Устройство защиты средств электронно-вычислительной техники от электромагнитных излучений

Изобретение относится к области защиты от электромагнитных излучений (ЭМИ) и может быть использовано для защиты средств электронно-вычислительной техники (СЭВТ) объектов инфокоммуникационных систем от воздействий внешних и побочных электромагнитных излучений (ПЭМИ) СЭВТ. Техническим результатом изобретения является повышение коэффициента экранирования. Технический результат достигается за счет применения многослойной сотовой решетки с технологическими неоднородностями, выполненными в виде полых прямых призм с сечением в форме правильных шестиугольников, расположенных в шахматном порядке, и радиопоглощающих композитных материалов. 3 ил.

 

Изобретение относится к области защиты от электромагнитных излучений (ЭМИ) и может быть использовано для защиты средств электронно-вычислительной техники (СЭВТ) объектов инфокоммуникационных систем от воздействий внешних и побочных электромагнитных излучений (ПЭМИ) СЭВТ.

Известен «Многослойный электромагнитный экран» (патент RU 85267 U1, Опубликовано: 27.07.2009), представляющий собой многослойный электромагнитный экран, содержащий два размещенных снаружи плоских экранирующих слоя, каждый из которых выполнен из листовой магнитомягкой изотропной стали, и размещенный между ними, по меньшей мере, один объемный экранирующий слой в виде стальной прямоугольной решетки, выполненной с возможностью функционирования ее ячеек в качестве запредельных волноводов по отношению к основной гармонике частоты экранируемого поля, что позволяет осуществлять защиту от низкочастотных ЭМИ.

Недостатком данного экрана является относительно низкий коэффициент экранирования.

Наиболее близким по технической сущности и выполняемым функциям является «Устройство для защиты от электромагнитного излучения» (патент RU 100338 U1, Опубликовано: 10.12.2010), содержащее три последовательно расположенных экранирующих слоя, каждый из которых содержит ячейки, представляющие собой запредельные волноводы, причем соответствующие ячейки каждого слоя являются продолжением ячеек предыдущего слоя, а сами слои, соответственно, выполнены как «полимер-металл-полимер», при этом запредельные волноводы выполнены с сечением прямоугольной формы и объединены в сотовые решетки. Это устройство принято за прототип.

Недостатком этого прототипа является относительно низкий коэффициент экранирования электромагнитного экрана, что обусловлено формой и взаимным влиянием запредельных волноводов.

Задачей изобретения является создание устройства защиты средств электронно-вычислительной техники от электромагнитных излучений, позволяющее получить повышение коэффициента экранирования.

Эта задача решается тем, что устройство защиты средств электронно-вычислительной техники от электромагнитных излучений, содержащее три последовательно расположенных экранирующих слоя, каждый из которых содержит ячейки, представляющие собой запредельные волноводы, причем соответствующие ячейки каждого слоя являются продолжением ячеек предыдущего слоя, а сами слои, соответственно, выполнены как «полимер-металл-полимер», запредельные волноводы выполнены в виде полых прямых призм с сечением в форме правильных шестиугольников, при этом в каждом слое указанные волноводы расположены в шахматном порядке и параллельно друг другу.

Перечисленная новая совокупность существенных признаков обеспечивает возможность повышения коэффициента экранирования электромагнитного экрана за счет изменения формы ячеек и их расположения в шахматном порядке в многослойной экранирующей конструкции.

Проведенный анализ уровня техники позволил установить, что аналоги, характеризующиеся совокупностью признаков, тождественных всем признакам заявленного технического решения, отсутствуют, что указывает на соответствие заявленного устройства условию патентоспособности «новизна».

Результаты поиска известных решений в данной и смежных областях техники с целью выявления признаков, совпадающих с отличительными от прототипа признаками заявленного объекта, показали, что они не следуют явным образом из уровня техники. Из уровня техники также не выявлена известность влияния предусматриваемых существенными признаками заявленного изобретения преобразований на достижение указанного технического результата. Следовательно, заявляемое устройство соответствует условию патентоспособности «изобретательский уровень».

«Промышленная применимость» устройства обусловлена наличием элементной базы, на основе которой могут быть выполнены устройства, с достижением указанного в изобретении назначения.

Заявленное устройство защиты от электромагнитного излучения поясняется чертежами, на которых показано:

фиг.1 - процесс отражения и преломления электромагнитной волны, проходящей через устройство, где 1, 2, 3 - соответственно первый, второй и третий слои устройства; 4 - запредельные волноводы; δ1, δ2, δ3 - толщина соответствующего слоя устройства; I1, I2, I3, I4 - соответственно точки на границах раздела сред «воздух-полимер, полимер-металл, металл-полимер, полимер-воздух»; P1 - падающая плоская волна; Р2, Р3, Р4, P5 - волны, соответственно претерпевающие преломление в средах «полимер, металл, полимер, воздух»; Ротр1, Ротр2, Ротр3, Ротр4 - волны, соответственно отраженные в средах «воздух, полимер, метал, полимер»; E1, E2, Е3, Е4, Е5 - электрические напряженности электромагнитного поля соответствующие различным средам: «воздух-полимер-металл-полимер-воздух»; E12, Е23, Е34, E45 - электрические напряженности электромагнитного поля отраженных волн в соответствующих средах: «воздух-полимер-металл-полимер-воздух»; H1, H2, Н3, Н4, Н5 - магнитные напряженности электромагнитного поля соответствующие различным средам: «воздух-полимер-металл-полимер-воздух»; H12, Н23, Н34, Н45 - магнитные напряженности электромагнитного поля отраженных волн в соответствующих средах: «воздух-полимер-металл-полимер-воздух»;

фиг.2 - фрагмент стенки устройства, где 1, 2, 3 - соответственно первый, второй и третий слои устройства; 4 - запредельные волноводы; q - диаметр окружности, описанной около сечения запредельного волновода в форме правильного шестиугольника; δэкр - толщина устройства;

фиг.3 - сечение устройства плоскостью по направлению А-А, где 1, 2, 3 - соответственно первый, второй и третий слои устройства, выполненные из материалов «полимер-металл-полимер»; 4, 5, 6 - запредельные волноводы в виде полых прямых призм с сечением в форме правильных шестиугольников, и расположенные в каждом слое в шахматном порядке и параллельно друг другу, причем ячейки каждого слоя являются продолжением ячеек предыдущего слоя; 7 - стыки при напылении с внешней и внутренней стороны металлического слоя для связи между слоями.

Устройство защиты от электромагнитного излучения работает следующим образом.

В процессе падения плоской электромагнитной волны на слой 1 устройства со стороны свободного пространства (фиг.1) экранирование в многослойной конструкции происходит благодаря затуханию за счет отражения, поглощения и многократных переотражений электромагнитной волны от поверхностей слоев 1, 2 и 3 устройства, при этом общий коэффициент экранирования определяется формулой (I):

η Σ [ д Б ] = η о т р + η п о г л + η м о т р , ( 1 )

где ηотр - коэффициент затухания за счет отражения; ηпогл - коэффициент затухания за счет поглощения; ηмотр - коэффициент затухания за счет многократных переотражений (Богуш В.Ф, Лыньков Л.М. Электромагнитные излучения. Методы и средства защиты. - Мн.: Бестпринт, 2003. - стр.119; Князев А.Д. Конструирование радиоэлектронной и электронно-вычислительной аппаратуры с учетом электромагнитной совместимости. - М.: Радио и связь, 1989. - стр.45). Между запредельными волноводами 4, 5, 6 (фиг.2, 3) в экранирующей конструкции существует взаимное влияние, приводящее к увеличению полного сопротивления всего экрана, что влечет увеличение коэффициента экранирования всей конструкции в целом. У падающей плоской волны P1 векторы электрического E1 и магнитного H1 полей параллельны плоскости слоя. В точке I1 (фиг.1), находящейся на границе сред «воздух-полимер», волна P1 частично отразится (волна Pотр1) и частично преломится (волна Р2). Распространяясь в первом слое, преломленная волна Р2 затухает по экспоненциальному закону и к моменту достижения следующей границы раздела сред типа «полимер-металл» напряженности обоих полей будут в e δ 1 / δ раз меньше, чем в точке на поверхности конструкции (I1) (фиг.1), где δ - эквивалентная глубина проникновения. Волна P1, попадая в запредельные волноводы 4 в виде полых прямых призм с сечением в форме правильных шестиугольников, сильно затухает на критических частотах f к р m n , лежащих ниже известного предела (Лебедев И.В. Техника и приборы СВЧ. - М.: Высшая школа, 1970. - стр.31; Б.Ф.Емелин, Б.М.Машковец. Основы техники СВЧ. - СПб.: ВАС, 1975. - стр.32-35).

При прохождении волны Р2 из первого слоя конструкции, точка I2, снова произойдет преломление (волна Р3) и отражение (волна Ротр2) от границы сред «полимер-металл» (фиг.1). Преломленная волна Р3 пройдет во второй металлизированный слой устройства, а отраженная Ротр2 будет затухать, и в точке на внешней поверхности этого слоя 2 напряженности полей будут в e 2 δ 1 / δ раз меньше, чем на входе в устройство. Преломленная волна Р3 (фиг.1), распространяясь во втором металлизированном слое 2, попадая в запредельные волноводы 5 (фиг 2, 3) в виде полых прямых призм с сечением в форме правильных шестиугольников, также затухает по экспоненциальному закону, и к моменту достижения следующей границы раздела сред «металл-полимер» точка I3, напряженности обоих полей будут в e δ 2 / δ раз меньше, чем в точке I2, На выходе волны Р3 из слоя 2, точка I3, снова произойдет преломление (волна Р4) и отражение (волна Ротр3) от границы сред «металл-полимер» (фиг.1, 3). Преломленная волна P4 войдет в третий слой 3, попадая в запредельные волноводы 6 в виде полых прямых призм с сечением в форме правильных шестиугольников, затухает на критических частотах f к р m n , лежащих ниже известного предела, и в значительно меньшей степени затухает на частотах, лежащих выше данного предела, а отраженная Ротр3 будет затухать, и в точке на внешней поверхности этого слоя 3 из полимера напряженности полей будут в e 2 δ 2 / δ раз меньше, чем на входе в этот слой устройства. Преломленная волна Р4 также затухает по экспоненциальному закону и к моменту достижения следующей, последней границы раздела сред типа «полимер-воздух», точка 14 (фиг.1), напряженности обоих полей будут в e δ 3 / δ раз меньше, чем в точке I3. На выходе волны Р4 из третьего слоя экрана, точка I4, снова произойдет преломление (волна Р5) и отражение (волна Ротр4) от границы сред «полимер-воздух». Отраженная волна Ротр4 будет затухать и в точке на внешней поверхности этого последнего слоя напряженности полей будут в e 2 δ 3 / δ раз меньше, чем на входе в этот слой полимера. Все это время в устройстве будут происходить отражения волн от границ раздела сред до их полного затухания в теле устройства. В экранируемое пространство будут проникать преломленные волны Р5. Их суммарное воздействие определяет напряженности полей Е5 и H5 в этом пространстве. При этом все перечисленные процессы сопровождаются потерями энергии волны.

С целью получения максимального коэффициента экранирования запредельные волноводы 4, 5, 6 (фиг.2, 3) многослойной экранирующей конструкции выполнены в виде полых прямых призм с сечением в форме правильных шестиугольников, расположенных в шахматном порядке и параллельно друг другу, причем запредельные волноводы каждого слоя являются продолжением запредельных волноводов предыдущего слоя. Это обосновывается тем, что при их определенном расположении, соотношении между размерами запредельных волноводов и их соотношением с размерами экранирующей конструкции и длиной волны λ электромагнитного поля возможность его проникновения внутрь устройства практически исключена. Коэффициент экранирования такой экранирующей конструкции определяется следующим известным выражением (2) (Чернушенко А.М. Конструкции СВЧ устройств и экранов. - М.: Радио и связь, 1983. - стр.145, 156, 170):

η ( E ( H ) ) [ д Б ] = A M [ A max [ д Б ] + 20 lg [ S в Г К N в ] ] , ( 2 )

где AM - аппроксимирующий множитель, определяется на основе экспериментальных данных, полученных в ходе испытаний, зависит от длины волны и характеристик электромагнитного излучения; Smax - ослабление, вносимое экранирующей конструкцией с запредельными волноводами в форме призмы, определяется следующим выражением:

S max [ д Б ] = 27 1 q 20 lg N , ( 3 )

где N - количество ячеек в экранирующей конструкции.

Затухание, вносимое одним запредельным волноводом в форме шестигранника SB [дБ], определяется с помощью следующего известного выражения (Григорьев А.Д., Янкевич В.Б. Резонаторы и резонаторные замедляющие системы СВЧ: численные методы расчета и проектирования. - М.: Радио и связь, 1984. - стр.88):

S в [ д Б ] = ( Z H ( E ) m n λ ) 2 + q 2 4 q Z H ( E ) m n λ , ( 4 )

где Z H m n (Ом) - характеристическое сопротивление запредельного волновода для волн типа Hmn и Emn; Г - поправочный коэффициент отражения запредельного волновода в виде полой прямой призмы с сечением в форме правильного шестиугольника, зависящий от изменения характеристического сопротивления заполняющей ее среды Zc и характеристического сопротивления для волн различного типа Z H ( E ) m n ; λ - длина волны воздействующего электромагнитного поля.

Взаимное влияние запредельных волноводов друг на друга учитывается с помощью поправочного коэффициента К (Шабунин С.Н., Соловьянова И.П. Волноводы и объемные резонаторы. - Екатеринбург: Уральский ГТУ, 1998. - стр.220). Поправочный коэффициент числа запредельных волноводов Nв учитывает многослойность экранирующей конструкции и определяет необходимое количество запредельных волноводов в ней в зависимости от предъявляемых предельных (критериальных) требований к качеству экранирования, геометрических размеров и электрофизических свойств, применяемых для экранирования материалов.

Проведен расчет и эксперимент по определению коэффициента экранирования η(E(H)) заявленного устройства, определяемого выражением (2), с использованием среды инженерных расчетов Mathcad и имитаторов электромагнитных излучений соответственно, учитывая конструктивные особенности при следующих исходных данных:

- частота электромагнитных излучений f=1 ГГц (ГОСТ Р 53115-2008. Защита информации. Испытания технических средств обработки информации на соответствие требованиям защищенности от несанкционированного доступа. Методы и средства);

- постоянная спада электромагнитного излучения α=4·106 с-1 и постоянная нарастания электромагнитного излучения β=5·108 с-1 (Мырова Л.О., Чепиженко А.З. Обеспечение стойкости аппаратуры связи к ионизирующим и электромагнитным излучениям. 2-е изд., перераб. и доп. - М.: Радио и связь, 1988. - С.36-38.: ил.);

- аппроксимирующий множитель AM=1,707 (Шапиро Д.Н. Основы теории электромагнитного экранирования. - Л.: Издательство «Энергия», 1975. - стр.68);

- геометрические размеры устройства защиты средств электронно-вычислительной техники от электромагнитных излучений (фиг.2):

- δэкр=0,006 м - толщина устройства;

- δ1,2,3=0,002 м толщина каждого из слоев устройства;

- q=0,006 м - диаметр окружности, описанной около сечения запредельного волновода в форме правильного шестиугольника;

- количество волноводов N=675;

- магнитная постоянная µ0=4π·10-7 Гн/м и электрическая постоянная ε0=8,85418782·10-12 Ф/м (Вознюк М.А., Киселев А.А., Снежко В.К. Краткий тематический справочник по единицам измерения и обозначения физико-технических величин. - СПб.: ВУС, 2000. С.58);

- магнитная проницаемость трехкомпонентного гибридного полимерного композита (ГПК) µ=4 и электропроводность ГПК σ=102 (Беспятых Ю.И., Казанцева Н.Е. Электромагнитные свойства полимерных гибридных композитов // Радиотехника и электроника. №2, 2008, том 53, С.162-164);

- диэлектричекая проницаемость ГПК ε≈2,8-3 (Пирумов В.С., Алексеев А.Г., Айзикович Б.В. Новые радиопоглощающие материалы и покрытия // Успехи современной радиоэлектроники, №2, 2000. - С.60-68; Берлин, А.А. Современные полимерные композиционные материалы. МГУ, Соровский образовательный журнал, №1, 1995. - С.57-65; Михайловский Л.К. Радиопоглощающие бестоковые среды, материалы и покрытия (электромагнитные свойства и практическое применение) // Успехи современной радиоэлектроники, №9, 2000. - С.21-27.).

- начальная относительная магнитная проницаемость магнитомягкой изотропной стали µ=2×103 (ТУ 14-1-4592-89).

Результаты расчетов и эксперимента показали, что коэффициент экранирования экранирующей конструкции с ячейками в виде полых прямых призм с сечением в форме правильных шестиугольников равен η (E(H))=100 дБ.

Эффективность функционирования предлагаемого изобретения по сравнению с устройством-прототипом можно охарактеризовать отношением коэффициента экранирования устройства-прототипа и предлагаемого устройства. Обозначим это отношение буквой Эη. Устройство-прототип («Устройство для защиты от электромагнитного излучения», патент RU 100338 U1, Опубликовано: 10.12.2010) обеспечивает коэффициент экранирования до 85 дБ. Обозначим его ηпрот. Отсюда получаем:

Э η = η ( H ( E ) ) η п р о т η ( E ( E ) ) 100 % = 100 д Б 85 д Б 100 д Б 100 % = 15 %

Таким образом, увеличение коэффициента экранирования предлагаемой конструкции η(E(H)) на 15 дБ дает увеличение эффективности функционирования предлагаемого изобретения по сравнению с устройством-прототипом на 15%.

Устройство для защиты средств электронно-вычислительной техники от электромагнитных излучений, содержащее три последовательно расположенных экранирующих слоя, каждый из которых содержит ячейки, представляющие собой запредельные волноводы, причем соответствующие ячейки каждого слоя являются продолжением ячеек предыдущего слоя, а сами слои, соответственно, выполнены как «полимер-металл-полимер», отличающееся тем, что запредельные волноводы выполнены в виде полых прямых призм с сечением в форме правильных шестиугольников, при этом в каждом слое указанные волноводы расположены в шахматном порядке и параллельно друг другу.



 

Похожие патенты:

Изобретение относится к электронной технике и может быть использовано при создании мощных гибридных интегральных схем СВЧ-диапазона многоцелевого назначения. Технический результат - улучшение электрических характеристик за счет улучшения теплоотвода, повышение технологичности при сохранении массогабаритных характеристик.

Изобретение относится к области защиты окружающей среды от электромагнитного фона. Технический результат - повышение эффективности нейтрализации электромагнитного фона.

Изобретение относится к средствам для защиты от электромагнитных полей электротехнических и электронных устройств и биологических объектов и может использоваться для создания электромагнитных экранов и безэховых камер.

Изобретение относится к материалам для поглощения электромагнитных волн, предназначено для защиты от электромагнитного излучения высоких энергий, что позволяет повысить надежность работы электронных устройств и совершенствовать информационно-телекоммуникационные технологии авиационных, ракетных и космических систем.

Изобретение относится к композитной пленке для поглощения электромагнитных волн и установке для производства такой пленки. Композитная пленка имеет пластиковую пленку и одно- или многослойную металлическую пленку, которая сформирована, по меньшей мере, на одной поверхности вышеуказанной пластиковой пленки.

Изобретение относится к композиту для электромагнитного экранирования, содержащему медную фольгу и ламинированную на нее пленку смолы. Технический результат - обеспечение композита для электромагнитного экранирования таким образом, чтобы медная фольга была защищена от растрескивания, вызванного изгибанием и циклическим изгибом, а экранирующие свойства не ухудшались легко с течением времени.

Уплотнение, преимущественно для снижения помех электронного шума и радиочастотных помех (EMI/RFI), содержит корпус уплотнения, имеющий кольцевую полость, а также кольцевую пружину, находящуюся в кольцевой полости.

Изобретение относится к остеклению кабины экипажа летательного аппарата и касается защиты от проникновения электромагнитных помех. Остекление кабины экипажа содержит множество прозрачных пакетированных панелей остекления, внутренний и внешний держатели, уплотнение, предохраняющее от атмосферных осадков, пленочный электромагнитный экран, соединительную пленку.

Изобретение относится к радиочастотной идентификации, а более конкретно к изделиям для защиты информации в радиочастотных идентификационных системах. .

Изобретение относится к радиотехнике и может быть использовано при конструировании малогабаритных модулей приемников сигналов глобальных навигационных спутниковых систем.

Заявлен ферритовый материал с малыми диэлектрическими потерями и высокими значениями остаточной магнитной индукции. Ферритовый материал получен из смеси порошков, содержащей Fe2O3, Li2CO3, MnCO3, Bi2O3, ZnO, CdO, SnO2, TiO2 при следующем соотношении компонентов, мас.%: оксид железа 71,39±0,1, карбонат лития 5,61±0,1, оксид цинка 8,58±0,1, оксид кадмия 5,41±0,1, оксид олова 3,18±0,1, оксид титана 0,69±0,03, карбонат марганца 4,84±0,1, оксид висмута 0,3±0,03.

Изобретение относится к области радиотехники, касается вопроса применения полимерных композитов в составе устройства для снижения радиолокационной заметности и решает задачу оптимизации конструкции по радиопоглощающим свойствам.

Изобретение относится к области защиты окружающей среды от электромагнитного фона. Технический результат - повышение эффективности нейтрализации электромагнитного фона.

Изобретение относится к антенной технике, в частности к поглотителям электромагнитных волн, используемых в конструкциях антенн для оптимизации их радиотехнических характеристик, устранения резонансных явлений и уменьшения паразитных отражений от проводящих объектов, расположенных вблизи антенн.
Заявленное изобретение относится к области электротехники, а именно к составу углеродсодержащей композиции для получения радиозащитных материалов. Композиция содержит 5-16 мас.% ультрадисперсного активного углерода со средним размером частиц 5-100 нм и удельной поверхностью 16-320 м2/г, диспергатор в виде водного раствора натриевого стекла и стабилизатор в виде насыщенного раствора лингосульфоната аммония.

Изобретение относится к антенной технике, а именно к поглотителям электромагнитных волн, и может быть использовано при оснащении безэховых камер и экранированных помещений.
Изобретение относится к области изготовления объемных поглотителей СВЧ-энергии из высокотемпературного поглощающего материала, применяемых в высокочастотных трактах радиоэлектронной аппаратуры.

Изобретение относится к способу изготовления поглощающего покрытия, обеспечивающего поглощение в инфракрасном диапазоне длин волн для создания эталонов абсолютно черного тела в имитаторах излучения для аппаратуры дистанционного зондирования земли со стабильными характеристиками.
Изобретение относится к области радиоэлектроники, а именно к полимерным композиционным материалам, предназначенным для поглощения высокочастотной энергии в СВЧ-устройствах.

Изобретение относится к радиопоглощающему материалу, содержащему полимерное связующее и наполнитель, состоящий из порошкообразного карбонильного железа. При этом в наполнитель введены дискретные углеродные волокна в соотношении, мас.%: дискретные углеродные волокна 40-10, порошкообразное карбонильное железо 60-90, при следующем соотношении компонентов, мас.%: связующее 85-15, наполнитель 15-85.

Изобретение относится к материалам, поглощающим электромагнитные волны, и может найти применение для повышения скрытности и уменьшения вероятности обнаружения радиолокаторами объектов и оборудования наземной, авиационной и космической техники. Способ формирования радиопоглощающих топологий на носителях путем нанесения рабочей жидкости на носители. С частотой вынужденного возмущения струи рабочей жидкости создают линейный поток монодисперсных капель диаметром 30-300 мкм, отстоящих друг от друга на расстоянии, равном длине волны возмущения, сообщают управляемый как по знаку, так и по величине электрический заряд выбранной капле, отклоняя ее в постоянном электрическом поле в заданную точку носителя с получением наноструктурированных проводящих конфигураций. В качестве рабочих жидкостей используют наносуспензированные в растворителях и поверхностно-активных веществах жидкости с металлическими наночастицами среднего диаметра 20-100 нм, массовое содержание которых составляет 20-40%, с динамическим коэффициентом вязкости жидкости меньше 1000 сантипуаз, удельным объемным сопротивлением 0,25-10 Ом·м и поверхностным натяжением (20-70) 10-3 Н/м. Изобретение обеспечивает бесконтактный способ получения радиопоглощающих топологий на носителе, а также повышение производительности технологического процесса. 3 з.п. ф-лы, 2 табл., 5 ил.
Наверх