Способ досмотра скрытых предметов под одеждой и в переносимом багаже человека, передвигающегося естественно

Использование: для досмотра скрытых предметов под одеждой и в переносимом багаже человека. Сущность изобретения заключается в том, что осуществляют облучение СВЧ-излучением контролируемой области с помощью одного или более элементарных излучателей, региструют отраженный от контролируемой области сигнал с помощью одного или более каналов регистрации, обрабатывают зарегистрированный сигнал и отображают полученную в результате обработки информацию, при этом получение отраженного сигнала от человека с разных ракурсов достигается за счет естественного перемещения человека в области видимости распределенной системы элементарных излучателей и каналов регистрации, при этом одновременно с регистрацией отраженного СВЧ-излучения происходит синхронная видеорегистрация передвигающегося человека видеорегистратором, производится накопление и совместная обработка данных, зарегистрированных распределенной системой каналов регистрации и видеорегистратором, определение траектории каждого пикселя, принадлежащего передвигающемуся человеку, за время пересечения области видимости распределенной системы каналов регистрации, представление результатов расчета в виде синтезированного радиоизображения для произвольно задаваемого предыдущего момента времени и соответствующей этому моменту позе передвигающегося человека, где вычисление обобщенной функции неопределенности для каждого пикселя, принадлежащего передвигающемуся человеку, характеризующей радиолокационную отражательную способность данного пикселя, производится по определенной формуле. Технический результат: обеспечение возможности получения изображения цели и классификации ее типа. 3 ил.

 

1. Область техники.

Изобретение относится к области дистанционного определения и классификации подозрительного объекта, скрытого под одеждой человека или в переносимом багаже, и может быть использовано для скрытого досмотра лиц, передвигающихся естественно.

2. Уровень техники.

Известен способ дистанционного обнаружения предметов, скрытых под одеждой людей, и устройство для его осуществления (патент RU 2133971). Изобретение заключается в том, что с помощью радиоприемной антенны, сфокусированной на небольшом участке поверхности человека, принимают электромагнитные волны, излученные этим участком, затем с помощью радиометра и сопряженного с ним блока обработки измеряют интенсивность принятого сигнала, регистрируя при этом положение луча. Измеренную интенсивность принятого сигнала отображают в виде интенсивности свечения экрана дисплея и по распределению интенсивности определяют наличие или отсутствие металлических предметов.

Известен также способ по обнаружению скрытого объекта (патент RU 2371735). Изобретение включает в себя определение данных, соответствующих изображению индивидума посредством досмотра с помощью электромагнитного излучения в диапазоне частот от 200 МГц до 1 ТГц. Недостатком известных аналогов является невозможность обнаружения подозрительного объекта, скрытно переносимого движущимся человеком, и невозможность получения изображения цели и классификации ее типа.

Наиболее близким аналогом (прототипом) является способ дистанционного досмотра цели в контролируемой области пространства (патент RU 2294549), предназначенный для обеспечения возможности скрытного дистанционного досмотра движущейся цели, а также в получении количественной информации о диэлектрической проницаемости и эквивалентной массе компонентов цели и их классификации по признаку проводник-диэлектрик. Способ включает в себя облучение области цели СВЧ-излучением с помощью двух или более элементарных излучателей, регистрацию отраженного от контролируемой области сигнала с помощью двух или более параллельных каналов регистрации, когерентную обработку зарегистрированного сигнала и отображение полученной в результате обработки информации, облучение контролируемой области и регистрацию отраженного от нее сигнала осуществляют в определенной полосе частот. Недостатком прототипа является невозможность получения изображения цели и классификации ее типа.

3. Сущность изобретения.

3.1. Задача.

Техническая задача состоит в устранении указанного недостатка за счет синхронной регистрации мгновенного положения передвигающегося человека или багажа, совместной обработки данных, зарегистрированных распределенной системой каналов регистрации и видеорегистратором, определения траектории каждого пикселя, принадлежащего передвигающемуся человеку за время пересечения области видимости распределенной системы каналов регистрации, и представления результатов расчета в виде синтезированного радиоизображения.

3.2. Сущность способа.

Технический результат достигается тем, что в отличие от известного способа получение отраженного сигнала от человека с разных ракурсов достигается за счет естественного перемещения человека в области видимости распределенной системы элементарных излучателей и каналов регистрации, при этом одновременно с регистрацией отраженного СВЧ-излучения происходит синхронная видеорегистрация передвигающегося человека видеорегистратором, производится накопление и совместная обработка данных, зарегистрированных распределенной системой каналов регистрации и видеорегистратором, определение траектории каждого пикселя, принадлежащего передвигающемуся человеку за время пересечения области видимости распределенной системы каналов регистрации, представление результатов расчета в виде синтезированного радиоизображения для произвольно задаваемого предыдущего момента времени и соответствующей этому моменту позе передвигающегося человека, где вычисление обобщенной функции неопределенности для каждого пикселя, принадлежащего передвигающемуся человеку, характеризующей радиолокационную отражательную способность данного пикселя, производится по формуле:

где

tk - некоторый рассматриваемый момент времени;

tk-1 - предыдущий момент времени;

р - индекс пикселя на растровом изображении человека на текущем кадре;

fn - частота зондирования с индексом n;

l - индекс передающей антенны;

m - индекс приемной антенны;

Rp(tk) - обобщенная функция неопределенности для пикселя с индексом p в момент времени tk;

S(fn,l,m,tk) - сигнал, регистрируемый на частоте fn каналом регистрации с индексом m от элементарного излучателя с индексом l в момент времени tk;

- опорный сигнал, соответствующий частоте fn, элементарного излучателя с координатами , канала регистратора с координатами и координате области зондирования, задаваемой вектором ;

- вектор, задающий координаты пикселя человека с индексом p в контролируемой области в момент времени tk;

S* - комплексное сопряжение величины S.

4. Перечень фигур, чертежей и иных материалов.

На фиг.1 представлена геометрия расположения элементов досмотровой системы: 1 - естественно передвигающийся человек; 2 - линейки приемно-передающих элементов; 3 - видеорегистратор позы.

На фиг.2 показан действующий макет досмотровой системы: 1 - манекен с макетом пистолета под одеждой; 2 - тележка; 3 - линейный механический сканер; 4 - радиоволновой датчик.

На фиг.3 - радиоизображение манекена со спрятанным макетом пистолета у пояса, полученное на частоте 14,4 ГГц: 1 - макет пистолета.

5. Сведения, подтверждающие возможность осуществления изобретения.

На фиг.1 представлена геометрия расположения элементов досмотровой системы, где 1 - естественно передвигающийся человек, 2 - линейки приемно-передающих элементов, 3 - видеорегистратор позы. При необходимости, регистрацию мгновенной позы в пространстве можно обеспечить используя видеорегистратор, измеряющий расстояние до каждого пикселя изображения сцены, как, например, игровой видеоконтроллер типа Microsoft Kinect. Выходными данными видеоконтроллера являются цветное изображение наблюдаемой сцены, каждый пиксель которого имеет дополнительный атрибут глубины.

Для технической реализации способа был изготовлен действующий макет досмотровой системы (фиг.2), где 1 - манекен с макетом пистолета под одеждой; 2 - тележка; 3 - линейный механический сканер; 4 - радиоволновой датчик. Была разработана линейка радиолокаторов со ступенчатым переключением частоты в диапазонах 3,6-4; 6,4-6,8; 14-15 ГГц. В этих радиолокаторах используются программируемые синтезаторы частоты и квадратурный приемник прямого преобразования, что позволяет достаточно точно устанавливать желаемую частоту и измерять фазу отраженного сигнала.

Использование специально изготовленной антенны с широкой диаграммой направленности позволяет регистрировать отраженный от объекта сигнал в широком диапазоне углов, что в итоге позволяет получить максимальную эффективную синтетическую апертуру и достичь наилучшего разрешения.

Измерения отраженного сигнала в различных точках пространства производились с помощью линейного механического сканера 3, который позволяет перемещать радиолокатор вдоль линии или в плоскости. Механическое перемещение единственного радиоволнового датчика 4 позволяет получить такие же данные, как и при использовании многочисленных разнесенных датчиков, но с минимальными производственными затратами.

Для обслуживания радиоволнового датчика 4 и управления линейным механическим сканером 3 было разработано соответствующее встроенное программное обеспечение. В ходе выполнения экспериментальных исследований были реализованы эффективные вычислительные алгоритмы обработки одночастотных и многочастотных голограмм, алгоритмы корреляционной обработки. С использованием этих алгоритмов были получены радиоизображения предметов, в том числе укрытых в непрозрачной среде, с высоким разрешением.

На действующем макете досмотровой системы были проведены эксперименты по регистрации микроволновых голограмм. Использование разработанных эффективных алгоритмов обработки сигнала позволило получить радиоизображения с высоким пространственным разрешением в плоскости зондирования. Пример восстановленного изображения манекена, под одеждой которого находится макет пистолета 1, приведен на фиг.3 (радиоизображение получено на частоте 14,4 ГГц).

Опираясь на полученные в ходе выполнения экспериментов результаты, можно указать на значительные перспективы использования рассмотренной технологии получения синтетических радиоизображений с обратным апертурным синтезом в системах досмотра человека и переносимого багажа в движении. Преимуществами таких систем, по сравнению с предлагающимися в настоящее время пассивными системами досмотра человека в движении, будут лучшее качество получаемых радиолокационных изображений, пригодных для автоматического обнаружения цели и классификации скрытых объектов, особенно под плотной и влажной одеждой человека, перемещающегося естественно, и переносимом им багаже.

Анализ, проведенный заявителем по известному ему уровню техники, показал, что предлагаемое изобретение, обладающее новизной и промышленной применимостью, отвечает в отношении совокупности его существенных признаков требованию критерия «изобретательский уровень», из уровня техники неизвестен также механизм достижения технического результата, раскрытого в материалах заявки.

Способ досмотра скрытых предметов под одеждой и в переносимом багаже человека, передвигающегося естественно, заключающийся в облучении СВЧ-излучением контролируемой области с помощью одного или более элементарных излучателей, регистрации отраженного от контролируемой области сигнала с помощью одного или более каналов регистрации, обработке зарегистрированного сигнала и отображении полученной в результате обработки информации, отличающийся тем, что получение отраженного сигнала от человека с разных ракурсов достигается за счет естественного перемещения человека в области видимости распределенной системы элементарных излучателей и каналов регистрации, при этом одновременно с регистрацией отраженного СВЧ-излучения происходит синхронная видеорегистрация передвигающегося человека видеорегистратором, производится накопление и совместная обработка данных, зарегистрированных распределенной системой каналов регистрации и видеорегистратором, определение траектории каждого пикселя, принадлежащего передвигающемуся человеку, за время пересечения области видимости распределенной системы каналов регистрации, представление результатов расчета в виде синтезированного радиоизображения для произвольно задаваемого предыдущего момента времени и соответствующей этому моменту позе передвигающегося человека, где вычисление обобщенной функции неопределенности для каждого пикселя, принадлежащего передвигающемуся человеку, характеризующей радиолокационную отражательную способность данного пикселя, производится по формуле:

где: tk - некоторый рассматриваемый момент времени; tk-1 - предыдущий момент времени; p - индекс пикселя на растровом изображении человека на текущем кадре; fn - частота зондирования с индексом n; l - индекс передающей антенны; m - индекс приемной антенны;
Rp(tk) - обобщенная функция неопределенности для пикселя с индексом p в момент времени tk; S(fn, l, m, tk) - сигнал, регистрируемый на частоте fn каналом регистрации с индексом m от элементарного излучателя с индексом l в момент времени tk; - опорный сигнал, соответствующий частоте fn, элементарного излучателя с координатами , канала регистратора с координатами r 2 m и координате области зондирования, задаваемой вектором r ; r p ( t k ) - вектор, задающий координаты пикселя человека с индексом p в контролируемой области в момент времени tk; S* - комплексное сопряжение величины S.



 

Похожие патенты:

Изобретение относится к области дистанционного измерения физических характеристик объектов, в частности диэлектрической проницаемости диэлектриков. Технический результат - повышение точности определения диэлектрической проницаемости.

Изобретение относится к медицинской технике. Антенна-аппликатор для неинвазивного измерения температуры внутренних тканей биологического объекта содержит закрытый с одного конца отрезок волновода (1), частично или полностью заполненный диэлектриком (2).

Предлагаемое изобретение относится к способам определения влажности. Оно может найти применение в нефтехимической промышленности, и в частности для экспресс-контроля качества авиационных керосинов в условиях аэродрома.

Изобретение относится к способам для определения состояния поверхности дорожного полотна, на котором возможно образование слоя воды, снега или льда. Контролируемый участок поверхности дороги зондируют электромагнитными волнами, принимают отраженные от этого участка поверхности электромагнитные волны, определяют фазовый сдвиг между падающими и отраженными волнами или изменение амплитуды (мощности) принимаемых волн по отношению к их значениям для падающих волн, предварительно определяют, соответственно, основной фазовый сдвиг этих волн или основное изменение амплитуды (мощности) этих волн в отсутствие покрывающего слоя на поверхности дороги.
Предложен способ определения диэлектрической проницаемости и толщины твердых образцов на металле. Техническим результатом изобретения является повышение точности определения толщины и диэлектрической проницаемости материала на металле.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических свойств (концентрации, смеси веществ, влагосодержания, плотности и др.) жидкостей, находящихся в емкостях (технологических резервуарах, измерительных ячейках и т.п.).

Изобретение относится к измерительной технике и может быть использовано для высокоточных бесконтактных измерений физических параметров (влажности, плотности, массы, толщины и др.) различных листовых материалов, движущихся или находящихся в стационарных условиях.

Изобретение относится к способам для определения состояния поверхности дорожного полотна, на котором возможно образование слоя воды, снега или льда. Контролируемый участок поверхности дороги зондируют электромагнитными волнами по нормали к ней, принимают отраженные от этого участка поверхности электромагнитные волны.

Изобретение относится к медицине, а именно к терапевтической стоматологии, и может быть использовано для контроля эндодонтического лечения постоянных зубов. Проводят исследование кривизны корневого канала зуба на конусно-лучевом компьютерном томографе «Picasso Trio» с программой Ezlmplant.

Изобретение относится к области противодействия терроризму и может быть использовано в системах защиты объектов. Устройство обнаружения носимых осколочных взрывных устройств содержит СВЧ передающее устройство с частотой f1, СВЧ передающее устройство с частотой f2, СВЧ приемное устройство комбинационных частот второго порядка, СВЧ приемное устройство комбинационных частот третьего порядка.

Предлагаемое изобретение относится к способам определения влажности. Оно может найти применение в нефтехимической промышленности, и в частности, для экспресс-контроля качества авиационных керосинов в условиях аэродрома. Техническим результатом изобретения является повышение чувствительности и реализация возможности ее изменения при определении объемной концентрации осажденной влаги в жидких углеводородах. Указанный технический результат достигается тем, что в способе определения объемной концентрации осажденной влаги в жидких углеводородах, заключающемся в полном заполнении исследуемой жидкостью цилиндрического объемного резонатора с продольной осью, перпендикулярной горизонту, удалении через время t≥10 сек жидкости из полости резонатора с оставлением влаги, возбуждении электромагнитного колебания типа Н011, оценке по изменению добротности цилиндрического объемного резонатора объемной концентрации осажденной влаги, дополнительно, на нижней-торцевой стенке устанавливают диэлектрик высотой h, с диэлектрической проницаемостью εд и диаметром, равным диаметру резонатора, при удалении исследуемой жидкости влагу оставляют на поверхности диэлектрика, при этом варьируя отношение , возможно изменение диапазона измерений при сохранении высокой чувствительности к объемной концентрации осажденной влаги, где l - длина резонатора. 1 з.п. ф-лы, 6 ил.

Настоящее изобретение относится к области обеспечения безопасности, а именно к сканирующему устройству формирования топографического изображения в миллиметровом диапазоне волн для досмотра людей. Устройство содержит первый трансивер (40) миллиметрового диапазона с антенной решеткой (41) для передачи и приема первого сигнала миллиметрового диапазона, второй трансивер (40′) миллиметрового диапазона с антенной решеткой (41′) для передачи и приема второго сигнала миллиметрового диапазона, который выполнен с возможностью перемещения в направлении, противоположном направлению движения первого трансивера миллиметрового диапазона, соединительный элемент (26, 27) для соединения между собой первого трансивера (40) и второго трансивера (40′) и приводное устройство (50), приводящее в движение один из двух трансиверов миллиметрового диапазона. Первый трансивер (40) и второй трансивер (40') перемещаются в противоположных направлениях. Достигается высокое качество построения изображения при упрощении конструкции устройства. 18 з.п. ф-лы, 9 ил.

Изобретение относится к области подповерхностной радиолокации и контроля насыпи железных дорог и автодорог. Влажность, загрязненность и толщину слоев насыпи определяют с помощью георадара. В составе насыпи железной или автодороги применяют один или несколько слоев отражательного геотекстиля. Отражательный геотекстиль включает электропроводящие элементы. Измеряют электромагнитные сигналы георадара, отраженные от электропроводящих элементов геотекстиля. Результаты численно обрабатывают на ЭВМ. Затухание отраженных электромагнитных сигналов определяют по амплитуде, а показатель преломления - по скорости сигналов. Влажность насыпи определяют по показателю преломления, а загрязненность - по показателю преломления и затуханию сигналов. Толщину и влажность слоев слоисто-неоднородной насыпи определяют по форме годографа отраженных сигналов. Способ является бесконтактным, неразрушающим, быстрым и эффективным. Технический результат заключается в увеличении эффективности и качества обследования насыпи, повышении безопасности на железных дорогах и автодорогах. 10 з.п. ф-лы, 5 ил.

Использование: для бесконтактного и дистанционного определения толщины плоских диэлектрических материалов. Сущность изобретения заключается в том, что одновременно излучают электромагнитные волны с частотой F1 и частотой в k раз выше kF1 в сторону поверхности диэлектрической пластины по нормали к ней, принимают отраженные волны, вычисляют разность фаз φ1 между принимаемой волной с частотой kF1 и волной с частотой F1, предварительно умноженной на k, после этого одновременно излучают электромагнитные волны с другой частотой F2 и частотой в k раз выше kF2 в сторону поверхности диэлектрической пластины по нормали к ней, принимают отраженные волны, вычисляют разность фаз φ2 между принимаемой волной с частотой kF2 и волной с частотой F2, предварительно умноженной на k, толщину диэлектрической пластины определяют по фазам φ1 и φ2. Технический результат: обеспечение возможности повышения точности измерения. 1 ил.

Способ контроля изменений интегрального состава газовой среды относится к области электрических измерений и может быть использован в составе аналитическо-измерительных комплексов непрерывного контроля за параметрами атмосферы в замкнутых пространствах, в шахтах и тоннелях, а также в системах автоматического управления технологическими процессами, системах непрерывного экологического мониторинга и метеорологии. Преимущество данного способа измерения, по сравнению с другими способами измерения заключается в защищённости датчиков от пыли, влаги, паров, малом времени измерения и возможности проведения контроля изменений интегрального состава газовой среды на протяжённых трассах и в больших объёмах рабочих пространств. Эти свойства предполагаемого изобретения особенно важны для применения в угольных шахтах, на производствах с токсичной и вредной средой, а также на пожароопасных и взрывоопасных производствах, где газы, пыль и пары неравномерно распределены по объёму рабочего пространства. Новым в способе контроля изменений интегрального состава газовой среды является применение единственного микроволнового канала связи, для проведения фазовых измерений и синхронизации высокочастотных высокодобротных кварцевых опорных генераторов, с целью снижения затрат на проектирование и производство оборудования и оптимизации радиотракта. При контроле изменений интегрального состава газовой среды микроволновый сигнал, модулированный по амплитуде низкочастотным синхронизирующим сигналом, излучают в измерительный канал. Далее микроволновый сигнал принимают ретранслятором и усиливают, затем из него выделяют низкочастотный синхронизирующий сигнал, который используют для синхронизации местного опорного генератора при помощи системы фазовой автоподстройки частоты. Затем в микроволновый сигнал вносят монотонно нарастающий фазовый сдвиг в микроволновом управляемом фазовращателе, после чего микроволновый сигнал излучают обратно. Из принятого микроволнового сигнала, после гомодинного преобразования частоты, выделяют низкочастотную информационную составляющую. По разности фаз, измеренной между низкочастотным опорным и информационным сигналами, определяют изменения относительной диэлектрической проницаемости среды, а следовательно и изменения интегрального состава газовой среды.

Датчик перманентного контроля сердечного ритма шахтера относиться к области обеспечения безопасности работ в горной промышленности и может использоваться для перманентного контроля сердечного ритма всего персонала в шахтах, как во время выполнения ими плановых работ, так и при возникновение чрезвычайных ситуаций, повлекших изоляцию персонала шахты за/под завалом горной породы. Новым в датчике перманентного контроля сердечного ритма шахтера является размещение датчика внутри корпуса аккумуляторного блока шахтерского фонаря со стороны его широкой стенки, обращенной к телу шахтера и изготовление датчика в виде автодинного генератора, совмещенного с микрополосковой антенной и содержащего кроме того датчик тока, узкополосный усилитель инфразвуковой частоты, микроконтроллер со встроенным аналого-цифровым преобразователем и получатель информации о сердечном ритме шахтера. Автодинный генератор состоит из полевого транзистора, блокировочного конденсатора и микрополосковой антенной на диэлектрической подложке с экранирующей пластиной, который начинает генерировать колебания при подаче на сток транзистора напряжения постоянного тока. Автодинный генератор - это генератор с открытой колебательной системой, способной излучать и принимать электромагнитные колебания. При возбуждении автодинного генератора он через микрополосковую антенну начинает эффективно излучать микроволновые колебания в сторону тела шахтера. Мощность этих колебаний невелика, что совершенно не сказывается на здоровье самого шахтера. Отразившись от тела шахтера, колебания вновь улавливаются микрополосковой антенной и складываются с собственными колебаниями автодинного генератора, вызывая тем самым изменение протекающего через автодинный генератор постоянного тока. Датчик тока, подключенный к выводу питания автодинного генератора, позволяет регистрировать эти изменения потребления тока, которые несут информацию о сердечном ритме шахтера. Узкополосный усилитель инфразвуковой частоты выделяет и усиливает эти изменения тока в диапазоне частот 0,8-2,5 Гц, соответствующие сердцебиению шахтера. В этом же диапазоне частот на выходе узкополосного усилителя инфразвуковой частоты присутствуют составляющие, обусловленные движением тела шахтера. Однако эти составляющие имеют нерегулярный характер и по своей сути являются составляющими шума, среднеквадратическое значение которых на известном временном интервале равно нулю. Спектральные составляющие, вызванные сердцебиением человека, имеют регулярный характер и их легко распознать, применив корреляционную обработку сигнала. Микроконтроллер осуществляет оцифровку сигнала, присутствующего на выходе усилителя инфразвуковой частоты и производит при этом корреляционную обработку последовательности оцифрованных данных на заданном временном интервале. В результате этой обработки микроконтроллер выделят составляющие, имеющие периодическую структуру, которые, по сути, соответствуют сердечному ритму человека. Далее через свой стандартный цифровой интерфейс микроконтроллер выдает данные получателю информации о сердечном ритме шахтера.

Способ определения процентного содержания воды в смеси диэлектрик-вода при изменении содержания воды в смеси в широких пределах относится к области электрических измерений неэлектрических величин и может быть использован для контроля содержания воды в жидких смесях типа диэлектрик-вода, например жидких углеводородах (нефть, масло, мазут и т.п.) или во влажных смесях (цементно-песочная смесь и т.п.). Способ может быть использован в составе аналитическо-измерительных комплексов непрерывного контроля параметров смеси в системах автоматического управления технологическими процессами. Преимущество данного способа измерения, по сравнению с другими способами измерения заключается повышенной точности определения процентного содержания воды в смеси диэлектрик-вода. Кроме того, процентное содержание воды в смеси определяется однозначно. Эти свойства предполагаемого изобретения особенно важны при организации автоматического управления технологическими процессами. Новым в способе определения процентного содержания воды в смеси диэлектрик-вода является применение микроволнового канала связи для проведения измерений набега фазы и одновременной оценки степени поглощения микроволнового сигнала в смеси. По произведенной оценке степени поглощения сигнала определяют грубо процентное содержание воды в смеси, что дает возможность определить число фазовых циклов набега фазы микроволнового сигнала и определить тем самым точное значение набега фазы или точно и однозначно определить процентное содержание воды в смеси. Измерение разности фаз сигналов производят при этом на низких частотах, получаемых после гомодинного преобразования частоты микроволновых сигналов. Использование низких частот для измерения разности фаз позволяет получить высокую точность измерений. Для организации гомодинного преобразования частот сигналов один из микроволновых сигналов получают путем монотонного сдвига фазы исходного микроволнового сигнала с определенной скоростью.

Одной из главнейших задач обеспечения безопасности работ в угледобывающих шахтах является контроль содержания в рудничной атмосфере опасных газов и смесей, среди которых наибольшую угрозу представляют метан и угольная пыль. Предлагаемый способ относится к области электрических измерений и может применяться для контроля изменения состава интегральной газовой среды в угледобывающих шахтах, в системах контроля отработанных газов, которые выделяются вследствие промышленной деятельности человека, либо в аналогичных комплексных системах, где крайне важна задача мониторинга концентрации вторичных взрыво- и пожароопасных продуктов производства. Контроль изменений интегрального состава газовой среды основан на измерении изменений набега фаз микроволнового сигнала при его многократном распространении по замкнутой волноводной структуре, через которую также пропускают воздух их окружающей среды. Путем регулировки как общей длины волноводной структуры, выступающей в качестве измерительной трассы, так и частоты настройки полосового низкочастотного фильтра, выделяющего информационный низкочастотный сигнал, можно получить различную чувствительность системы в целом. По предложенному способу она является варьируемым параметром. Это позволяет проводить общую калибровку относительно определенного типа контролируемого вещества с известным значением его диэлектрической проницаемости, например, горючих, взрывоопасных и/или токсичных газов. За счет использования волноводной структуры, внутри которой циркулирует поток воздуха из окружающего пространства, необходимость применения дополнительных ретрансляторов, удаленных от измерительного блока, полностью исключается. Точность измерений изменений интегрального состава воздуха, функционирующей по предложенному способу, высока, и в общем случае она будет прямо пропорциональна числу циклов прохождений микроволновых колебания внутри волноводной структуры известной длины. Система, построенная и функционирующая по предложенному методу, представляет собой законченный функциональный блок, необходимость в пространственном разнесении элементов системы при этом отсутствует, и, в отличие от недолговечных термохимических, дорогостоящих оптических, каталитических и других газоанализаторов, невосприимчива к пыли и загрязнениям.

Предлагаемый способ относится к области электрических измерений и может применяться для контроля изменений интегрального состава вещества в химической промышленности, добывающей промышленности, в системах контроля отработанных газов двигателей внутреннего сгорания, либо в аналогичных комплексных системах, где крайне важна задача мониторинга изменения интегрального состава вещества, находящегося в любом агрегатном состоянии. Контроль изменений интегрального состава вещества основан на измерении изменений набега фазы микроволнового сигнала при его многократном распространении через объем контролируемого вещества. Каждый проход электромагнитных колебаний через контролируемое вещество характеризуется искусственно введенным сдвигом частоты микроволновых колебаний на определенную величину. После гомодинного преобразования в микроволновом смесителе исходных микроволновых колебаний и трансформированных по частоте колебаний, прошедших через вещество, на выходе смесителя получают серию комбинационных низкочастотных составляющих разности, из которых выбирают одну, определяемую необходимой кратностью прохода микроволновых колебаний через вещество. Точность измерений изменений интегрального состава вещества высока, и в общем случае она будет прямо пропорциональна числу проходов микроволновых колебаний через контролируемое вещество известного линейного размера. Система, построенная и функционирующая по предложенному методу, позволяет производить измерения изменений интегрального состава вещества, находящегося в любом агрегатном состоянии, и в отличие от недолговечных термохимических, дорогостоящих оптических, каталитических и других анализаторов невосприимчива к пыли и загрязнениям, не характеризуется старением элементов системы.

Изобретение относится к области противодействия терроризму и может быть использовано в системах защиты объектов. Способ обнаружения осколочных взрывных устройств основан на методе нелинейной радиолокации и включает облучение СВЧ электромагнитным зондирующим полем и регистрацию новых составляющих в спектре отраженного сигнала. Облучение осуществляется на двух близких, но не равных частотах. Регистрация осуществляется на одной из комбинационных частот третьего порядка, значение которой меньше значений двух частот излучаемых сигналов. Все частоты берутся в диапазоне резонансного рассеяния взрывного устройства. Поляризация зондирующих СВЧ сигналов берется вращающейся с одинаковым направлением вращения, а регистрацию отраженного СВЧ сигнала на комбинационной частоте третьего порядка осуществляют с использованием противоположного направления вращения. Техническим результатом изобретения является повышение дальности обнаружения осколочных взрывных устройств.1 з.п. ф-лы, 1 ил.

Использование: для досмотра скрытых предметов под одеждой и в переносимом багаже человека. Сущность изобретения заключается в том, что осуществляют облучение СВЧ-излучением контролируемой области с помощью одного или более элементарных излучателей, региструют отраженный от контролируемой области сигнал с помощью одного или более каналов регистрации, обрабатывают зарегистрированный сигнал и отображают полученную в результате обработки информацию, при этом получение отраженного сигнала от человека с разных ракурсов достигается за счет естественного перемещения человека в области видимости распределенной системы элементарных излучателей и каналов регистрации, при этом одновременно с регистрацией отраженного СВЧ-излучения происходит синхронная видеорегистрация передвигающегося человека видеорегистратором, производится накопление и совместная обработка данных, зарегистрированных распределенной системой каналов регистрации и видеорегистратором, определение траектории каждого пикселя, принадлежащего передвигающемуся человеку, за время пересечения области видимости распределенной системы каналов регистрации, представление результатов расчета в виде синтезированного радиоизображения для произвольно задаваемого предыдущего момента времени и соответствующей этому моменту позе передвигающегося человека, где вычисление обобщенной функции неопределенности для каждого пикселя, принадлежащего передвигающемуся человеку, характеризующей радиолокационную отражательную способность данного пикселя, производится по определенной формуле. Технический результат: обеспечение возможности получения изображения цели и классификации ее типа. 3 ил.

Наверх