Способ крепления поглотителя электромагнитных волн



Способ крепления поглотителя электромагнитных волн
Способ крепления поглотителя электромагнитных волн

 


Владельцы патента RU 2569166:

Чернет Евгений Олегович (RU)

Изобретение относится к области радиотехники, а именно к пирамидальным поглотителям электромагнитных волн. Заявленный способ предполагает механическое крепление пирамидальных контейнерных поглотителей к рабочим поверхностям безэховых камер и экранированных помещений. При этом крышка пирамидального контейнера состоит из двух частей, соединяющихся между собой, образуя в совокупности двухкоординатный узел крепления. Основная часть крышки выполняется с внутренней полостью в виде паза, имеющего форму соединенных между собой двух квадратов со сторонами, равными «а» и «b», а вспомогательная часть крышки представляет собой Т-образный двухуровневый вкладыш с цилиндрическим основанием первого уровня, имеющий внутреннее центральное отверстие для винтового элемента крепления вкладыша к рабочим поверхностям. Второй уровень вкладыша выполнен в виде квадратной шайбы со сторонами «с», размеры которой соответствуют формуле «а»<«с»<«b». Такие размеры позволяют образовать внутренний замок, благодаря которому осуществляется крепление пирамидального поглотителя. Технический результат - упрощение процедуры замены пирамидального поглотителя. 1 з.п. ф-лы, 2 ил.

 

Предлагаемое авторами изобретение относится к области антенной техники и может быть применено при оснащении безэховых камер и экранированных помещений (далее только БЭК) пирамидальными или комбинированными (гибридными) поглотителями электромагнитных волн (ПЭВ).

При создании многофункциональных универсальных БЭК высокого качества используются, как правило, широкодиапазонные ПЭВ шиловидной конструкции, имеющие в основном пирамидальную форму или комбинированные поглотители, состоящие из ферритовых радиопоглощающих пластин, на которые сверху закрепляются также пирамидальные согласующие элементы.

Известны пирамидальные ПЭВ, выполненные с использованием эластичного пенополиуретана с углеродным наполнителем, которые закрепляются на рабочих поверхностях БЭК при помощи клеевых композиций (Мицмахер М.Ю., Торгованов В.А., Безэховые камеры СВЧ, М., Радио и связь, 1982 г.).

Аналогичным способом собирают комбинированные ПЭВ с ферритовым основанием, где ферритовые пластины приклеиваются к диэлектрическим панелям, а затем опять же при помощи клея на ферритовые пластины устанавливаются согласующие пирамидальные поглотители. По окончании клеевых работ диэлектрические панели с комбинированным ПЭВ монтируются к рабочим поверхностям БЭК (рекламный буклет фирмы «Frankonia. 2014).

При данном клеевом способе крепления поглотителей используются клеевые композиции, которые в процессе нанесения, отверждения и эксплуатации ПЭВ в БЭК выделяют вредные и токсичные вещества, не обеспечивающие санитарно-экологические нормы.

Для устранения негативного воздействия пыли, влаги, сохранения радиотехнических характеристик и увеличения сроков эксплуатации используются ПЭВ, имеющие полые диэлектрические пирамидальные контейнеры, которые заполняются радиопоглощающими материалами.

В патенте РФ №2340054 приведен метод крепления контейнерного ПЭВ с применением так называемых текстильных застежек («липучка»), основные части которых приклеиваются на поверхностях БЭК и к пирамидальным элементам. К достоинствам данного способа монтажа следует отнести простоту и низкую стоимость выполнения технологических работ. Однако это крепление не является надежным, особенно при облицовке поверхностей потолка помещений и, как следствие, - отсутствие гарантий на длительные сроки эксплуатации в БЭК.

Наиболее близким по совокупности признаков к заявляемому техническому решению является механический способ крепления контейнерного ПЭВ к рабочим поверхностям безэховых камер и экранированных помещений, приведенный в патенте на изобретение РФ №2359374, который был принят за прототип. На внешней стороне крышки контейнера прототипа имеются Г-образные выступы, благодаря которым пирамидальные элементы ПЭВ монтируются на направляющие стальные профили (рельсы), закрепленные с помощью сварочного соединения к рабочим поверхностям БЭК.

К недостаткам способа крепления, взятого за прототип, следует отнести большую трудоемкость монтажных и облицовочных работ, особенно в местах сопряжений стен и потолка, стен и пола, в углах помещения, а также невозможность ремонта и замены вышедших из строя отдельных пирамидальных элементов, так как для этого необходима разборка и демонтаж большого количества исправных (функционирующих) поглотителей, что негативно влияет на прочностные характеристики Г-образных выступов. К тому же наличие выступов на крышке контейнера исключает возможность применения данной конструкции поглотителя в составных комбинированных ПЭВ, когда на ферритовые пластины устанавливаются для согласования пирамидальные элементы.

Поставленная задача состояла в разработке такого механического способа крепления пирамидальных элементов, который бы значительно упрощал монтажные работы при облицовке БЭК, позволял бы при замене пирамидального элемента демонтировать только тот элемент, который необходимо заменить, а также мог быть в дальнейшем использован при монтаже комбинированного ПЭВ, закрепляя на диэлектрической плите одновременно как ферритовую пластину, так и согласующий пирамидальный элемент.

Технический результат достигается тем, что крышка пирамидального контейнера состоит из двух частей, соединяющихся между собой, образуя в совокупности двухкоординатный узел крепления, при этом основная часть крышки выполняется с внутренней полостью в виде паза, имеющего форму соединенных между собой двух квадратов со сторонами, равными «а» и «b», а вспомогательная часть крышки представляет собой Т-образный двухуровневый вкладыш с цилиндрическим основанием первого уровня, имеющий внутреннее центральное отверстие для винтового элемента крепления вкладыша к рабочим поверхностям, при этом второй уровень вкладыша выполнен в виде квадратной шайбы со сторонами «с», размеры которой соответствуют формуле «а»<«с»<«b», что позволяет после соединения вкладыша с основной частью крышки и смещения всего пирамидального поглотителя вместе с крышкой в этом пазу относительно вкладыша на расстояние «с» образовать внутренний замок, благодаря которому осуществляется крепление пирамидального поглотителя.

Технический результат достигается также тем, что цилиндрическое основание первого уровня вкладыша имеет дополнительный выступ, диаметр которого «d» равен внутреннему диаметру отверстия ферритовой пластины, а высота равна минимальной толщине этой ферритовой пластины, входящей в состав комбинированного (гибридного) поглотителя электромагнитных волн, что позволяет единым винтовым элементом закрепить составной комбинированный поглотитель к рабочим поверхностям безэховых камер и экранированных помещений.

На чертеже Фиг. 1 изображен общий вид крепления прототипа, где 1 - корпус контейнера; 2 - радиопоглощающий заполнитель ПЭВ; 3 - герметизирующая крышка с Г-образными выступами для крепления ПЭВ; 4 - монтажные направляющие; 5 - поверхность БЭК.

На чертеже Фиг. 2 изображены составные части крышки контейнера ПЭВ и общий вид крепления заявляемого технического решения, где 1 - корпус контейнера; 2 - крышка с внутренней полостью в виде паза; 3 - Т-образный вкладыш; 4 - Т-образный вкладыш с выступом; 5 - винтовой элемент крепления вкладыша; 6 - ферритовая пластина комбинированного ПЭВ; 7 - диэлектрическая панель; 8 - радиопоглощающий заполнитель ПЭВ; 9 - координатное углубление.

Для изготовления крышки с пазом и вкладыша используются различные полимерные трудногорючие материалы, из которых изготавливается контейнер ПЭВ, в том числе полиэтилен, полистирол, полипропилен и др.

Отличительной особенностью предлагаемого технического решения является то, что дополнительные узлы крепления не нарушают герметичность внутреннего объема и полностью сохраняют радиотехнические характеристики ПЭВ.

Облицовка БЭК с использованием предлагаемого технического решения является простой операцией, в ней полностью отсутствуют технологии с клеевыми соединениями, и состоит в закреплении винтовым крепежом вкладышей по разметке на монтажных листах, профилях или рабочих поверхностях БЭК, а затем установке на них пирамидальных элементов ПЭВ. При варианте, когда осуществляется сборка комбинированного ПЭВ, вкладыши закрепляются с ферритовыми пластинами по разметке на диэлектрических панелях, которые затем монтируются к рабочим поверхностям БЭК. По окончании монтажных работ с диэлектрическими панелями на выступающие вкладыши устанавливают согласующие пирамидальные элементы комбинированного ПЭВ.

Предлагаемый способ крепления предусматривает замену вышедших из строя или механически поврежденных пирамидальных элементов ПЭВ или ферритовых пластин комбинированных поглотителей как в процессе сборки, так и сданных в эксплуатацию и функционирующих БЭК. При этом нет необходимости демонтировать значительное количество ПЭВ, добираясь до поврежденных контейнеров или пластин. Достаточно иметь доступ к основанию поврежденного пирамидального контейнера, в котором имеется специальное координатное углубление для рассверловки и доступа к винтовому элементу крепления. Для замены поврежденного пирамидального контейнера или ферритовой пластины необходимо выкрутить винтовой крепеж вместе с вкладышем, заменить поврежденный элемент и, закрепив вкладышем в обратном порядке составные части комбинированного ПЭВ, защелкнуть пирамидальный контейнер на крышку.

Существенным достоинством заявляемого изобретения является использование двухкоординатного узла крепления, который позволяет проводить монтаж контейнера пирамидального поглотителя в четырех направлениях, что важно при облицовочных работах в сопряженных углах рабочих поверхностей БЭК.

Технико-экономические преимущества предлагаемого технического решения очевидны и основаны на том, что данный способ крепления ПЭВ кардинально изменяет технологию монтажных работ, снижает трудоемкость, повышает качество и надежность соединения, исключает клеевые операции, обеспечивая экологическую безопасность обслуживающего персонала, что в совокупности снижает в несколько раз себестоимость затрат на облицовку БЭК.

1. Механический способ крепления пирамидальных контейнерных поглотителей электромагнитных волн к рабочим поверхностям безэховых камер и экранированных помещений, отличающийся тем, что крышка пирамидального контейнера состоит из двух частей, соединяющихся между собой, образуя в совокупности двухкоординатный узел крепления, при этом основная часть крышки выполняется с внутренней полостью в виде паза, имеющего форму соединенных между собой двух квадратов со сторонами, равными «а» и «b», а вспомогательная часть крышки представляет собой Т-образный двухуровневый вкладыш с цилиндрическим основанием первого уровня, имеющий внутреннее центральное отверстие для винтового элемента крепления вкладыша к рабочим поверхностям, при этом второй уровень вкладыша выполнен в виде квадратной шайбы со сторонами «с», размеры которой соответствуют формуле «а»<«с»<«b», что позволяет после соединения вкладыша с основной частью крышки и смещения всего пирамидального поглотителя вместе с крышкой в этом пазу относительно вкладыша на расстояние «с» образовать внутренний замок, благодаря которому осуществляется крепление пирамидального поглотителя.

2. Механический способ крепления пирамидальных контейнерных поглотителей по п. 1, отличающийся тем, что цилиндрическое основание первого уровня вкладыша имеет дополнительный цилиндрический выступ, диаметр которого «d» равен внутреннему диаметру отверстия ферритовой пластины, а высота равна минимальной толщине этой ферритовой пластины, входящей в состав комбинированного (гибридного) поглотителя электромагнитных волн, что позволяет единым винтовым элементом закрепить составной комбинированный поглотитель к диэлектрической панели для последующего монтажа на рабочих поверхностях безэховых камер и экранированных помещений.



 

Похожие патенты:

Изобретение относится к электронной технике и может быть использовано для создания экранов и панелей, поглощающих электромагнитное излучение (далее ЭМИ) в широком СВЧ-диапазоне.

Изобретение относится к защитным устройствам летательного аппарата. Способ снижения радиолокационной заметности летательного аппарата заключается в размещении антенны головки самонаведения в герметичной полости радиопрозрачного обтекателя, заполнении полости плазмообразующей газовой смесью давлением 1-100 кПа и введении пучка электронов в плазмообразующую газовую смесь с образованием поглощающего плазменного объема.
Заявленное изобретение относится к материалу, поглощающему электромагнитные волны в широком диапазоне длин волн, вплоть до частот инфракрасного диапазона, который может быть использован для предотвращения нежелательного воздействия высокочастотного излучения на элементную базу микроэлектроники и человека, и для предотвращения несанкционированного обнаружения наземных и воздушных объектов.
Изобретение относится к композиционным материалам, поглощающим инфракрасное излучение в ближней инфракрасной области, и может быть использовано, например, в оптических фильтрах и специальных панелях сложной формы.

Изобретение относится к радиотехнике, преимущественно к широкополосным радиопоглощающим покрытиям. Технический результат - снижение коэффициента отражения электромагнитной падающей волны в широкой полосе частот.

Изобретение относится к материалам, поглощающим электромагнитные волны, и может найти применение для повышения скрытности и уменьшения вероятности обнаружения радиолокаторами объектов и оборудования наземной, авиационной и космической техники.

Изобретение относится к области защиты от электромагнитных излучений (ЭМИ) и может быть использовано для защиты средств электронно-вычислительной техники (СЭВТ) объектов инфокоммуникационных систем от воздействий внешних и побочных электромагнитных излучений (ПЭМИ) СЭВТ.

Заявлен ферритовый материал с малыми диэлектрическими потерями и высокими значениями остаточной магнитной индукции. Ферритовый материал получен из смеси порошков, содержащей Fe2O3, Li2CO3, MnCO3, Bi2O3, ZnO, CdO, SnO2, TiO2 при следующем соотношении компонентов, мас.%: оксид железа 71,39±0,1, карбонат лития 5,61±0,1, оксид цинка 8,58±0,1, оксид кадмия 5,41±0,1, оксид олова 3,18±0,1, оксид титана 0,69±0,03, карбонат марганца 4,84±0,1, оксид висмута 0,3±0,03.

Изобретение относится к области радиотехники, касается вопроса применения полимерных композитов в составе устройства для снижения радиолокационной заметности и решает задачу оптимизации конструкции по радиопоглощающим свойствам.

Изобретение относится к области защиты окружающей среды от электромагнитного фона. Технический результат - повышение эффективности нейтрализации электромагнитного фона.

Изобретение относится к радиотехнике и может быть использовано для изготовления поглотителей электромагнитного излучения 5-миллиметрового диапазона (52-73 ГГц). Радиопоглощающий материал содержит полимерное связующее и наполнитель - углеродные нанотрубки, предварительно обработанные в смеси серной и азотной кислот, при следующем содержании компонентов, мас.%: полимерное связующее - 95-99,9; углеродные нанотрубки - 0,1-5. Изобретение позволяет уменьшить толщину и массу радиопоглощающего материала при сохранении высоких радиопоглощающих свойств и низкого коэффициента отражения на металлической подложке. 1 табл.

Изобретение относится к лакокрасочным покрытиям, в частности к полимерным радиопрозрачным композициям, предназначенным для устранения поверхностных дефектов радиопрозрачных обтекателей из ПКМ, и может быть использовано в изделиях ГА и других конструкциях из ПКМ. Полимерная радиопрозрачная композиция включает эпоксидный олигомер, модификатор-полиэфир, пигменты и органический растворитель. Композиция дополнительно содержит наполнитель - стеклянные микросферы и отвердитель - смесь полиэтиленполиамина и 50% раствора гексаметилендиамина или 2-метилпентаметилендиамина в изопропиловом спирте (при следующем соотношении компонентов, мас.%: эпоксидный олигомер 19-29; модификатор 20,7-31; пигменты 11,5-18,3; наполнитель 3-10; отвердитель 1-5; органический растворитель 21-35. В качестве пигментов композиция содержит смесь диоксида титана с оксидом хрома, или с цинковыми белилами, или с оксидом хрома. В качестве полиэфира полимерная композиция содержит полиэфир, представляющий собой продукт поликонденсации этиленгликоля и глицерина с себациновой кислотой. В качестве органического растворителя могут быть использованы этилгликольацетат, бутилацетат, ксилол, метилэтилкетон или их смесь в соотношении 4:4:1:1. Техническим результатом настоящего изобретения является понижение водопоглощения и повышение грибостойкости при сохранении адгезионных свойств полимерной композиции.3 з.п. ф-лы, 2 табл,1 пр.

Изобретение относится к материалам для поглощения электромагнитных волн и может быть использовано для получения нанопористых углеродных микроволокон, предназначенных для создания эффективных неотражающих радиопоглощающих материалов, работающих в диапазоне от 50 ГГц до 4 ТГц. Заявляемое углеродное микроволокно для создания радиопоглощающих материалов выполнено в виде нанопористых углеродных микроволокон, в которых количество аморфной фазы составляет не более 0,1%, причем длина волокон лежит в пределах от 10 до 200 мкм, а поры с преимущественным распределением по диаметрам от 2 до 200 нм расположены ортогонально оси нанопористых углеродных микроволокон. Требуемый технический результат заключается в повышении поглощающей способности по отношению к электромагнитному излучению и расширении диапазона частот. 4 ил.

Изобретение относится к области радиотехники, в частности к радиопоглощающим покрытиям (РПП), и может быть использовано в сверхширокополосных антенных системах. Сверхширокополосное радиопоглощающее покрытие выполнено в виде многослойного металлополимероматричного композиционного материала, слои которого имеют различную толщину: первый слой, состоящий из частиц чешуйчатой формы размером от 5 до 25 мкм, толщиной от 2,0 до 3,0 мм, второй слой из частиц чешуйчатой формы размером от 3 до 10 мкм толщиной от 1,0 до 1,5 мм, третий слой из частиц сфероидальной формы размером от 1 до 5 мкм толщиной от 0,5 до 1,0 мм, четвертый слой из частиц сфероидальной формы размером 1 до 5 мкм толщиной от 1,0 до 2,0 мм, пятый слой из частиц сфероидальной формы размером от 1 до 5 мкм толщиной от 3,0 до 3,5 мм. Технический результат - уменьшение изрезанности диаграмм направленности сверхширокополосных спиральных антенн, размещенных на металлической платформе до уровня 1 дБ, обеспечение работоспособности системы сверхширокополосных спиральных антенн в рамках технических требований. 1 ил.,1 табл.

Изобретение относится к маскировке, в частности, к маскировочным покрытиям для упреждения обнаружения радиолокаторами противника воздушных и наземных объектов. Технический результат заключается в малой удельной массе поглощающего покрытия, низкой трудоемкости его изготовления в связи с простотой конструкции его исполнения, а также в улучшении аэродинамической поверхности защищаемого объекта. Для этого в области поглощения электромагнитных волн радиолокационного диапазона используется эффект близости, согласно которому поглощающее покрытие выполнено в виде пакетов, составленных из двух листов электропроводящего материала в виде пластин и слоя изоляции между ними, причем для обеспечения движения тока во встречно-последовательном режиме и соответствующего достижения проявления эффекта близости к вышеуказанным электропроводящим листам подается напряжение к их смежным краям, а противоположные края пластин соединяются электрическим током между собой. 2 ил.

Изобретение относится к области радиотехники. Устройство представляет собой многослойную конструкцию, состоящую из нескольких слоев: наружного слоя, выполненного из диэлектрического материала, поглощающих внутренних слоев электропроводящей ткани, соединенных прослойками диэлектрического вещества, и тыльного слоя. Наружный слой выполнен из легковесного стеклопластика, тыльный слой выполнен из углепластика с высокой проводимостью для исключения попадания электромагнитного излучения внутрь помещения, а поглощающие внутренние слои электропроводящей ткани имеют поверхностное электрическое сопротивление 100÷1000 Ом. Наружный слой выполнен из материала с пониженной относительной диэлектрической проницаемостью от 1,7 до 2,5, обеспечивающего мягкий электродинамический вход радиоволн внутрь материала и снижение коэффициента отражения от поверхности устройства. Технический результат - расширение частотного диапазона поглощаемых радиоизлучений. 1 з.п. ф-лы, 2 ил.

Изобретение относится к защитным композиционным материалам на текстильной основе, которые используются в электро- и радиотехнике, медицине, военной технике, астрономии, строительной и бытовой технике. Текстильный композит состоит из синтетического нетканого полотна, содержащего 5-10 мас.% углеродного волокна, и электропроводящей ткани, выполненной мелкоузорчатым переплетением, при поверхностной плотности нетканого полотна и ткани в пределах 175-300 г/м2 и соотношении их толщин, равном соответственно (4-6):(0,44-0,56). Синтетическое полотно выполнено из полиэфирного и/или полипропиленового волокна и сформировано из одного или нескольких волокнистых слоев. Техническим результатом является повышение эффективности защиты от ЭМИ за счет повышения абсолютной величины коэффициента отражения при сохранении высоких антистатических свойств. 2 з.п. ф-лы, 1 табл., 7 пр.

Изобретение относится к поглотителям электромагнитных волн. Технический результат - создание слоистого поглотителя электромагнитных волн с коэффициентом поглощения по мощности не менее 99% в диапазоне частот 42-76 Гц и в видимой области. Для этого слоистый поглотитель выполнен из элементов, состоящих: из основного поглощающего слоя толщиной 1,0-2,0 мм, выполненного в виде собранных в пакет слоев ткани, причем первый и последний слои ткани металлизированы медью; из согласующего поглощающего слоя, выполненного в виде слоя сетки металлизированной медью с размером ячейки от 1,5 до 2,5 мм и толщиной 3-4 мм, с удельным электрическим сопротивлением 330-360 Ом, причем сетка изготовлена из минеральных волокон и расположена на верхней поверхности основного поглощающего слоя; из защитного слоя, нанесенного на верхнюю поверхность основного поглощающего слоя; из электропроводящего слоя, выполненного из ткани с нанесенным на нижнюю ее сторону, соприкасающейся с защитным объектом, слоем никеля толщиной 15-20 мкм, а электропроводящий слой расположен на нижней поверхности основного металлизированного медью поглощающего слоя. Готовое изделие покрывают слоем краски или лака с красителем зеленого цвета. 2 н. и 3 з.п. ф-лы, 1 ил.

Изобретение предназначено для авиационной, космической и ракетной техники и может быть использовано при изготовлении объемных термостойких широкодиапазонных радиопоглощающих материалов (РПМ) для защиты от электромагнитного излучения. Водно-спиртовую дисперсию графита, содержащую гидроокись аммония, 5-10 мас.% дисперсионной среды и более 5 мас.% этилового или изопропилового спирта, подвергают мокрому размолу и стабилизируют. Частицы графита расщепляют по слоям и активируют ультразвуком в режиме кавитации при протекании постоянного тока напряжением 0,4-0,6 В в присутствии перекиси водорода и йода. Изобретение позволяет улучшить адгезию пластинчатого графита к ультратонким стеклянным волокнам и исключить вредные испарения. 4 ил., 2 табл., 10 пр.
Предложенное изобретение относится к технологии изготовления радиопоглощающих ферритов, которые находят все более широкое применение в безэховых камерах, для значительного снижения отражения радиоволн от стен. Изобретение направленно на получение никель-цинковых ферритов с высокими радиопоглощающими свойствами в интервале частот от 30 МГц до 1000 МГц. Повышение радиопоглощающих свойств никель-цинкового феррита является техническим результатом предложенного изобретения и достигается за счет того, что синтезированный ферритовый порошок из оксидов никеля, цинка и железа предварительно измельчают до размеров частиц 1-3 мкм, после чего проводят гранулирование шихты с введением связки и прессование заготовок с последующим их спеканием в воздушной среде, при этом охлаждение заготовок после спекания ведут при температуре ниже 900°С в среде с пониженным парциальным давлением кислорода в интервале от 0,1 до 5,0 кПа. 1 табл.
Наверх