

Похожие патенты:

При сборке сопла ракетного двигателя с эластичным опорным шарниром сопло устанавливают вертикально стыковочным фланцем на базовую поверхность стыковочного фланца жесткого основания и сжимают эластичный опорный шарнир с заданным усилием.

Изобретение относится к ракетной технике, а именно к способу изготовления внутренней оболочки сопла камеры сгорания жидкостного ракетного двигателя (ЖРД). Способ включает ротационное выдавливание оболочки за несколько переходов.

Техническое решение относится к ракетным двигательным установкам, для работы которых используется горючее и окислитель, и может быть использовано при создании сопл жидкостных ракетных двигателей (ЖРД).

Изобретение относится к боеприпасам, а именно к конструкции ракетных частей реактивных снарядов. Ракетная часть реактивного снаряда содержит корпус, дно и хвостовой блок.
Изобретение относится к ракетной технике и может быть использовано при создании сопел ракетных двигателей, в частности при разработке конструкции сопел жидкостных ракетных двигателей, имеющих радиационно охлаждаемый сопловой насадок.

Изобретение относится к области ракетостроения, а именно к способам повышения тяги ракетного двигателя, и может быть использовано для увеличения тяги ракетных и авиационных двигателей.

Изобретение относится к ракетной технике и может быть использовано при создании ракетного двигателя с раздвижным соплом. Сопло ракетного двигателя содержит раструб и складной насадок, образованный лепестками, кинематически связанными с раструбом механизмом раздвижки, обеспечивающим перевод лепестков из сложенного положения в рабочее.

Изобретение относится к ракетной технике и предназначено для использования в ракетных двигателях твердого топлива реактивных снарядов систем залпового огня. Сопло ракетного двигателя содержит корпус, дозвуковую и сверхзвуковую части сопла, а также герметизирующее-пусковое устройство с форсажной трубкой и опорой.

Изобретение относится к области ракетной твердотопливной техники и может быть использовано в конструкциях поворотных сопл из композиционных материалов. Корпус раструба поворотного сопла из композиционных материалов содержит оболочку в виде усеченного конуса с двумя присоединительными фланцами у большого и малого оснований, а также силовой шпангоут с закладными деталями для взаимодействия с механизмами поворота сопла.

Изобретение относится к ракетно-космической технике и может быть использовано в конструкции жидкостного ракетного двигателя (ЖРД) с турбонасосной системой подачи топлива, выполненного по схеме без дожигания с радиационно-охлаждаемым насадком сопла камеры.

Изобретение относится к ракетным двигателям. Многоступенчатая камера сгорания жидкостного ракетного двигателя состоит из последовательности элементарных камер сгорания, каждая из которых оснащена своими форсунками подачи рабочего тела и своими воспламенителями подаваемого рабочего тела.

Изобретение относится к области ракетного двигателестроения и может быть использовано в системах дренажа жидкостных ракетных двигателей (ЖРД) для удаления утечек топливных компонентов, паров и других отходов, выделяемых при функционировании агрегатов.
Ракетный двигатель содержит камеру сгорания с соплом. В камеру сгорания подается расплавленного гидрида бериллия 40,81±20% и 59,19±20% кислорода или компоненты в следующем соотношении: диборана 10,10%, гидрида бериллия 24,16%, азотной кислоты 23,0% и метана 42,74%.
Ракетный двигатель содержит камеру сгорания, в которую под давлением подается смесь борана и аммиака, или раствор или эмульсия борана в жидком аммиаке. Компоненты подаются в следующем соотношении: диборан 44,8±10%, аммиак 55,2±10%.
Ракетный двигатель содержит камеру сгорания, в которую под давлением подается смесь борана и гидразина, или раствор или эмульсия борана в жидком гидразине. Компоненты подаются в следующем соотношении: диборан 46,33±10%, гидразин 53,67±10%.

Изобретение относится к ракетной технике и может быть использовано при изготовлении жидкостных ракетных двигателей (ЖРД). ЖРД содержит четыре камеры, турбонасосный агрегат (ТНА), газогенератор, бустерные турбонасосные агрегаты окислителя (БТНАО) и горючего (БТНАГ), газоводы, магистрали окислителя и горючего, системы продувки и управления, агрегаты регулирования и управления, сильфоны в газоводах, при этом в его магистралях перед входом окислителя в БТНАО и входом окислителя на его гидротурбину, в автомат осевой разгрузки ТНА перед входом окислителя в газогенератор неподвижно установлены фильтры с сеткой тонкостью фильтрации 0,03-0,05 мм и отверстиями диаметром 0,13-0,2 мм, предотвращающими прохождение частиц засорений диаметром, большим ячеек фильтров, и общей площадью поверхности фильтрации, превышающей внутренний диаметр магистрали или трубопровода в 1,5-2 раза.

Изобретение относится к области ракетостроения, в частности к жидкостным ракетным двигательным установкам (ЖРДУ) с дожиганием генераторного газа. ЖРДУ включает баки окислителя и горючего, несколько модульных ЖРД, общую силовую раму и рулевые гидроприводы, при этом каждый модульный двигатель содержит камеру сгорания и сопло, турбонасосный агрегат, состоящий из турбины, насосов горючего и окислителя, газогенератор, агрегаты автоматики, трубопроводы подачи горючего и окислителя в газогенератор и камеру сгорания и карданный подвес с рулевыми гидроприводами для изменения положения ракеты в пространстве, при этом в качестве модульных двигателей применены жидкостные ракетные двигатели (ЖРД), выполненные по схеме с дожиганием генераторного газа, причем камера двигателя закреплена относительно силовой рамы в карданном подвесе, имеющем сильфонный узел, который через газовод соединен с выходом из турбины, а другой стороной соосно соединен с головкой камеры сгорания, при этом силовая рама представляет собой цельносварную ферменную конструкцию, состоящую из четырех равнозначных секций, выполненных из силовых стержней, и квадратной секции, в углах которой закреплены опорные площадки, а соединение силовой рамы с кольцом шпангоута ракеты осуществлено четырьмя силовыми стержнями, одни концы которых закреплены на каждой опорной площадке, а другие концы - пяты - прикреплены к кольцу шпангоута ракеты, причем указанные силовые стержни равномерно расположены по кольцу шпангоута, при этом соединение силовой рамы с двигателями выполнено с помощью опорных цилиндров, размещенных между опорными площадками и опорными кольцами сильфонного узла в месте крепления газовода, при этом ось опорных цилиндров совпадает с осью камер двигателей.

Изобретение относится к ракетно-космической технике. Способ повышения эффективности ракет космического назначения (РКН) с маршевыми жидкостными ракетными двигателями (ЖРД) основан на использовании невыработанных жидких остатков компонентов ракетного топлива (КРТ) в баках отделяющихся частей (ОЧ) ступеней РКН с помощью системы извлечения и реализации энергетических ресурсов (СИРЭР).

Изобретение относится к жидкостным ракетным двигателям (ЖРД) и может быть использовано при их огневой стендовой отработке для повышения надежности работы камеры сгорания.

Изобретение относится к области ракетной техники, а именно к двигателестроению, и может быть использовано при создании камер жидкостных ракетных двигателей (ЖРД). ЖРД содержит камеру со смесительной головкой, турбонасосный агрегат, газогенератор, агрегаты питания и регулирования.

Изобретение относится к космической технике и может быть использовано в двигателях космических объектов (КО). Капиллярная система хранения и отбора жидкости в ракетный двигатель КО содержит топливный бак с крышкой и нижним днищем, радиальные перфорированные перегородки, кронштейны, трубопровод с теплообменником, хомуты, коническую обечайку, гайку, стрежень с резьбой и площадкой, заборное устройство с корпусом в виде расположенных друг над другом и соединённых ребрами верхнего плоского кольца с внутренней кромкой, выполненной в виде утолщения с лабиринтными кольцевыми выступами, и нижнего кольца с центральными отверстиями или корпусом с большим конусом, переходящим в малый конус с расходным фланцем, накопителем капиллярного типа с капиллярной сеткой, теплообменником, тарелью в виде плоского кольца, конической обечайкой, дозирующим устройством, капиллярной сеткой, крепежными элементами, расходным клапаном, несущим диском с периферийными и центральным отверстиями и радиальными окнами, полой осью с верхней чашей с прорезами и нижней чашей с прорезями и площадкой. Изобретение позволяет повысить надежность двигательной установки (ДУ) КО, уменьшить массу ДУ КО. 2 н.п. ф-лы, 6 ил.
Наверх