Модель для определения трещиностойкости труб


G01N1/28 - Исследование или анализ материалов путем определения их химических или физических свойств (разделение материалов вообще B01D,B01J,B03,B07; аппараты, полностью охватываемые каким-либо подклассом, см. в соответствующем подклассе, например B01L; измерение или испытание с помощью ферментов или микроорганизмов C12M,C12Q; исследование грунта основания на стройплощадке E02D 1/00;мониторинговые или диагностические устройства для оборудования для обработки выхлопных газов F01N 11/00; определение изменений влажности при компенсационных измерениях других переменных величин или для коррекции показаний приборов при изменении влажности, см. G01D или соответствующий подкласс, относящийся к измеряемой величине; испытание

Владельцы патента RU 2564696:

Федеральное государственное бюджетное учреждение науки Институт машиноведения им. А.А. Благонравова Российской академии наук (ИМАШ РАН) (RU)

Изобретение относится к определению механических характеристик труб, а именно к моделям, предназначенным для испытаний материалов труб малого диаметра на трещиностойкость, и может быть использовано при производстве и эксплуатации труб. Модель изготавливают в виде кольца, вырезанного из исследуемой трубы, а имитатор усталостной трещины выполняют в виде симметричных и диаметрально противоположных сквозных надрезов на одном из торцов модели вдоль образующей кольца. Технический результат: создание модели, обеспечивающей повышение достоверности определения трещиностойкости труб малого диаметра. 1 ил.

 

Разработка относится к определению механических характеристик труб, а именно к моделям, предназначенным для испытаний материалов труб малого диаметра на трещиностойкость, и может быть использована при производстве и эксплуатации труб.

Сопротивление материалов и конструкций разрушению при распространении трещин характеризуется трещиностойкостью. Под трещиностойкостью понимают критериальные характеристики механики разрушения, определяющие способность материала сопротивляться развитию трещин при механических и других воздействиях. Характеристики трещиностойкости определяют на моделях с исходной усталостной трещиной посредством их разрушения.

Известна модель для определения трещиностойкости труб малого диаметра в виде части исследуемой трубы с имитатором усталостной трещины. (См. Матвиенко Ю.Г. Модели и критерии механики разрушения. - М.: ФИЗМАТЛИТ, 2006. - 328 с.).

Описанное в этом источнике информации техническое решение по технической сущности и достигаемому результату является наиболее близким аналогом предложенного устройства.

Модель известной конструкции изготавливают из вырезанной из исследуемой трубы части ее цилиндрической поверхности с последующей технологической правкой, при которой ей придают плоскую прямоугольную форму. Имитатор усталостной трещины создают в виде искусственной трещины, наносимой на край модели.

Недостатком этого технического решения является образование наклепа металла при технологической правке модели в процессе придания ей плоской прямоугольной формы. Наклеп металла приводит к изменению характеристик трещиностойкости исходного металла трубы, что снижает достоверность результата испытаний.

Техническим результатом разработки является создание модели, обеспечивающей повышение достоверности определения трещиностойкости труб малого диаметра.

Этот результат достигается благодаря выполнению модели для определения трещиностойкости труб малого диаметра в виде части исследуемой трубы с имитатором усталостной трещины, причем модель изготавливают в виде кольца, вырезанного из исследуемой трубы, а имитатор усталостной трещины выполняют в виде симметричных и диаметрально противоположных сквозных надрезов на одном из торцов модели вдоль образующей кольца.

Новизна и положительный эффект заявляемого решения обусловлены тем, что кольцевой образец не подвергают дополнительной технологической правке, тем самым не создавая наклеп металла и не изменяя характеристик трещиностойкости металла трубы.

Изобретение иллюстрируют примером.

На фиг. 1 изображена предложенная модель при испытаниях.

Модель для определения трещиностойкости труб малого диаметра выполнена в виде кольца 1 (фиг. 1), вырезанного из исследуемой трубы (материал трубы - высокопрочная сталь НТ50 с пределом текучести 460 МПа и временным сопротивлением 575 МПа) радиусом R=40 мм и толщиной стенки 5,2 мм, а имитатор усталостной трещины выполнен в виде двух симметричных и диаметрально противоположных сквозных надрезов 2 на одном из торцов модели вдоль образующей кольца.

Модель подвергалась испытаниям путем статического нагружения ее до критического раскрытия трещин, при этом в качестве характеристики трещиностойкости использовали критическое раскрытие в вершине трещины, устанавливаемое по началу устойчивого распространения трещин. Усталостные трещины выращивали в условиях циклического трехточечного изгиба при коэффициенте асимметрии цикла нагружения 0,1 и максимальной нагрузке 3,2 кН. Отношение длины усталостной трещины к высоте образца составляло 0,45. Далее образец устанавливали на роликовые опоры 3, прикладывали к нему монотонно увеличивающуюся нагрузку нагружающим роликом 4 по оси исходных надрезов и доводили образец до разрушения. В процессе испытаний записывали диаграммы «нагрузка - смещение точек приложения нагрузки», а также определяли раскрытие в вершине трещин. Начало устойчивого распространения трещин устанавливали по релаксации «напряжение-деформация» на поверхности образца с помощью анализа получаемых цифровых стереоизображений и определяли соответствующую трещиностойкость - критическое раскрытие в вершине трещины, которое составило 0,32 мм.

Использование предложенной модели для определения трещиностойкости труб малого диаметра позволяет улучшить прогнозирование и обоснование живучести и безопасности трубопроводов малого диаметра по критериям трещиностойкости.

Модель для определения трещиностойкости труб малого диаметра в виде части исследуемой трубы с имитатором усталостной трещины, отличающаяся тем, что модель изготавливают в виде кольца, вырезанного из исследуемой трубы, а имитатор усталостной трещины выполняют в виде симметричных и диаметрально противоположных сквозных надрезов на одном из торцов модели вдоль образующей кольца.



 

Похожие патенты:

Изобретение относится к машиностроению, а именно к испытательной технике, используемой при испытаниях на усталость. Зажимное устройство содержит стягиваемые с помощью винтов опорные детали, между которыми размещен испытуемый образец и переходные детали, расположенные по обе стороны концевой части испытуемого образца и имеющие участок, выступающий за зону их контакта с опорными деталями в сторону рабочей части образца.

Изобретение относится к испытательной технике и может быть использовано для испытания образцов строительных материалов на совместное действие усилий растяжения, среза и изгиба, и позволяет испытывать образцы материалов при различных комбинациях нагружения их усилиями растяжения, среза и изгиба в совокупности с разрывной машиной.

Изобретение относится к области машиностроения и авиационно-космической отрасли промышленности и может быть использовано при проведении наземных испытаний оболочек типа тел вращения.

Изобретение относится к области испытательной техники, а именно к устройствам для определения упругих характеристик материалов при изгибе, и может быть использовано для определения зависимости модуля упругости конструкционных материалов как от температуры, так и от величины изгибающих напряжений.

Изобретение относится к области строительства и предназначено для контроля жесткости балок, изготовленных из материала, обладающего физически нелинейными свойствами (в частности, железобетонных балок), и нагруженных равномерно распределенной нагрузкой.

Изобретение относится к технике испытаний протяженных объектов с переменной по длине жесткостью. Сущность: объект консольно закрепляют на силовой колонне и с помощью механического кривизномера измеряют кривизну отдельных его участков, средние сечения которых располагаются в заданных расчетных сечениях, при изгибе объекта под действием заданной нагрузки, приложенной к свободному его концу.

Изобретение относится к испытательной технике, а именно к способам испытаний плоских образцов на изгиб. Сущность: концы образцов закрепляют на опоре, выполненной в виде замкнутой рамы с двумя подвижными распорками.

Изобретение относится к испытательной технике, к испытаниям на прочность. Установка содержит основание, установленные на нем соосно торцевые и центральный захваты с общей осью вращения и отверстиями для образца, привод вращения торцевых захватов, толкатель, одним концом связанный с центральным захватом, и нагружатель, соединенный с другим концом толкателя.

Изобретение относится к области строительства, а именно к механическим испытаниям материалов, в частности к способам испытания строительных конструкций, и может быть использовано для испытания балочных конструкций на изгиб.

Изобретение относится к испытательной технике, к установкам для испытания образцов материалов на изгиб. Установка содержит основание, установленную на нем поворотную платформу, захват образца, закрепленный на платформе, два центробежных груза, предназначенные для закрепления на концах образца, привод вращения платформы, включающий вал с приводом вращения, пару катков, установленных с эксцентриситетом по разные стороны от оси вращения платформы и предназначенных для фрикционного взаимодействия с ней, один из которых установлен на валу.

Группа изобретений относится к области экспериментальной биологии и медицины для приготовления тотальных препаратов биологических тканей для оптической проекционной томографии, конфокальной, мультифотонной и светоплоскостной микроскопии и может быть использована для предклинических испытаний фармакологических препаратов и оценки физиологических воздействий на организм, а также для работы с материалом биопсий в диагностических и исследовательских целях.

Изобретение относится к табачной отрасли и предназначено для использования в исследовательских лабораториях. Установка для отбора пробы газовой фазы дыма кальяна состоит из четырех отдельных линий, связанных соединительными трубками в одной точке.

Изобретение относится к способу подготовки биологических материалов для проведения исследований, в частности подготовки тканей клеща для дальнейшего определения наличия в них вируса клещевого энцефалита, и может быть использовано в здравоохранении, биотехнологиях и иммунологии.

Изобретение относится к держателю предметного стекла, в частности предназначенному для автоматизированной обработки предметных стекол устройству держателя предметного стекла, а также технологии автоматической обработки материала, зафиксированного на предметном стекле.

Настоящее изобретение относится к отбору проб жидкости, которая находится в эластичном закрытом контейнере, например, в контейнере для сбора мочи или крови. Устройство для отбора жидкости, находящейся в эластичном контейнере (13, 14), содержит первую секцию (20), имеющую базовую поверхность (21), и элемент (22) для перфорирования пленки, выступающий от базовой поверхности (21).

Изобретение относится к технологии и технике отбора проб жидкости из трубопровода, резервуаров, различных емкостей и может найти применение в нефтедобывающей и других отраслях промышленности, где требуется осуществление отбора представительной пробы ручным или автоматическим способом.

Изобретение относится к устройству автоматического дозирования, доставки проб различных сыпучих материалов пневмопочтой в контейнерах для химического и физического анализа на горно-обогатительных, металлургических, химических и др.
Изобретение относится к способу пробоподготовки биоорганических, в том числе медицинских, образцов для определения в них изотопного соотношения 14С/12С и 14С/13С с помощью ускорительного масс-спектрометра (УМС).

Изобретение относится к области биотехнологии. Система состоит из следующих элементов: а) модуля подготовки образца, выполненного с возможностью захвата аналита из биологического образца в немикрожидкостном объеме на захватывающей частице, реагирующей на магнитное поле, и направления связанной с аналитом захватывающей частицы, реагирующей на магнитное поле, через первый микрожидкостный канал; б) реакционного модуля, включающего реакционную камеру, имеющую жидкостное сообщение с первым микрожидкостным каналом, и выполненного с возможностью иммобилизации связанной с аналитом захватывающей частицы, реагирующей на магнитное поле, и проведения реакции амплификации множества STR-маркеров аналита.

Группа изобретений относится к способу количественного переноса аналитических образцов и устройству для его осуществления. Способ заключается в переносе количества аналитов, таких как микроорганизмы, антитела/антигены, вещества антибактериального действия, нуклеотиды, антибиотики, гормоны, последовательности ДНК, ферменты, органический материал, биологический материал или материал биологического происхождения, обогащающие добавки или селективные добавки для сред культивирования.

Изобретение предназначено для оценки деформативности соединений в изделиях из импрегнированной ткани, подвергаемых двухосному напряжению неразрушающими нагрузками с целью определения деформативных характеристик пневматической конструкции в целом. Образец для испытания соединений импрегнированной ткани включает соединение двух Т-образных деталей, расположенное по оси образца в одном из двух взаимоперпендикулярных направлений. Способ испытания образца соединений импрегнированной ткани, осуществляемый с возможностью учета соединения при оценке напряженно-деформированного состояния опытного образца, вызванного двухосным растяжением, за счет корректировки прикладываемых к образцу усилий из условия обеспечения идентичности его напряженного состояния состоянию образца без соединения. Изобретение обеспечивает сохранение в последующем заданной формы изделия, подвергаемого испытанию. 2 н.п. ф-лы, 2 ил.
Наверх