Способ нанесения биокерамического покрытия на имплантаты



Владельцы патента RU 2571080:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Саратовский государственный технический университет имени Гагарина Ю.А." (СГТУ имени Гагарина Ю.А.) (RU)

Изобретение относится к медицине и заключается в способе нанесения биокерамических покрытий на имплантат. При осуществлении способа смешивают порошок гидроксиапатита с биологически совместимым связующим веществом в виде фосфатной связки при соотношении связки и порошка 1,0-1,5:1,5-2,0, наносят полученную суспензию на поверхность имплантата, сушат имплантат, проводят термообработку в условиях индукционного нагрева при потребляемой электрической мощности 0,45-0,55 кВт, частоте тока на индукторе 100±10 кГц и продолжительности термообработки 0,5-1,0 мин. Технический результат заключается в получении механически прочного биокерамического покрытия на внутрикостных и чрескостных медицинских имплантатах с помощью технологически простого способа. 1 табл., 2 пр.

 

Изобретение относится к области медицины, а именно к способам нанесения биоактивных гидроксиапатитовых покрытий на металлические имплантаты для стоматологии, травматологии и ортопедии.

Биокерамическое гидроксиапатитовое покрытие медицинских внутрикостных и чрескостных имплантатов из биоинертных и биотолерантных металлов и сплавов обеспечивает их ускоренное и эффективное приживление в костных структурах за счет высокого уровня биологической активности поверхности. Наиболее распространенной технологией нанесения порошковых гидроксиапатитовых покрытий является плазменное напыление, заключающееся в пропускании порошка гидроксиапатита через плазмотрон, расплавлении и ускорении частиц порошка в плазменной струе с последующим их оседанием на поверхность имплантата. Однако нанесение гидроксиапатитового покрытия порошково-плазменным методом является технологически сложным процессом и характеризуется низкой экономической эффективностью расхода напыляемого материала, т.к. только 40-50% частиц гидроксиапатитового порошка оседает на поверхности обрабатываемого изделия, а остальное их количество - на стенках напылительной камеры, не попадая на изделие. При этом механическая прочность покрытия во многих случаях находится на низком уровне, часто наблюдается отскок частиц порошка от подложки при соударении с ней.

Известен способ изготовления имплантатов с биокерамическим покрытием (гидроксиапатит, биоситалл), наносимым методом плазменного напыления [патент РФ №2157245, МПК: A61L 27/06, A61F 2/28, опубл. 10.10.2000 г.].

Недостатком данного способа является сложность осуществления технологического процесса нанесения биокерамического покрытия, большой расход используемого порошкового материала и низкий уровень механической прочности получаемого покрытия.

Известен способ нанесения гидроксиапатитовых покрытий, включающий смешивание порошка гидроксиапатита со связующим веществом, в качестве которого используют фосфатные связки, взятые в соотношении к порошку 1,0-1,5:1,5-2,0, сушку и термообработку обжигом при температуре 250-600С [патент РФ №2158189, МПК: B05D 7/24, B05D 7/14, A61L 27/00, опубл. 27.10.2000 г.].

Недостатком данного способа является недостаточная механическая прочность получаемого биокерамического покрытия.

Ближайшим прототипом, по мнению авторов, является способ нанесения гидроксиапатитового покрытия на имплантаты [патент РФ №2417107, МПК: A61L 27/30, B05D 7/24, A61L 27/32, опубл. 27.04.2011 г.], включающий смешивание порошка гидроксиапатита с биологически совместимым связующим веществом в виде фосфатной связки при соотношении связки и порошка 1,0-1,5:1,5-2,0, нанесение получаемой суспензии на металлическую поверхность, сушку и последующую термообработку аргоноплазменной струей при токе дуги 300-500 А, продолжительности 0,5-2,0 мин на дистанции 40-100 мм.

Однако недостатком данного способа является то, что процесс нанесения биокерамического покрытия является технологически сложным, требующим применения сложного и дорогостоящего оборудования.

Задачей изобретения является создание технологически простого и экономически эффективного способа нанесения биокерамического порошкового покрытия на основе гидроксиапатита с повышенной механической прочностью.

Технический результат изобретения заключается в получении механически прочного биокерамического покрытия на внутрикостных и чрескостных медицинских имплантатах с помощью технологически простого и экономически эффективного способа.

Поставленная задача достигается за счет того, что в предлагаемом способе нанесения биокерамического покрытия на имплантаты, включающем смешивание порошка гидроксиапатита с биологически совместимым связующим веществом, в качестве которого используют фосфатные связки, при соотношении связки и порошка 1,0-1,5:1,5-2,0, нанесение получаемой суспензии на поверхность имплантата, сушку и последующую термообработку, согласно новому техническому решению термообработку имплантата с нанесенной суспензией проводят в условиях индукционного нагрева при величине потребляемой электрической мощности 0,45-0,55 кВт, частоте тока на индукторе 10010 кГц и продолжительности 0,5-1,0 мин. При этом происходит ускоренный нагрев поверхности имплантата с нанесенной суспензией, оплавление частиц порошка гидроксиапатита и их усиленная физико-механическая связь с металлической основой имплантата и друг с другом.

Сущность изобретения заключается в том, что процесс получения биокерамического покрытия осуществляется путем смешивания порошка гидроксиапатита с фосфатной связкой, нанесения получаемой суспензии на поверхность металлического имплантата, сушки нанесенной суспензии для предварительного закрепления объема покрытия на изделии и последующей термообработки в условиях индукционного нагрева при величине потребляемой электрической мощности 0,45-0,55 кВт, приводящей к достижению температуры нагрева имплантата 1000-1100С, частоте тока на индукторе 10010 кГц и продолжительности 0,5-1,0 мин. При этом порошок гидроксиапатита смешивают со связующим веществом для удержания гидроксиапатитовых частиц на поверхности имплантата, а термообработку индукционным нагревом проводят для обеспечения ускоренного оплавления частиц биокерамического порошка и их усиленной физико-механической взаимосвязи с металлической основой и друг с другом за счет эффекта приваривания частиц.

Приведенные пределы значений технологического режима индукционно-термической обработки обеспечивают получение биокерамических гидроксиапатитовых покрытий с повышенной адгезией и когезией, являющимися основными показателями механической прочности покрытий.

Осуществление индукционно-термической обработки вихревыми токами, наведенными в металлических имплантатах, при значениях потребляемой электрической мощности менее 0,45 кВт (температура нагрева имплантатов менее 1000С), частоте тока на индукторе ниже диапазона 10010 кГц и продолжительности термообработки менее 0,5 мин является не эффективным, т.к. образующееся покрытие не обладает достаточной механической прочностью и склонно к разрушению даже при небольших функциональных нагрузках на имплантат, особенно на этапе его установки в кость. Это связано с тем, что индукционно-термическая обработка вихревыми токами при таких значениях режима не обеспечивает поверхностного оплавления частиц гидроксиапатитового порошка, в результате чего не происходит их усиленного взаимодействия с основой имплантата и друг с другом.

Индукционно-термическая обработка вихревыми токами при значениях потребляемой мощности более 0,55 кВт (температура нагрева имплантатов более 1100С), частоте тока на индукторе свыше 10010 кГц и продолжительности термообработки более 1,0 мин не эффективна, т.к. существенного повышения прочности покрытия не происходит, возникает опасность протекания нежелательных фазово-структурных превращений в материале биокерамического покрытия (преобразование гидроксиапатита в более легкорезорбируемые фазы трикальцийфосфата и тетракальцийфосфата), резко возрастают энерго- и трудозатраты, приводящие в целом к снижению технико-экономической эффективности процесса получения биокерамического покрытия.

Мощность индукционного нагрева выбирается исходя из требуемой продолжительности процесса нагрева, которая должна приводить к достижению температуры основы имплантата 1000-1100С, что обеспечивает необходимое термическое воздействие на частицы гидроксиапатита для получения механически прочного биокерамического покрытия.

Частота тока на индукторе в предлагаемом диапазоне выбирается исходя из требуемой глубины проникновения вихревых токов в металлическую основу имплантата, которая составляет около 1,0-1,2 мм и обеспечивает наибольшую эффективность индукционного нагрева в выбранном диапазоне потребляемой мощности. Указанный диапазон частоты выбран исходя из необходимости подстройки резонансной частоты в системе индукционного нагрева, включающей индуктор и нагреваемое изделие, форма и размеры которого изменяются в зависимости от типа и размеров имплантатов.

Продолжительность индукционно-термической обработки в предлагаемом диапазоне обеспечивает надежное закрепление частиц порошка гидроксиапатита на поверхности имплантата за счет эффекта приваривания, сплавление их между собой с сохранением достаточной величины открытой пористости и шероховатости, которые необходимы для эффективной остеоинтеграции имплантата и его надежной фиксации в кости челюсти.

Пример 1. Приготавливают суспензию из порошка гидроксиапатита дисперсностью =50 мкм и биологически совместимого связующего вещества так, чтобы получаемый раствор был насыщен частицами гидроксиапатита и содержал минимальное количество связующего вещества, достаточное для удержания суспензии на поверхности имплантата. В качестве связующего вещества берут кальцийфосфатную связку и смешивают ее с порошком гидроксиапатита в соотношении 1,0:1,5. С помощью кисти полученную суспензию наносят на имплантат и подвергают сушке в печи при температуре 50С в течение 20 мин. Затем имплантат с закрепленной суспензией помещают в камеру устройства индукционного нагрева и производят индукционно-термическую обработку при величине потребляемой электрической мощности 0,45 кВт, частоте тока на индукторе 10010 кГц и продолжительности 1,0 мин. При этом температура нагрева имплантата составляет 1000С. В данных технологических условиях происходит оплавление поверхности гидроксиапатитовых частиц, их приваривание к металлической основе имплантата и друг к другу при сохранении внутреннего термически неизмененного ядра частиц, а также формирование прочного покрытия с повышенными параметрами шероховатости и открытой пористости.

Пример 2. Приготавливают суспензию из порошка гидроксиапатита дисперсностью =70 мкм и биологически совместимого связующего вещества так, чтобы получаемый раствор был насыщен частицами гидроксиапатита и содержал минимальное количество связующего вещества, достаточное для удержания суспензии на поверхности имплантата. В качестве связующего вещества берут магнийфосфатную связку и смешивают ее с порошком гидроксиапатита в соотношении 1,2:1,9. С помощью кисти суспензию наносят на имплантат и подвергают сушке в печи при температуре 50С в течение 20 мин. Затем имплантат с закрепленной суспензией помещают в камеру устройства индукционного нагрева и производят индукционно-термическую обработку при величине потребляемой электрической мощности 0,55 кВт, частоте тока на индукторе 10010 кГц и продолжительности 0,5 мин. При этом температура нагрева имплантата составляет 1100С. В данных технологических условиях происходит оплавление поверхности гидроксиапатитовых частиц, их приваривание к металлической основе имплантата и друг к другу при полном проплавлении частиц порошка гидроксиапатита, а также формирование высокопрочного биокерамического покрытия.

Полученные предлагаемым способом биокерамические покрытия прошли испытания на механическую прочность, определяемую методами нормального отрыва, сдвига и измерения микротвердости. Результаты проведенных испытаний представлены в табл.

Положительный эффект предлагаемого изобретения - технологическая простота способа нанесения механически прочного биокерамического покрытия на основе гидроксиапатита - заключается в применении более эффективного процесса термообработки поверхности металлического имплантата с нанесенной суспензией из порошка гидроксиапатита и фосфатной связки, а именно процесса индукционного нагрева при следующих режимах: потребляемая электрическая мощность 0,45-0,55 кВт, частота тока на индукторе 10010 кГц, температура нагрева 1000-1100С, продолжительность термообработки 0,5-1,0 мин. Кроме того, для осуществления данного способа не требуется применение конструктивно сложного, высокоэнергоемкого, крупногабаритного и дорогостоящего оборудования.

Способ нанесения биокерамического покрытия на имплантаты, включающий смешивание порошка гидроксиапатита с биологически совместимым связующим веществом, в качестве которого используют фосфатные связки при соотношении связки и порошка 1,0-1,5:1,5-2,0, нанесение получаемой суспензии на поверхность имплантата, сушку и последующую термообработку, отличающийся тем, что термообработку имплантата с нанесенной суспензией проводят в условиях индукционного нагрева при потребляемой электрической мощности 0,45-0,55 кВт, частоте тока на индукторе 100±10 кГц и продолжительности термообработки 0,5-1,0 мин.



 

Похожие патенты:

Группа изобретений относится области медицины и может быть использовано для получения антибактериального покрытия на медицинских изделиях. Способ обработки поверхности медицинского изделия включает стадии, на которых: получают коллоидно-диспергированную систему, подвергают медицинское изделие обработке коллоидно-диспергированной системой путем погружения, создают разность потенциалов цепи переменного тока между медицинским изделием в качестве первого электрода и/или вторым электродом, помещенным в коллоидно-диспергированную систему, для превращения погруженной поверхности в оксидную пленку посредством плазменного электролитического оксидирования, при этом превращенная поверхность частично покрывается островками, образованными коллоидно-диспергированными частицами коллоидно-диспергированной системы.

Изобретение относится к медицине. Описан способ получения детонационного биосовместимого покрытия на медицинский имплантат, включающий механическую и химическую подготовку поверхности титанового имплантата, и затем осуществляют формирование покрытия путем напыления порошка гидроксиапатита на титановый имплантат.

Изобретение относится к области медицины, конкретно к способу получения нанокристаллического силикатзамещенного карбонатгидроксиапатита (КГА), который включает смешение растворов солей кальция, фосфата и силиката, отстаивание, фильтрование, промывку от маточного раствора и сушку, при этом смешивают растворы четырехводного нитрата кальция, безводного двузамещенного фосфата аммония, пятиводного метасиликата натрия при соотношении концентраций Ca/(P+Si) равном 1,70, и доле силикат-ионов в общем количестве осадкообразующих анионов ( X S i O 4 4 − = C S i O 4 4 − / ( C P O 4 4 − + C S i O 4 4 − ) ) , составляющей не более 30 мол.

Изобретение относится к медицине, в частности к способу получения лантансодержащего биопокрытия титанового имплантата. Способ получения заключается в предварительной подготовке лантансодержащего порошка, подготовке поверхности титановой основы имплантата, плазменном напылении титанового подслоя на поверхности титановой основы, плазменном напылении порошка гидроксиапатита на титановый подслой, формировании лантансодержащего биопокрытия.

Изобретение относится к области медицины, а именно к способу получения порошкового материала на основе карбонатгидроксиапатита и брушита, который может быть использован для создания новых керамических, композиционных материалов, цементных масс и лечебных паст для травматологии, ортопедии, челюстно-лицевой хирургии и стоматологии.

Изобретение относится к области медицины и созданию новых материалов биомедицинского назначения, которые могут быть использованы при создании биоактивных кальций-фосфатных покрытий на имплантатах, при создании бифазных композитов на основе фосфатов кальция и сплавов титана.
Изобретение относится к медицине. Описан двухфазный материал заменителя костной ткани на основе фосфата кальция / гидроксиапатита (САР/НАР), включающий ядро из спеченного CAP и как минимум один равномерный и закрытый эпитаксически нарастающий слой нанокристаллического НАР, нанесенный сверху на ядро из спеченного CAP, причем эпитаксически нарастающие нанокристаллы имеют такой же размер и морфологию, что и у минерала костей человека, то есть длину от 30 до 46 нм и ширину от 14 до 22 нм.

Изобретение относится к области медицины. Описан способ получения карбонатгидроксилапатита, приближенного к неорганическому матриксу костной ткани из модельного раствора синовиальной жидкости человека, в котором готовят модельную среду указанного состава: CaCl2 - 1.3431 г/л, Na2HPO4·12H2O - 7.4822 г/л, NaCl - 2,8798 г/л, MgCl2∙6H2O - 0.4764 г/л, Na2SO4 - 1.6188 г/л, КСl - 0.3427 г/л, осаждение проводят при концентрации карбонат-ионов 24 ммоль/л, температуре 22-25°С, значении рН 7.4±0,05 в течение 30 дней.
Изобретение относится к области медицины и касается цементных материалов для пластической реконструкции поврежденных костных тканей. Описаны кальцийфосфатные цементные материалы, которые получают на основе порошков тетракальциевого фосфата и/или трикальцийфосфата.

Изобретение относится к медицинской технике и может быть использовано в стоматологии, травматологии и ортопедии. Описан способ получения наноструктурированнного кальций-фосфатного покрытия для медицинских имплантатов, заключающийся в распылении мишени из стехиометрического гидроксиапатита Ca10(PO4)6(OH)2 в плазме высокочастотного магнетронного разряда в атмосфере аргона при давлении 0.1-1 Па и плотностью мощности на мишени 0.1-1 Вт/см2 в течение 15-180 мин на расстоянии от мишени до подложки в интервале от 40 до 50 мм, где формирование наноструктуры производится после нанесения покрытия в ходе контролируемого термического отжига при температуре 700-750°C в течение 15-30 мин.

Изобретение относится к медицинской технике, а именно к наборам нерасширяющихся суппозиторных устройств. Набор включает первую и вторую наружные упаковки, видимые на месте продажи, содержащие соответственно первый и второй индицирующие элементы и первое и второе одноразовое неабсорбирующее суппозиторные устройства.

Изобретение относится к медицинской технике, а именно к медицинским устройствам для поддержки тканей и системам доставки лекарственных средств, более конкретно - к расширяемым устройствам, имплантируемым в полость трубчатого органа организма животного или человека, поддерживающим орган в раскрытом состоянии и (или) служащим для доставки лекарственных средств или агентов.

Стент // 2566225
Изобретение относится к медицине. Расширяемый стент содержит множество волнообразных круговых участков, причем каждый круговой участок содержит чередующиеся пики и впадины и множество продольно идущих участков, соединяющих множество волнообразных круговых участков, причем каждый из множества продольно идущих участков содержит первую идущую в продольном направлении распорку и вторую идущую в продольном направлении распорку, смещенную по окружности относительно первой идущей в продольном направлении распорки.

Изобретение относится к медицинской технике, а именно к конструкции стентов. Стент панкреатический включает сетчатый трубчатый элемент из нитинола, имеющий дистальный и проксимальный концы, эластичную силиконовую оболочку, связанную с трубчатым элементом, и нить-экстрактор.

Изобретение относится к медицине. Описано медицинское устройство для местной доставки селективного агониста аденозиновых рецепторов в сочетании с другими лекарственными средствами, используется для уменьшения поражения миокарда после острого инфаркта миокарда.

Изобретение относится к области электропроводящих материалов, а именно: к искусственным нервам на основе полимеров. Изобретение может быть использовано в протезировании, нейрохирургии, робототехнике и машиностроении.

Группа изобретений относится к области медицинской техники, а именно к устройствам и способам для доставки стента в сосуд организма. Узел толкателя для устройства для доставки стента содержит дистальный конец удлиненного внутреннего элемента и элемент зацепления стента, имеющий проксимальный конец и дистальный конец.

Группа изобретений относится к интравагинальным устройствам для лечения недержания мочи из упругого полимерного материала. Интравагинальное устройство имеет конец для введения и противоположный конец для его выведения и содержит упругий каркас, включающий в себя рабочую часть и фиксирующую часть.

Группа изобретений относится к медицинской технике, а именно к многопросветным стентам-графтам и способу их изготовления. Многопросветный стент-графт содержит основной просвет, образованный графтом, состоящим из самой внутренней трубки с отверстием и самой внешней трубки с отверстием, и добавочный просвет, расположенный между самой внутренней трубкой и самой внешней трубкой указанного графта.

Изобретение относится к медицине, а именно к имплантируемым внутрипросветным сосудистым медицинским устройствам для локальной доставки терапевтических средств или их комбинаций, и может быть использовано для профилактики и лечения стеноза или рестеноза, развивающихся, например, вследствие атеросклероза, либо чрезкожной транслюминальной коронарной ангиопластики.

Изобретение относится к медицине, а именно к хирургии, и может быть использовано при трансплантациях и ранениях печени, а также при лечении у пациентов злокачественных новообразований в печени. Устройство для создания окклюзии входящих или отходящих сосудов включает стент в виде цилиндрической и конической частей, расположенный внутри него расширитель с фиксатором его положения и доставочный механизм. Доставочный механизм содержит установочную трубку и размещенный в ней толкатель стента. Коническая часть стента, выполненная на его проксимальном конце, жестко закреплена на дистальном конце толкателя и предназначена для пропуска кровотока. Цилиндрическая часть стента имеет полимерное покрытие. Расширитель выполнен в виде несущей трубки, установленной внутри толкателя и, по крайней мере, шести бранш, размещенных на несущей трубке. Дистальные концы бранш жестко закреплены на неподвижной втулке на дистальном конце трубки. Проксимальные концы закреплены на подвижной втулке. Бранши имеют, по крайней мере, одну по их длине точку фиксации на дополнительной втулке. Дополнительная втулка и втулка, на которой закреплены проксимальные концы бранш, расположены на несущей трубке и имеют возможность перемещения вдоль продольной ее оси. Изобретение обеспечивает создание окклюзии одновременно нескольких входящих или отходящих сосудов, позволяя при этом сохранять до 95% магистрального кровотока, и тем самым предоставляет возможность для создания терапевтических концентраций различных лекарственных препаратов в отдельно взятом органе. 5 ил.
Наверх