Способ работы тепловой электрической станции


 


Владельцы патента RU 2570131:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ") (RU)

Изобретение может быть использовано на тепловых электрических станциях (ТЭС) для утилизации избыточной тепловой энергии, вырабатываемой системами ТЭС в процессе ее работы. Проводят утилизацию избыточной низкопотенциальной теплоты обратной сетевой воды и системы маслоснабжения подшипников паровой турбины при помощи охлаждающей жидкости. Упомянутые утилизации осуществляют посредством теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина. Охлаждающую жидкость в виде низкокипящего рабочего тела сжимают в конденсатном насосе и нагревают в теплообменнике-рекуператоре теплового двигателя, нагревают в маслоохладителе, испаряют и перегревают в теплообменнике-испарителе, расширяют в турбодетандере и снижают температуру в теплообменнике-рекуператоре теплового двигателя, затем конденсируют в теплообменнике-конденсаторе теплового двигателя. Способ обеспечивает повышение коэффициента полезного действия ТЭС за счет дополнительной выработки электрической энергии при утилизации избыточной тепловой энергии, вырабатываемой системами ТЭС. 2 з.п. ф-лы, 1 ил.

 

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) при утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины и утилизации избыточной низкопотенциальной теплоты обратной сетевой воды для дополнительной выработки электрической энергии.

Аналогом является способ работы тепловой электрической станции, по которому весь поток обратной сетевой воды, возвращаемый от потребителей, нагревают паром отборов турбины в нижнем и в верхнем сетевых подогревателях, а также в конденсаторе теплонасосной установки теплотой, отведенной от обратной сетевой воды в испарителе теплонасосной установки, после чего направляют потребителям, при этом весь поток сетевой воды последовательно нагревают в нижнем сетевом подогревателе, конденсаторе теплонасосной установки и верхнем сетевом подогревателе (патент RU №2275512, МПК F01K 17/02, 27.04.2006).

Прототипом является способ работы тепловой электрической станции, содержащей теплофикационную турбину с отопительными отборами пара, подающий и обратный трубопроводы теплосети, сетевые подогреватели, включенные по нагреваемой среде между подающим и обратным трубопроводами теплосети и подключенные по греющей среде к отопительным отборам, теплонасосную установку с испарителем, включенным в обратный трубопровод теплосети, и конденсатором, при этом конденсатор теплонасосной установки включен в подающий трубопровод теплосети после сетевых подогревателей, а также систему маслоснабжения подшипников паровой турбины, содержащую последовательно соединенные по греющей среде сливной трубопровод, маслобак, маслонасос и маслоохладитель, выход которого по нагреваемой среде соединен с напорным трубопроводом (патент RU №2269014, МГЖ F01K 17/02, 27.01.2006).

В известном способе возвращаемая от потребителей по обратному трубопроводу теплосети сетевая вода подается сетевым насосом в испаритель теплонасосной установки, где отдает часть теплоты хладагенту теплонасосной установки и охлаждается, затем сетевая вода поступает в сетевые подогреватели, где нагревается паром отопительных отборов турбины. Перед подачей потребителям сетевая вода дополнительно нагревается в конденсаторе теплонасосной установки за счет теплоты хладагента, циркулирующего в контуре теплонасосной установки. Благодаря последовательному включению испарителя теплонасосной установки в обратный трубопровод теплосети до сетевых подогревателей, а конденсатора в подающий трубопровод теплосети после сетевых подогревателей достигается максимальное охлаждение обратной сетевой воды.

Таким образом, в известном способе работы тепловой электрической станции пар отопительных параметров из отборов паровой турбины поступает в паровое пространство верхнего и нижнего сетевых подогревателей, сетевая вода поступает от потребителей по обратному трубопроводу сетевой воды в теплообменник-испаритель, нижний сетевой подогреватель и верхний сетевой подогреватель, далее сетевую воду направляют в подающий трубопровод сетевой воды, отработавший пар поступает из паровой турбины в паровое пространство конденсатора, конденсируется на поверхности конденсаторных трубок, а конденсат с помощью конденсатного насоса конденсатора паровой турбины направляют в систему регенерации, при этом в теплообменнике-испарителе осуществляют утилизацию избыточной низкопотенциальной теплоты обратной сетевой воды при помощи охлаждающей жидкости.

Основным недостатком аналога и прототипа является то, что утилизацию избыточной низкопотенциальной теплоты обратной сетевой воды осуществляют в целях выработки дополнительной тепловой энергии, а не для дополнительной выработки электрической энергии.

Кроме этого недостатком аналога и прототипа является относительно низкий коэффициент полезного действия ТЭС по выработке электрической энергии, обусловленный затратами электрической мощности на привод теплонасосной установки, а также из-за отсутствия утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины для дополнительной выработки электроэнергии.

Задачей изобретения является разработка способа утилизации теплоты ТЭС, в котором устранены указанные недостатки аналога и прототипа.

Техническим результатом является повышение коэффициента полезного действия ТЭС за счет утилизации избыточной низкопотенциальной теплоты обратной сетевой воды и утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины для дополнительной выработки электрической энергии.

Технический результат достигается тем, что в способе утилизации тепловой энергии, вырабатываемой тепловой электрической станцией, включающем отбор пара из паровой турбины, направление пара отопительных параметров в паровое пространство верхнего и нижнего сетевых подогревателей, связанных с подающим трубопроводом и обратным трубопроводом сетевой воды, снабженным теплообменником-испарителем, при этом отработавший пар из паровой турбины направляют в паровое пространство конденсатора, в котором его конденсируют на поверхности конденсаторных трубок, а полученный конденсат с помощью конденсатного насоса конденсатора паровой турбины направляют в систему регенерации, причем в теплообменнике-испарителе сетевой воды осуществляют утилизацию избыточной низкопотенциальной теплоты обратной сетевой воды посредством охлаждающей жидкости, согласно настоящемуизобретению дополнительно используют систему маслоснабжения подшипников паровой турбины, состоящей из маслоохладителя, маслобака и маслонасоса, и дополнительно осуществляют утилизацию низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины, при этом упомянутые утилизации осуществляют посредством теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, состоящего из турбодетандера с электрогенератором, теплообменника-рекуператора, теплообменника-конденсатора и конденсатного насоса, а в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре, при этом упомянутое низкокипящее рабочее тело сжимают в конденсатном насосе теплового двигателя, нагревают в теплообменнике-рекуператоре, нагревают в маслоохладителе системы маслоснабжения подшипников паровой турбины, испаряют и перегревают в теплообменнике-испарителе сетевой воды, расширяют в турбодетандере, снижают его температуру в теплообменнике-рекуператоре и конденсируют в теплообменнике-конденсаторе теплового двигателя.

В качестве теплообменника-конденсатора теплового двигателя используют конденсатор воздушного охлаждения, или конденсатор водяного охлаждения, или конденсатор воздушного и водяного охлаждения.

В качестве низкокипящего рабочего тела используют сжиженный пропан С3Н8.

Таким образом, технический результат достигается за счет утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины и утилизации избыточной низкопотенциальной теплоты обратной сетевой воды для дополнительной выработки электрической энергии, которые осуществляют путем последовательного нагрева, соответственно, в маслоохладителе системы маслоснабжения подшипников паровой турбины и теплообменнике-испарителе, низкокипящего рабочего тела (сжиженного пропана C3H8) теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина.

Сущность изобретения поясняется чертежом, на котором представлена тепловая электрическая станция, имеющая тепловой двигатель с теплообменником-конденсатором, теплообменником-рекуператором, и теплообменник-испаритель.

На чертеже цифрами обозначены:

1 - паровая турбина,

2 - конденсатор паровой турбины,

3 - конденсатный насос конденсатора паровой турбины,

4 - основной электрогенератор,

5 - тепловой двигатель с замкнутым контуром циркуляции,

6 - турбодетандер,

7 - электрогенератор,

8 - теплообменник-конденсатор,

9 - конденсатный насос,

10 - верхний сетевой подогреватель,

11 - нижний сетевой подогреватель,

12 - подающий трубопровод сетевой воды,

13 - обратный трубопровод сетевой воды,

14 - теплообменник-испаритель,

15 - система маслоснабжения подшипников паровой турбины,

16 - сливной трубопровод,

17 - маслобак,

18 - маслонасос,

19 - маслоохладитель,

20 - напорный трубопровод,

21 - теплообменник-рекуператор.

Тепловая электрическая станция включает последовательно соединенные паровую турбину 1, конденсатор 2 паровой турбины и конденсатный насос 3 конденсатора паровой турбины, основной электрогенератор 4, соединенный с паровой турбиной 1, которая соединена по греющей среде с верхним 10 и нижним 11 сетевыми подогревателями, включенными по нагреваемой среде между подающим 12 и обратным 13 трубопроводами сетевой воды, и теплообменник-испаритель 14, включенный по нагреваемой среде в обратный трубопровод 13 сетевой воды перед нижним сетевым подогревателем 11, а также систему 15 маслоснабжения подшипников паровой турбины 1, содержащую последовательно соединенные по греющей среде сливной трубопровод 16, маслобак 17, маслонасос 18 и маслоохладитель 19, выход которого по нагреваемой среде соединен с напорным трубопроводом 20.

В тепловую электрическую станцию введен тепловой двигатель 5 с замкнутым контуром циркуляции, работающий по органическому циклу Ренкина.

Замкнутый контур циркуляции теплового двигателя 5 выполнен в виде контура с низкокипящим рабочим телом, содержащим турбодетандер 6 с электрогенератором 7, теплообменник-рекуператор 21, теплообменник-конденсатор 8 и конденсатный насос 9, причем выход конденсатного насоса 9 соединен по нагреваемой среде с входом теплообменника-рекуператора 21, который соединен по нагреваемой среде с входом маслоохладителя 19, выход маслоохладителя 19 соединен по нагреваемой среде с входом теплообменника-испарителя 14, а выход теплообменника-испарителя 14 соединен по нагреваемой среде с входом турбодетандера 6, выход которого соединен по греющей среде с теплообменником-рекуператором 21, выход теплообменника-рекуператора 21 соединен по греющей среде с теплообменником-конденсатором 8, выход которого соединен по нагреваемой среде с входом конденсатного насоса 9, образуя замкнутый контур охлаждения.

Способ утилизации тепловой энергии, вырабатываемой тепловой электрической станцией, осуществляют следующим образом.

Способ включает в себя отбор пара из паровой турбины 1, направление пара отопительных параметров в паровое пространство верхнего 10 и нижнего 11 сетевых подогревателей, связанных с подающим 12 трубопроводом и обратным 13 трубопроводом сетевой воды, снабженным теплообменником-испарителем 14, при этом отработавший пар из паровой турбины 1 направляют в паровое пространство конденсатора 2, в котором его конденсируют на поверхности конденсаторных трубок, а полученный конденсат с помощью конденсатного насоса 3 конденсатора паровой турбины 1 направляют в систему регенерации, причем в теплообменнике-испарителе 14 сетевой воды осуществляют утилизацию избыточной низкопотенциальной теплоты обратной сетевой воды посредством охлаждающей жидкости.

Отличием предлагаемого способа является то, что дополнительно используют систему 15 маслоснабжения подшипников паровой турбины 1, состоящей из маслоохладителя 19, маслобака 17 и маслонасоса 18, и дополнительно осуществляют утилизацию низкопотенциальной теплоты системы 15 маслоснабжения подшипников паровой турбины 1, при этом упомянутые утилизации осуществляют посредством теплового двигателя 5 с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, состоящего из турбодетандера 6 с электрогенератором 7, теплообменника-рекуператора 21, теплообменника-конденсатора 8 и конденсатного насоса 9, а в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре, при этом упомянутое низкокипящее рабочее тело сжимают в конденсатном насосе 9 теплового двигателя 5, нагревают в теплообменнике-рекуператоре 21, нагревают в маслоохладителе 19 системы 15 маслоснабжения подшипников паровой турбины 1, испаряют и перегревают в теплообменнике-испарителе 14 сетевой воды, расширяют в турбодетандере 6, снижают его температуру в теплообменнике-рекуператоре 21 и конденсируют в теплообменнике-конденсаторе 8 теплового двигателя.

В качестве теплообменника-конденсатора 8 теплового двигателя используют конденсатор воздушного охлаждения, или конденсатор водяного охлаждения, или конденсатор воздушного и водяного охлаждения.

В качестве низкокипящего рабочего тела используют сжиженный пропан С3Н8.

Пример конкретного выполнения.

Отработавший пар, поступающий из паровой турбины 1 в паровое пространство конденсатора 2, конденсируется на поверхности конденсаторных трубок. При этом образующийся конденсат с помощью конденсатного насоса 3 конденсатора паровой турбины направляют в систему регенерации. Мощность паровой турбины 1 передается соединенному на одном валу основному электрогенератору 4.

Преобразование низкопотенциальной тепловой энергии системы 15 маслоснабжения подшипников паровой турбины 1 и избыточной низкопотенциальной тепловой энергии обратной сетевой воды, в механическую и, далее, в электрическую происходит в замкнутом контуре циркуляции теплового двигателя 5, работающего по органическому циклу Ренкина.

Таким образом, утилизацию низкопотенциальной теплоты системы 15 маслоснабжения подшипников паровой турбины 1 и утилизацию избыточной низкопотенциальной теплоты обратной сетевой воды осуществляют путем последовательного нагрева, соответственно, в маслоохладителе 19 системы маслоснабжения подшипников паровой турбины и теплообменнике-испарителе 14, низкокипящего рабочего тела (сжиженного пропана С3Н8) теплового двигателя 5 с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина.

Весь процесс начинается с сжатия в конденсатном насосе 9 сжиженного пропана C3H8, который последовательно направляют на нагрев в начале в теплообменник-рекуператор 21, куда поступает перегретый газообразный пропан C3H8 из турбодетандера 6, а затем в маслоохладитель 19, куда поступает нагретое масло системы 15 маслоснабжения подшипников паровой турбины 1 с температурой в интервале от 313,15 К до 343,15 К.

В процессе теплообмена перегретого газообразного пропана C3H8 с сжиженным пропаном C3H8 в теплообменнике-рекуператоре 21 и теплообмена нагретого масла с сжиженным пропаном C3H8 в маслоохладителе 19 происходит нагрев сжиженного пропана C3H8 до температуры около 305,15 К при давлении в интервале от 1,14 МПа до 2,05 МПа, и далее его направляют на испарение и перегрев в теплообменник-испаритель 14, куда поступает обратная сетевая вода из обратного трубопровода 13. При этом температура обратной сетевой воды может варьироваться в интервале от 313,15 К до 343,15 К.

В процессе теплообмена обратной сетевой воды с сжиженным пропаном C3H8 в теплообменнике-испарителе 14 происходит испарение сжиженного пропана C3H8 и дальнейший его перегрев до температуры в интервале от 305,15 К до 333,15 К при давлении в интервале от 1,14 МПа до 2,05 МПа, который направляют в турбодетандер 6.

Процесс настроен таким образом, что в турбодетандере 6 не происходит конденсации газообразного пропана C3H8 в ходе срабатывания теплоперепада. Мощность турбодетандера 6 передается соединенному на одном валу электрогенератору 7. На выходе из турбодетандера 6 газообразный пропан C3H8, имеющий температуру перегретого газа около 288 К, направляют в теплообменник-рекуператор 21 для снижения температуры.

В теплообменнике-рекуператоре 21 в процессе отвода теплоты на нагрев сжиженного пропана C3H8 снижается нагрузка на теплообменник-конденсатор 8, выполненного, например, в виде конденсатора воздушного охлаждения, и затраты мощности на привод вентиляторов воздушного охлаждения.

Далее, при снижении температуры газообразного пропана C3H8 происходит его сжижение в теплообменнике-конденсаторе 8, охлаждаемого воздухом окружающей среды в температурном диапазоне от 223,15 К до 283,15 К.

После теплообменника-конденсатора 8 в сжиженном состоянии пропан C3H8 направляют для сжатия в конденсатный насос 9 теплового двигателя.

Далее органический цикл Ренкина на основе низкокипящего рабочего тела повторяется.

Использование предлагаемого способа работы тепловой электрической станции позволит, по сравнению с прототипом, повысить коэффициент полезного действия ТЭС за счет утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины и утилизации избыточной низкопотенциальной теплоты обратной сетевой воды для дополнительной выработки электрической энергии.

1. Способ утилизации тепловой энергии, вырабатываемой тепловой электрической станцией, включающий отбор пара из паровой турбины, направление пара отопительных параметров в паровое пространство верхнего и нижнего сетевых подогревателей, связанных с подающим трубопроводом и обратным трубопроводом сетевой воды, снабженным теплообменником-испарителем, при этом отработавший пар из паровой турбины направляют в паровое пространство конденсатора, в котором его конденсируют на поверхности конденсаторных трубок, а полученный конденсат с помощью конденсатного насоса конденсатора паровой турбины направляют в систему регенерации, причем в теплообменнике-испарителе сетевой воды осуществляют утилизацию избыточной низкопотенциальной теплоты обратной сетевой воды посредством охлаждающей жидкости, отличающийся тем, что дополнительно используют систему маслоснабжения подшипников паровой турбины, состоящую из маслоохладителя, маслобака и маслонасоса, и дополнительно осуществляют утилизацию низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины, при этом упомянутые утилизации осуществляют посредством теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, состоящего из турбодетандера с электрогенератором, теплообменника-рекуператора, теплообменника-конденсатора и конденсатного насоса, а в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре, при этом упомянутое низкокипящее рабочее тело сжимают в конденсатном насосе теплового двигателя, нагревают в теплообменнике-рекуператоре, нагревают в маслоохладителе системы маслоснабжения подшипников паровой турбины, испаряют и перегревают в теплообменнике-испарителе сетевой воды, расширяют в турбодетандере, снижают его температуру в теплообменнике-рекуператоре и конденсируют в теплообменнике-конденсаторе теплового двигателя.

2. Способ по п. 1, отличающийся тем, что в качестве теплообменника-конденсатора теплового двигателя используют конденсатор воздушного охлаждения, или конденсатор водяного охлаждения, или конденсатор воздушного и водяного охлаждения.

3. Способ по п. 1, отличающийся тем, что в качестве низкокипящего рабочего тела используют сжиженный пропан С3Н8.



 

Похожие патенты:

Изобретение может быть использовано на тепловых электрических станциях (ТЭС) при утилизации избыточной тепловой энергии, вырабатываемой системами ТЭС в процессе ее работы.

Изобретение может быть использовано на тепловых электрических станциях (ТЭС) для утилизации избыточной тепловой энергии, вырабатываемой системами ТЭС в процессе ее работы.

Изобретение может быть использовано на тепловых электрических станциях (ТЭС) для утилизации избыточной тепловой энергии, вырабатываемой системами ТЭС в процессе ее работы.

Изобретение может быть использовано на тепловых электрических станциях (ТЭС) для утилизации избыточной тепловой энергии, вырабатываемой системами ТЭС в процессе ее работы.

Изобретение может быть использовано на тепловых электрических станциях (ТЭС) для утилизации избыточной тепловой энергии, вырабатываемой системами ТЭС в процессе ее работы.

Изобретение может быть использовано на тепловых электрических станциях (ТЭС) для утилизации избыточной тепловой энергии, вырабатываемой системами ТЭС в процессе ее работы.

Изобретение может быть использовано на тепловых электрических станциях (ТЭС) для утилизации избыточной тепловой энергии, вырабатываемой системами ТЭС в процессе ее работы.

Изобретение может быть использовано на тепловых электрических станциях (ТЭС) для утилизации избыточной тепловой энергии, вырабатываемой системами ТЭС в процессе ее работы.

Изобретение может быть использовано на тепловых электрических станциях (ТЭС) для утилизации избыточной тепловой энергии, вырабатываемой системами ТЭС в процессе ее работы.

Изобретение относится к способу утилизации тепловой энергии, вырабатываемой на тепловых электрических станциях (ТЭС). Технический результат изобретения заключается в повышении коэффициента полезного действия ТЭС за счет полного использования сбросной низкопотенциальной теплоты и утилизации избыточной низкопотенциальной теплоты обратной сетевой воды для дополнительной выработки электрической энергии.

Изобретение относится к области энергетики. В способе работы тепловой электрической станции, по которому отработавший пар поступает из первой паровой турбины в паровое пространство конденсатора, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость, конденсат с помощью конденсатного насоса конденсатора паровой турбины направляют в систему регенерации, при конденсации пара осуществляют утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара при помощи охлаждающей жидкости, причем в паровой турбине используют систему маслоснабжения подшипников паровой турбины с охладителем масла, в тепловой электрической станции используют конденсационную установку, имеющую конденсатор второй паровой турбины и систему маслоснабжения ее подшипников с маслоохладителем, и дополнительно осуществляют утилизацию высокопотенциальной теплоты пара второй турбины, утилизацию низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины и утилизацию низкопотенциальной теплоты системы маслоснабжения подшипников второй паровой турбины, при этом все указанные утилизации осуществляют при помощи теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре, в качестве низкокипящего рабочего тела используют сжиженный пропан C3H8.

Изобретение относится к области энергетики. В способе работы тепловой электрической станции с первой паровой турбиной с охладителем масла в станции используют конденсационную установку, имеющую конденсатор второй паровой турбины и систему маслоснабжения ее подшипников с маслоохладителем, осуществляют утилизацию высокопотенциальной теплоты пара второй паровой турбины, утилизацию низкопотенциальной теплоты системы маслоснабжения подшипников первой паровой турбины и утилизацию низкопотенциальной теплоты системы маслоснабжения подшипников второй паровой турбины, при этом все указанные утилизации осуществляют при помощи теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре.

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС). В способе работы тепловой электрической станции, по которому отработавший пар поступает из первой паровой турбины в паровое пространство конденсатора, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость, а пар отопительных параметров из отборов паровой турбины поступает в паровое пространство нижнего и верхнего подогревателей, конденсируется на поверхности подогреваемых трубок подогревателей, внутри которых протекает охлаждающая жидкость, при этом при конденсации отработавшего пара и пара отопительных отборов осуществляют утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в первой турбине пара и утилизацию низкопотенциальной теплоты пара отопительных отборов из паровой турбины при помощи охлаждающей жидкости, причем конденсат с помощью конденсатного насоса конденсатора паровой турбины направляют в систему регенерации, в тепловой электрической станции используют конденсационную установку, имеющую конденсатор второй паровой турбины, и осуществляют утилизацию высокопотенциальной теплоты пара, при этом утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в первой турбине пара, утилизацию низкопотенциальной теплоты пара отопительных отборов из первой паровой турбины и утилизацию высокопотенциальной теплоты пара осуществляют при помощи теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре.

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях для дополнительной выработки электрической энергии за счет утилизации высокопотенциальной теплоты пара производственного отбора.

Изобретение относится к области энергетики. В способе работы тепловой электрической станции, по которому отработавший пар поступает из паровой турбины в паровое пространство конденсатора, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость, при этом конденсат с помощью конденсатного насоса конденсатора паровой турбины направляют в систему регенерации, при конденсации пара осуществляют утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара при помощи охлаждающей жидкости, причем в паровой турбине используют систему маслоснабжения подшипников паровой турбины с маслохладителем, в тепловой электрической станции используют конденсационную установку, имеющую конденсатор второй паровой турбины, и осуществляют утилизацию высокопотенциальной теплоты пара второй паровой турбины, дополнительно осуществляют утилизацию низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины, при этом утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара, утилизацию низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины и утилизацию высокопотенциальной теплоты пара второй паровой турбины осуществляют при помощи теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре.

Способ включает конденсацию отработавшего в турбине пара в конденсаторе. Основной конденсат турбины нагревают в подогревателях низкого давления паром регенеративных отборов, сетевую воду нагревают в сетевых подогревателях паром отопительных отборов турбины.

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС). Дополнительно осуществляют утилизацию низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины, при этом утилизацию низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины и утилизацию низкопотенциальной теплоты пара отопительных отборов из паровой турбины осуществляют при помощи теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре, при этом его сжимают в конденсатном насосе теплового двигателя, нагревают в теплообменнике-рекуператоре теплового двигателя, нагревают в маслоохладителе, нагревают и испаряют в нижнем сетевом подогревателе паровой турбины, перегревают в верхнем сетевом подогревателе паровой турбины, расширяют в турбодетандере теплового двигателя, снижают его температуру в теплообменнике-рекуператоре теплового двигателя и конденсируют в теплообменнике-конденсаторе теплового двигателя.

Способ включает дополнительный подогрев греющего агента перед вакуумным деаэратором в теплонасосной установке, в которой в качестве источника низкопотенциальной теплоты используют нагретую циркуляционную воду после конденсатора турбины.

Изобретение относится к энергетике. Теплоэлектроцентраль с открытой теплофикационной системой, содержащая теплофикационную паровую турбину, турбину с промышленным и теплофикационным отборами и установку подогрева сырой воды, дополнительно снабжена системой подогрева сырой воды в конденсаторе турбины с промышленным и теплофикационным отборами, содержащей регулятор рециркуляции, клапан рециркуляции с входным и двумя выходными патрубками, линию рециркуляции с трубопроводом и насосом рециркуляции, причём выход конденсатора турбины с промышленным и теплофикационным отборами связан трубопроводом подогретой сырой воды через первый выходной патрубок клапана рециркуляции с установкой подогрева сырой воды, а через его второй выходной патрубок соединен трубопроводом рециркуляции с трубопроводом холодной сырой воды и с входом этого конденсатора.

Изобретение относится к области энергетики. В способе работы тепловой электрической станции осуществляют утилизацию низкопотенциальной теплоты обратной сетевой воды, при этом утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара и утилизацию низкопотенциальной теплоты обратной сетевой воды осуществляют при помощи теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело.

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) для утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины и утилизации высокопотенциальной теплоты пара производственного отбора для дополнительной выработки электрической энергии. В способе утилизации отработавший пар поступает из паровой турбины в паровое пространство конденсатора, конденсируется на поверхности конденсаторных трубок, а конденсат с помощью конденсатного насоса конденсатора паровой турбины направляют в систему регенерации, причем в паровой турбине используют систему маслоснабжения подшипников паровой турбины с маслоохладителем. Все указанные утилизации осуществляют при помощи теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре. Использование изобретения позволяет повысить коэффициента полезного действия ТЭС за счет дополнительной выработки электрической энергии. 2 з.п. ф-лы, 1 ил.
Наверх