Труба нефтяная горячедеформированная и термически обработанная



Труба нефтяная горячедеформированная и термически обработанная
Труба нефтяная горячедеформированная и термически обработанная
Труба нефтяная горячедеформированная и термически обработанная
Труба нефтяная горячедеформированная и термически обработанная

 


Владельцы патента RU 2564197:

Открытое акционерное общество "Синарский трубный завод" (ОАО "СинТЗ") (RU)

Изобретение относится к области черной металлургии, а именно к углеродистым сталям, используемым при изготовлении труб нефтяного сортамента. Сталь содержит, мас.%: 0,46-0,50 углерода, 0,65-0,85 марганца, 0,17-0,37 кремния, ≤0,030 серы, ≤0,030 фосфора, ≤0,30 меди, ≤0,30 никеля, ≤0,30 хрома, 0,01-0,06 алюминия, железо - остальное. Изготавливаемые трубы имеют феррито-перлитную структуру по всему сечению, а для компонентов стали выполняются следующие соотношения: [медь]+[никель]+[хром]=0,25-0,90% и [углерод]+[марганец/6]+[кремний/24]≥0,58%. Обеспечиваются требуемые механические свойства в состоянии после горячей деформации и в состоянии после термической обработки: временное сопротивление не менее 665 МПа, предел текучести 379-552 МПа и относительное удлинение не менее 14,3%. 2 ил., 3 табл.

 

Изобретение относится к черной металлургии, а именно к трубам нефтяного сортамента (обсадным, насосно-компрессорным и бурильным) низких групп прочности, например группы прочности Д, изготавливаемым из углеродистых сталей.

Известен состав стали для производства мелющих шаров, содержащей углерод, марганец, кремний, алюминий, азот, хром, никель, кальций, железо и примеси при следующем соотношении компонентов, мас.%:

Углерод 0,65-0,80
Марганец 0,70-0,90
Кремний 0,20-0,40
Алюминий 0,005-0,020
Азот 0,01-0,025
Никель 0,01-0,30
Хром 0,30-0,60
Кальций 0,0005-0,0040
Железо и примеси остальное

При этом в качестве примесей сталь содержит серу не более 0,030%, фосфор не более 0,030%, медь не более 0,030% (Пат. RU 2425169, публ. 05.10.2009).

Недостатком является невозможность применения состава стали для изделий с временным сопротивлением более 665 МПа, так как прочностные свойства, указанные как твердость, составляют 490-595 МПа.

Известна трубная заготовка из стали Д (ГОСТ Ρ 53932-2010 «Заготовка трубная. Общие технические условия»), содержащая углерод, марганец, кремний, хром, медь, никель, фосфор и серу при следующем соотношении компонентов, мас.%:

Углерод 0,41-0,48
Марганец 0,60-0,90
Кремний 0,17-0,37
Сера ≤0,045
Фосфор ≤0,045
Медь ≤0,25
Никель ≤0,30
Хром ≤0,30
Железо остальное

Основным недостатком трубной заготовки из стали Д является то, что при изготовлении труб нефтяного сортамента, например, группы прочности Д с толщиной стенки более 10 мм наблюдаются отдельные несоответствия временного сопротивления и предела текучести требуемым нормам (по ГОСТ 632-80, ГОСТ 633-80). Также недостатком является невозможность использования данного состава для термически обработанных труб (насосно-компрессорных труб с высаженными концами, бурильных труб): в случае проведения закалки с последующим отпуском по всей длине изделий образуются закалочные трещины, в случае проведения нормализации временное сопротивление и предел текучести не соответствуют требуемым нормам (по ГОСТ 632-80, ГОСТ 633-80).

Известна выбранная в качестве прототипа трубная заготовка из стали ДБ (ГОСТ Ρ 53932-2010 «Заготовка трубная. Общие технические условия»), содержащая углерод, марганец, кремний, хром, медь, никель, фосфор, серу при следующем соотношении компонентов, мас.%:

Углерод 0,41-0,48
Марганец 0,90-1,20
Кремний 0,17-0,37
Сера ≤0,045
Фосфор ≤0,045
Никель ≤0,30
Хром ≤0,30
Железо остальное

Недостатком трубной заготовки из стали ДБ является то, что марганец при содержаниях более 0,9%, как наиболее склонный к сегрегации элемент, образует обогащенные марганцем полосы по сечению трубной заготовки, а впоследствии - по сечению изготавливаемой трубы. В обогащенных марганцем зонах устойчивость переохлажденного аустенита значительно увеличивается, что приводит в сталях с содержанием углерода более 0,4% к образованию полос бейнита в феррито-перлитной матрице. Как следствие, бейнитные полосы резко снижают пластичность металла. При изготовлении труб группы прочности Д в горячедеформированном состоянии невозможно получение стабильного уровня относительного удлинения не менее 14,3%, также наблюдаются несоответствия при проведении технологического испытания на сплющивание.

Технической задачей, на решение которой направлено изобретение, является получение труб нефтяного сортамента, имеющих следующие механические свойства: временное сопротивление не менее 665 МПа, предел текучести 379-552 МПа и относительное удлинение не менее 14,3% и феррито-перлитную микроструктуру по всему сечению, с сохранением свойств и микроструктуры в состоянии после горячей деформации и в состоянии после термической обработки нормализации.

Указанный результат достигается тем, что для производства горячедеформированной и термически обработанной нормализованной трубы используют сталь, содержащую углерод, марганец, кремний, хром, медь, никель, алюминий, фосфор, серу и железо в следующем соотношении, мас.%:

Углерод 0,46-0,50
Марганец 0,65-0,85
Кремний 0,17-0,37
Сера ≤0,030
Фосфор ≤0,030
Медь ≤0,30
Никель ≤0,30
Хром ≤0,30
Алюминий 0,01-0,06
Железо остальное

при соблюдении соотношений: [медь]+[никель]+[хром]=0,25-0,90% и [углерод]+ [марганец/6]+ [кремний/24]≥0,58%, при этом труба имеет временное сопротивление σв не менее 665 МПа, предел текучести σт 379-552 МПа и относительное удлинение δ5 не менее 14,3% и феррито-перлитную микроструктуру по всему сечению.

Предлагаемое сочетание элементов позволяет получить при изготовлении горячедеформированных и термически обработанных с проведением нормализации труб сочетание требуемого уровня прочностных и пластических свойств.

Выбранный состав объясняется следующим.

Нижний предел содержания углерода 0,46% ограничен необходимостью получения требуемого комплекса прочностных свойств труб после горячей деформации и нормализации, верхний предел 0,50 % ограничен необходимостью обеспечения пластических свойств.

Марганец в количестве 0,65-0,85% вводится с целью повышения устойчивости аустенита и для предотвращения потери пластичности за счет образования полос бейнита в обогащенных марганцем зонах. Введение марганца до 0,85% позволит

снизить себестоимость трубной заготовки за счет снижения его содержания в сравнении с прототипом и аналогами.

Кремний в стали является раскислителем и его нижний предел в количестве 0,17% обусловлен технологией раскисления: содержание кремния свыше 0,37% приводит к повышенной хрупкости стали.

Сера и фосфор (как вредные примеси) ограничены до 0,030%, так как превышение указанного содержания снижает уровень пластичности стали.

Алюминий в пределах 0,01-0,06% позволяет избежать разно зернистости в стали, и, соответственно, изменений механических свойств по сечению изготавливаемых труб.

Количественный состав никеля до 0,30% выбран в связи с тем, что при введении его совместно с хромом до 0,30% увеличивает прочностные свойства стали.

Содержание меди не более 0,30% обусловлено возможностью выделения легкоплавких частиц меди в центральной части трубной заготовки, что впоследствии может привести к внутренним расслоениям при производстве труб.

Экспериментально определенное и подтвержденное на практике оптимальное совместное содержание в стали меди, никеля, хрома 0,25-0,90% позволяет получать в трубах требуемое сочетание прочностных и пластических свойств металла.

Введенное дополнительное ограничение соотношения [углерод]+ [марганец/6]+ [кремний/24] >0,58%, определенное экспериментально и подтвержденное на практике, позволяет не допустить одновременно низкого содержания основных упрочняющих элементов в стали и ограничивает получение низких значений прочностных свойств.

Предлагаемое и известное решения (взятое за прототип) опробованы в промышленных условиях. Трубные заготовки диаметром 150 мм выплавлены в дуговых сталеплавильных печах из стали с химическим составом, приведенным в Таблице 1 (вариант 1 - сталь по прототипу, вариант 2 - по заявляемому изобретению).

Из трубной заготовки в условиях ОАО «СинТЗ» изготовлены горячедеформированные трубы диаметрами 73,0 мм и 168,3 мм. Трубы диаметром 73,0 мм подвергнуты дополнительной термической обработке (нормализации) в проходной газовой печи с температурой аустенизации 910°С и временем выдержки 10 минут.

Результаты исследования свойств предлагаемой и известных труб приведены в таблице 2, 3. Микроструктура горячедеформированной трубы размером 168,3x8,9 мм химического состава стали варианта 1 приведена на Фиг. 1, варианта 2 - на Фиг. 2.

Таблица 1
Химический состав Массовые доли элементов, %
C Mn Si Cr Ni Cu S P Al Cu+Ni+Cr
1 (прототип) 0,47 1,15 0,27 0,04 0,09 0,01 0,019 0,009 - 0,14
2 (заявляемый) 0,48 0,74 0,21 0,07 0,11 0,14 0,003 0,007 0,02 0,32

Труба нефтяная горячедеформированная и термически обработанная из стали, содержащей углерод, марганец, кремний, хром, медь, никель, алюминий, фосфор, серу и железо, отличающаяся тем, что она выполнена из стали, содержащей компоненты в следующем соотношении, мас.%:

углерод 0,46-0,50
марганец 0,65-0,85
кремний 0,17-0,37
сера ≤0,030
фосфор ≤0,030
медь ≤0,30
никель ≤0,30
хром ≤0,30
алюминий 0,01-0,06
железо остальное

при соблюдении соотношений: [медь]+[никель]+[хром] = 0,25-0,90% и [углерод]+ [марганец/6]+ [кремний/24]≥0,58%, при этом она имеет временное сопротивление σв не менее 665 МПа, предел текучести σт 379-552 МПа и относительное удлинение δ5 не менее 14,3% и феррито-перлитную микроструктуру по всему сечению.



 

Похожие патенты:

Изобретение относится к области черной металлургии, а именно к получению сталей, применяемых в серийном и массовом производстве ответственных деталей машин. Сталь имеет следующий химический состав, мас.%: углерод 0,16-0,21, кремний 0,17-0,37, марганец 0,70-1,10, хром 0,80-1,10, никель 0,80-1,10, висмут 0,08-0,13, кальций 0,002-0,003, алюминий 0,005-0,015, железо - основа.
Изобретение относится к области металлургии, а именно к трубе из аустенитной нержавеющей стали, используемой в установках по производству электроэнергии. Сталь содержит, мас.%: от 14 до 28 Cr и от 6 до 30 Ni.

Изобретение относится к металлургии, в частности к хромоникелевым литым сталям, предназначенным для изготовления деталей, работающих в агрессивных атмосферах при температурах 1100-1400°C.

Изобретение относится к области металлургии и может быть применено для получения штрипсов с категорией прочности К60 (Х70), используемых при строительстве магистральных нефтегазопроводов.

Изобретение относится к металлургии, более точно к прокатному производству, и может быть использовано при производстве толстолистового проката классов прочности К52-К60, Х52-Х70, L385-L485 для изготовления электросварных труб магистральных трубопроводов.

Изобретение относится к способу производства нетекстурированной электротехнической стали с высокой магнитной индукцией. Способ включает выплавку стали с химическим составом, вес.%: Si 0,1-1, Al 0,005-1,0, C≤0,004, Mn 0,10-1,50, P≤0,2, S≤0,005, N≤0,002, Nb+V+Ti≤0,006, остальное Fe и неустранимые включения, получение отливки в виде стального прутка, нагрев стального прутка до температуры в диапазоне 1150-1200°C, выдержку при этой температуре в течение определенного времени, горячую прокатку с температурой конца прокатки 830-900°C с получением стальной полосы, охлаждение ее до температуры ≥570°C и смотку горячекатаной полосы в рулон, правку горячекатаной полосы путем холодной прокатки с коэффициентом обжатия 2-5%, непрерывную нормализацию холоднокатаной полосы при температуре не ниже 950°C, выдержку при этой температуре в течение 30-180 с, травление нормализованной полосы и последующую холодную прокатку с суммарным коэффициентом обжатия 70-80% до получения листа из холоднокатаной стали конечной толщины, отжиг холоднокатаного листа конечной толщины путем его нагрева со скоростью нагрева не менее 100°C/с до температуры в диапазоне 800-1000°C, выдержки при этой температуре в течение 5-60 с и последующего медленного охлаждения до температуры 600-750°C со скоростью охлаждения 3-15°C/с, что позволяет увеличить магнитную индукцию нетекстурированной электротехнической стали минимум на 200 Гс без увеличения потерь железа.

Изобретение относится к области металлургии, конкретнее к прокатному производству, и может быть использовано при изготовлении электросварных труб для строительства газопроводов и нефтепроводов в северных районах и сейсмических зонах.

Изобретение относится к области металлургии, а именно к высокопрочной мартенситной стали, используемой для изготовления высоконагруженных изделий криогенной техники.
Изобретение относится к металлургии, в частности к производству высокопрочных градиентных материалов, и может быть использовано в электромашиностроении. Способ производства высокопрочного градиентного сплава на основе Fe-Cr-Ni аустенитно-мартенситного класса с заданной топологией ферро- и парамагнитных областей включает выплавку сплава, перевод сплава из парамагнитного состояния в ферромагнитное путем холодной деформации, нагрев локальных зон сплава для получения в них парамагнитного аустенита.

Изобретение относится к области металлургии, а именно к трубе из аустенитной нержавеющей стали. Труба изготовлена из стали, содержащей, в мас.%: от 14 до 28% Сr и от 6 до 30% Ni.

Изобретение относится к области металлургии, а именно к получению горячештампованной высокопрочной детали. Горячештампованная высокопрочная деталь имеет плакирующий слой из алюминиевого сплава на основе Al-Fe, содержащий фазу интерметаллического соединения Al-Fe на поверхности стального листа.

Изобретение относится к производству горячекатаных стальных листов. Горячекатаный лист выполнен из стали, содержащей, мас.%: С от 0,01 до 0,4, Si от 0,001 до 2,5, Mn от 0,001 до 4,0, Al от 0,001 до 2,0, Р до 0,15 или менее, S до 0,03 или менее, N до 0,01 или менее, O до 0,0% или менее, Fe и неизбежные примеси - остальное.

Рельс // 2561947
Изобретение относится к высокопрочному рельсу. Для обеспечения устойчивости рельса к замедленному разрушению в рельсе 95% или более структуры в той поверхностной части головки рельса, которая простирается от поверхностей угловых частей головки рельса и верхней части головки рельса на глубину 20 мм, является бейнитной или перлитной структурой, и эта структура содержит от 20 до 200 сульфидов на основе сульфида марганца, сформированных вокруг оксида на основе алюминия в качестве ядра и имеющих размер в диапазоне от 1 мкм до 10 мкм на квадратный миллиметр в области наблюдения в горизонтальном поперечном сечении рельса.

Изобретение относится к области металлургии, а именно к получению стального листа, используемого для производства горячештампованного изделия. Лист выполнен из стали, имеющей состав, мас.%: С: от 0,15 до 0,35, Si: от 0,01 до 1,0, Mn: от 0,3 до 2,3, Al: от 0,01 до 0,5, Fe и неизбежные примеси - остальное, при этом в качестве примесей она содержит Р: 0,03 или менее, S: 0,02 или менее и N: 0,1 или менее.

Изобретение относится к области металлургии, а именно к высокопрочному холоднокатаному стальному листу. Лист выполнен из стали, имеющей химический состав, состоящий из, мас.%: C: от более 0,020 до менее 0,30; Si: от более 0,10 до максимум 3,00; Mn: от более 1,00 до максимум 3,50; P: максимум 0,10; S: максимум 0,010; раств.

Изобретение относится к области металлургии, а именно к высокопрочному холоднокатаному стальному листу, используемому в автомобилестроении. Лист выполнен из стали, содержащей в мас.%: С: от 0,01 до 0,4, Mn: от 0,001 до 4,0, Р: от 0,001 до 0,15, S: от 0,0005 до 0,03, N: от 0,0005 до 0,01, О: от 0,0005 до 0,01, Si и Al каждый по меньшей мере 0,001 и при содержании Si + Al до менее 1,0%, остальное количество составлено железом и неизбежными загрязняющими примесями.

Изобретение относится к области металлургии, а именно к экономнолегированной конструкционной стали, предназначенной для изготовления металлических конструкций.

Изобретение относится к области металлургии, а именно к получению высокопрочного стального листа, используемого в автомобилестроении. Лист изготовлен из стали, содержащей в мас.%: C: 0,075-0,30, Si: 0,70-2,50, Mn: 1,30-3,50, P: 0,001-0,03, S: 0,0001-0,01, Al: 0,005-1,50, N: 0,0001-0,01, O: 0,0001-0,01 и в качестве необязательных элементов один или более элементов из: Ti: 0,005-0,15, Nb: 0,005-0,15, B: 0,0001-0,010, Cr: 0,01-2,0, Ni: 0,01-2,0, Cu: 0,01-2,0, Mo: 0,01-1,0, V: 0,005-0,15 и один или более из Ca, Ce, Mg, Zr, Hf и РЗМ: в сумме 0,0001-0,5, причем остальное - железо и неизбежные примеси.

Изобретение относится к области металлургии, а именно к получению стального листа, используемого для получения горячештампованных изделий. Лист выполнен из стали, имеющей химический состав, в мас.%: от 0,10 до 0,35 C, от 0,01 до 1,0 Si, от 0,3 до 2,3 Mn, от 0,01 до 0,5 Al, максимум 0,03 P, максимум 0,02 S, максимум 0,1 N, Fe и неизбежные примеси - остальное.

Изобретение относится к области металлургии, а именно к холоднокатаному стальному листу, используемому в автомобилестроении. Лист изготовлен из стали, содержащей в мас.%: С от 0,01 до 0,4, Si от 0,001 до 2,5, Mn от 0,001 до 4,0, Al от 0,001 до 2,0, P 0,15 или менее, S 0,03 или менее, N 0,01 или менее, O 0,01 или менее, Fe и неизбежные примеси остальное.

Изобретение относится к области металлургии, в частности к производству жаростойких нейтронопоглощающих сталей, применяемых в атомной энергетике. Лигатура содержит, % мас.: гадолиний 41-74, алюминий 14,0-25,4, кремний 0,6-20, железо остальное. Изобретение позволяет уменьшить в стали содержание неметаллических включений и интерметаллидов, повысить механические свойства и коррозионную стойкость стали за счет лучшего усвоения гадолиния. 1 пр., 5 табл.
Наверх