Свч избирательный усилитель на основе планарной индуктивности с низкой добротностью



Свч избирательный усилитель на основе планарной индуктивности с низкой добротностью
Свч избирательный усилитель на основе планарной индуктивности с низкой добротностью
Свч избирательный усилитель на основе планарной индуктивности с низкой добротностью
Свч избирательный усилитель на основе планарной индуктивности с низкой добротностью
Свч избирательный усилитель на основе планарной индуктивности с низкой добротностью
Свч избирательный усилитель на основе планарной индуктивности с низкой добротностью
Свч избирательный усилитель на основе планарной индуктивности с низкой добротностью
Свч избирательный усилитель на основе планарной индуктивности с низкой добротностью
Свч избирательный усилитель на основе планарной индуктивности с низкой добротностью
Свч избирательный усилитель на основе планарной индуктивности с низкой добротностью
Свч избирательный усилитель на основе планарной индуктивности с низкой добротностью
Свч избирательный усилитель на основе планарной индуктивности с низкой добротностью
Свч избирательный усилитель на основе планарной индуктивности с низкой добротностью
Свч избирательный усилитель на основе планарной индуктивности с низкой добротностью
Свч избирательный усилитель на основе планарной индуктивности с низкой добротностью
Свч избирательный усилитель на основе планарной индуктивности с низкой добротностью

 


Владельцы патента RU 2571402:

федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Донской государственный технический университет" (ДГТУ) (RU)

Изобретение относится к области радиотехники и связи и может использоваться в микросхемах СВЧ-фильтрации радиосигналов систем сотовой связи, спутникового телевидения, радиолокации и т.п. Техническим результатом является повышение добротности резонансной амплитудно-частотной характеристики избирательного усилителя при использовании низкодобротных планарных индуктивностей. В СВЧ избирательный усилитель на основе планарной индуктивности с низкой добротностью дополнительно введено токовое зеркало, согласованное со второй шиной источника питания, вход которого соединен со стоком второго полевого транзистора, а выход подключен к затвору второго полевого транзистора и выходу устройства. 14 ил.

 

Изобретение относится к области радиотехники и связи и может использоваться в микросхемах СВЧ-фильтрации радиосигналов систем сотовой связи, спутникового телевидения, радиолокации и т.п.

В задачах выделения высокочастотных и СВЧ сигналов сегодня широко используются интегральные индуктивности в коллекторных (стоковых) цепях выходных биполярных (полевых) транзисторов [1-23], формирующих амплитудно-частотную характеристику (АЧХ) резонансного типа. Однако классическое построение таких избирательных усилителей (RLC-фильтров) на основе большинства конструкций планарных индуктивностей не позволяет обеспечить высокие значения добротности результирующей АЧХ. В этой связи достаточно актуальной является задача построения СВЧ высокодобротных избирательных усилителей (ИУ) при использовании низкодобротных планарных индуктивностей.

Ближайшим прототипом заявляемого устройства является избирательный усилитель фиг. 1, представленный в патенте US 6.825.722 fig. 1. Он содержит первый 1 и второй 2 полевые транзисторы, истоки которых соединены с первой 3 шиной источника питания через токостабилизирующий двухполюсник 4, выход устройства 5, частотозадающий конденсатор 6, включенный по переменному току между выходом устройства 5 и общей шиной источников питания 7, частотозадающую индуктивность 8, включенную по переменному току между выходом устройства 5 и общей шиной источников питания 7, и паразитный резистор 9, включенный по переменному току между выходом устройства 5 и общей шиной источников питания 7, причем затвор первого 1 полевого транзистора соединен со входом устройства 10, а его сток связан со второй 11 шиной источника питания.

Существенный недостаток известного устройства состоит в том, что оно не обеспечивает высокую добротность (Q) амплитудно-частотной характеристики при низкодобротных индуктивностях и имеет небольшие значения коэффициента усиления по напряжению (K0) на частоте квазирезонанса (f0).

Основная задача предлагаемого изобретения состоит в повышении добротности резонансной амплитудно-частотной характеристики избирательного усилителя при использовании низкодобротных планарных индуктивностей.

Первая дополнительная задача - создание условий для построения на основе заявляемого ИУ многокаскадных полосовых фильтров путем непосредственного (без дополнительных цепей согласования статических уровней) последовательного включения нескольких ИУ фиг. 2.

Вторая дополнительная задача - увеличение коэффициента усиления по напряжению K0 на частоте квазирезонанса f0, а также создание условий для электронного управления величинами K0, Q при f0=const.

Поставленные задачи решаются тем, что в СВЧ избирательном усилителе фиг. 1, содержащем первый 1 и второй 2 полевые транзисторы, истоки которых соединены с первой 3 шиной источника питания через токостабилизирующий двухполюсник 4, выход устройства 5, частотозадающий конденсатор 6, включенный по переменному току между выходом устройства 5 и общей шиной источников питания 7, частотозадающую индуктивность 8, включенную по переменному току между выходом устройства 5 и общей шиной источников питания 7, и паразитный резистор 9, включенный по переменному току между выходом устройства 5 и общей шиной источников питания 7, причем затвор первого 1 полевого транзистора соединен со входом устройства 10, а его сток связан со второй 11 шиной источника питания, предусмотрены новые элементы и связи - в схему введено дополнительное токовое зеркало 12, согласованное со второй 11 шиной источника питания, вход которого соединен со стоком второго 2 полевого транзистора, а выход подключен к затвору второго 2 полевого транзистора и выходу устройства 5.

Схема избирательного усилителя-прототипа показана на чертеже фиг. 1. На чертеже фиг. 2 представлена схема заявляемого устройства в соответствии с формулой изобретения.

На чертеже фиг. 3 представлена схема фиг. 2 с конкретным выполнением дополнительного токового зеркала 12 на биполярном транзисторе 13.

На чертеже фиг. 4 представлена схема фиг. 2 с выполнением дополнительного токового зеркала 12 на полевых транзисторах 19 и 20.

На чертеже фиг. 5 приведена схема СВЧ избирательного усилителя фиг. 2 в среде компьютерного моделирования Cadence на моделях интегральных транзисторов Xfab.

На чертеже фиг. 6 показаны (в мелком масштабе) амплитудно-частотные характеристики ИУ фиг. 5 при различных значениях коэффициента передачи по току Ki дополнительного токового зеркала 12, а также следующих параметрах паразитного резистора 9, частотозадающей индуктивности 8 и частотозадающего конденсатора 6: R9=1 кОм, L8=2.5 нГн, С6=10 пФ.

На чертеже фиг. 7 представлены (в укрупненном масштабе) амплитудно-частотные характеристики ИУ фиг. 5 при различных значениях коэффициента передачи по току Ki дополнительного токового зеркала 12, а также следующих параметрах паразитного резистора 9, частотозадающей индуктивности 8 и частотозадающего конденсатора 6: R9=1 кОм, L8=1 нГн, С6=1 пФ.

На чертеже фиг. 8 показаны амплитудно-частотные характеристики ИУ фиг. 5 при различных значениях коэффициента передачи по току Ki дополнительного токового зеркала 12, а также следующих параметрах паразитного резистора 9, частотозадающей индуктивности 8, частотозадающего конденсатора 6: Ki=1, L8=2.5 нГн, С6=10 пФ, R9=1 кОм и суммарном токе общей истоковой цепи транзисторов 1 и 2 I0=1 мА.

На чертеже фиг. 9 приведены амплитудно-частотные характеристики ИУ фиг. 5 при различных значениях тока токостабилизирующего двухполюсника 4 (I0) и следующих параметрах элементов R9=1 кОм, L8=2.5 нГн, С6=10 пФ и Ki=1.

На чертеже фиг. 10 представлены амплитудно-частотные характеристики ИУ фиг. 5 при различных значениях Ki дополнительного токового зеркала 12 и R9=1 кОм, L8=2.5 нГн, С6=10 пФ, а также при токе I0=1 мА.

На чертеже фиг. 11 показаны амплитудно-частотные характеристики ИУ фиг. 5 при различных значениях сопротивления паразитного резистора 9 (R0), при Ki=1, L8=2.5 нГн, С6=10 пФ и токе I0=1 мА.

На чертеже фиг. 12 представлена схема избирательного усилителя фиг. 2 в среде компьютерного моделирования PSpice на моделях полевых транзисторов с управляющим p-n-переходом (базовый матричный кристалл АБМК_1_3 НПО «Интеграл», г. Минск).

На чертеже фиг. 13 приведены амплитудно-частотные характеристики ИУ фиг. 12 при различных значениях сопротивления паразитного резистора 9: R9=Rvar=100 Ом/300 Ом/500 Ом/700 Ом/1 кОм.

На чертеже фиг. 14 показаны амплитудно-частотные характеристики ИУ фиг. 12 при различных значениях коэффициента передачи по току (Ki=0.5/1/1.5/2/3) дополнительного токового зеркала 12.

СВЧ избирательный усилитель на основе планарной индуктивности с низкой добротностью фиг. 2 содержит первый 1 и второй 2 полевые транзисторы, истоки которых соединены с первой 3 шиной источника питания через токостабилизирующий двухполюсник 4, выход устройства 5, частотозадающий конденсатор 6, включенный по переменному току между выходом устройства 5 и общей шиной источников питания 7, частотозадающую индуктивность 8, включенную по переменному току между выходом устройства 5 и общей шиной источников питания 7, и паразитный резистор 9, включенный по переменному току между выходом устройства 5 и общей шиной источников питания 7, причем затвор первого 1 полевого транзистора соединен со входом устройства 10, а его сток связан со второй 11 шиной источника питания. В схему введено дополнительное токовое зеркало 12, согласованное со второй 11 шиной источника питания, вход которого соединен со стоком второго 2 полевого транзистора, а выход подключен к затвору второго 2 полевого транзистора и выходу устройства 5.

На чертеже фиг. 3 дополнительное токовое зеркало 12 выполнено на биполярном транзисторе 13, p-n-переходе 14 и резисторах 15, 16. Для симметрирования статического режима транзисторов 1 и 2 используется цепь согласования на p-n-переходе 17 и резисторе 18.

На чертеже фиг. 4 дополнительное токовое зеркало 12 реализовано на полевых транзисторах 19 и 20, а цепь симметрирования статического режима реализована в виде вспомогательного источника напряжения 21.

Рассмотрим работу ИУ фиг. 2.

Источник входного сигнала uвх изменяет токи стока первого 1 и второго 2 полевых КМОП транзисторов. При этом токостабилизирующий двухполюсник 4 не только стабилизирует их малосигнальные параметры, но и обеспечивает приращение тока стока второго 2 полевого транзистора. Использование в схеме дополнительного токового зеркала 12, входная цепь которого включена в цепь стока второго 2 полевого транзистора, позволяет масштабировать указанное приращение тока. Поэтому падение напряжения на LC-цепи, образованной низкодобротной планарной частотозадающей индуктивностью 8 и частотозадающим конденсатором 6 (паразитным резистором 9 моделируются (учитываются) эквивалентные потери в планарной индуктивности 8), непосредственно определяется коэффициентом передачи по току (Ki) дополнительного токового зеркала 12. Соединение LC-цепи (L8, С6) с затвором второго 2 полевого транзистора реализует комплексную обратную связь. В силу симметрии амплитудно-частотной и фазочастотной характеристик этой LC-цепи в окрестности частоты квазирезонанса (f0), которая непосредственно определяется ее реактивными элементами, действие указанной обратной связи направлено на изменение реализуемой в схеме добротности Q и коэффициента усиления K0 на частоте квазирезонанса f0. Фазовые соотношения каскада на втором 2 полевом транзисторе, дополнительного токового зеркала 12 и LC-цепи (L8, С6) увеличивают избирательные свойства схемы. Вещественность и регенеративность обратной связи обеспечивается только на одной частоте, совпадающей с частотой квазирезонанса f0. Именно по этой причине действие обратной связи направлено на увеличение реализуемой добротности Q и коэффициента усиления K0 без изменения частоты квазирезонанса f0.

Покажем аналитически, что в схеме фиг. 2 реализуется более высокое значение добротности Q и коэффициента усиления K0 на частоте квазирезонанса. Действительно, комплексный коэффициент передачи ИУ фиг. 2 определяется по формуле

где f - частота входного сигнала;

f0 - частота квазирезонанса избирательного усилителя;

Q - добротность АЧХ избирательного усилителя;

K0 - коэффициент усиления ИУ на частоте квазирезонанса f0.

При этом частота квазирезонанса схемы ИУ f0 фиг. 2 находится из классического соотношения для параллельного колебательного контура:

а добротность Q зависит от глубины вещественной обратной связи ИУ фиг. 2:

где S - крутизна первого 1 и второго 2 полевых транзисторов;

L8, С6 - параметры планарной частотозадающей индуктивности 8 и частотозадающего конденсатора 6;

g0 - проводимость паразитного резистора 9, определяющая эквивалентные потери в частотозадающей индуктивности 8 и частотозадающем конденсаторе 6.

Аналогично можно найти, что коэффициент усиления по напряжению ИУ на частоте f0 увеличивается с ростом добротности Q:

Для приведенной на чертеже фиг. 3 схемы ИУ

где R15, R16 - сопротивления резисторов 15 и 16;

α13, - статический коэффициент передачи эмиттерного тока и входное сопротивление биполярного транзистора 13 для схемы с общей базой.

Что касается варианта реализации ИУ на КМОП транзисторах (фиг. 4), то здесь Ki=1. Поэтому основные параметры Q и K0 зависят от крутизны первого 1 и второго 2 полевых транзисторов

Отметим, что в устройстве-прототипе (фиг. 1)

где - сопротивление потерь планарной частотозадающей индуктивности 8.

Соотношение (6) точно соответствует добротности LC контура (L8C6) с учетом потерь (R9). Таким образом, действие обратной связи в схеме фиг. 2 направлено на компенсацию потерь, связанных с низким значением собственной добротности планарной индуктивности и наличием эквивалентных потерь LC-цепи .

Как видно из уравнений (2)-(5), в достаточно широком диапазоне численных значений (L) планарной частотозадающей индуктивности 8 при достаточно больших потерях в LC-цепи (величине g0) выбором емкости частотозадающего конденсатора 6, крутизны КМОП транзисторов S и (или) параметров, входящих в соотношение (5), можно реализовать требуемые значения основных параметров ИУ.

Важным свойством предлагаемой схемы ИУ является низкая чувствительность ее основных параметров к параметрам частотозадающей L8C6-цепи (элементы 8, 6). Действительно, при условии, что С6>>Сп

где Сп - паразитная входная емкость на подложку в цепи затвора транзистора 2.

В этом случае параметрическая чувствительность добротности при слаботочном режиме работы полевых транзисторов (1, 2) оказывается достаточно низкой

Замечательной особенностью схемы ИУ фиг. 2 является возможность функциональной настройки ИУ. Как видно из соотношения (3), необходимое значение Q можно скорректировать через крутизну S изменением тока (I0) токостабилизирующего двухполюсника 4 и параметров второго 2 полевого транзистора. Действительно,

где Ι0 - ток двухполюсника 4;

β - параметр полевого транзистора 2(1), определяемый его геометрией.

Аналогично коэффициент усиления на частоте f0:

При использовании в качестве дополнительного токового зеркала 12 биполярного транзистора 13 фиг. 3 настройка этих параметров может быть реализована изменением Ki посредством изменений сопротивлений цепи стока (R15), эмиттера (R16) или входного сопротивления транзистора 13. В этом случае

где , , - относительные изменения соответствующих сопротивлений.

Таким образом, заявляемое схемотехническое решение ИУ характеризуется более высокими значениями добротности и коэффициента усиления по напряжению в СВЧ и КВЧ диапазонах. Учитывая, что статические напряжения на входе 10 и выходе 5 равны нулю, можно сделать также вывод о том, что заявляемая схема ИУ допускает последовательное каскадирование нескольких ИУ без применения специальных согласующих цепей.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Патентная заявка US 2009/140771.

2. Патентная заявка US 2006/0028275.

3. Патентная заявка JP 2004/282499.

4. Патентная заявка US 2010/0013557.

5. Патент US 5.378.997.

6. Патентная заявка US 2005/0093628.

7. Патент US 5.343.162.

8. Патентная заявка US 2005/0062533.

9. Патентная заявка US 2005/0162229.

10. Патент US 6.628.170.

11. Патентная заявка US 2009/0212872.

12. Патентная заявка US 2006/0049874.

13. Патентная заявка US 2006/0071712.

14. Патентная заявка US 2004/0246051.

15. Патент US 6.882.223.

16. Патент ЕР 1480333.

17. Патент WO 3084054.

18. Патент US 6.366.166.

19. Патент US 6.515.547.

20. Патентная заявка US 2005/0104661.

21. Патентная заявка US 2009/0322427.

22. Патент US 7.834.703.

23. Патентная заявка US 2008/0122538.

СВЧ избирательный усилитель на основе планарной индуктивности с низкой добротностью, содержащий первый (1) и второй (2) полевые транзисторы, истоки которых соединены с первой (3) шиной источника питания через токостабилизирующий двухполюсник (4), выход устройства (5), частотозадающий конденсатор (6), включенный по переменному току между выходом устройства (5) и общей шиной источников питания (7), частотозадающую индуктивность (8), включенную по переменному току между выходом устройства (5) и общей шиной источников питания (7), и паразитный резистор (9), включенный по переменному току между выходом устройства (5) и общей шиной источников питания (7), причем затвор первого (1) полевого транзистора соединен со входом устройства (10), а его сток связан со второй (11) шиной источника питания, отличающийся тем, что в схему введено дополнительное токовое зеркало (12), согласованное со второй (11) шиной источника питания, вход которого соединен со стоком второго (2) полевого транзистора, а выход подключен к затвору второго (2) полевого транзистора и выходу устройства (5).



 

Похожие патенты:

Изобретение относится к области радиотехники и связи. Технический результат заключается в расширении диапазона рабочих частот каскодного усилителя без ухудшения коэффициента усиления по напряжению.

Изобретение относится к области радиотехники и может быть использовано в качестве прецизионного устройства усиления сигналов различных сенсоров. Технический результат заключается в уменьшении напряжения смещения нуля для повышения прецизионности операционного усилителя.

Изобретение относится к прецизионным устройствам усиления сигналов различных сенсоров. Технический результат заключается в уменьшении абсолютного значения Uсм, а также его температурных и радиационных изменений, обусловленных дрейфом β транзисторов.

Изобретение относится к области усилителей аналоговых ВЧ и СВЧ сигналов. Техническим результатом является расширение диапазона рабочих частот цепи смещения статического уровня.

Изобретение относится к прецизионным устройствам усиления сигналов различных сенсоров. Технический результат заключается в создании радиационно стойкого симметричного мультидифференциального усилителя для биполярно-полевого технологического процесса с повышенным коэффициентом усиления входного дифференциального сигнала.

Изобретение относится к вычислительной технике. Технический результат заключается в расширении допустимого диапазона частот квазирезонанса f0, зависящего от численных значений сопротивления первого частотозадающего резистора.

Изобретение относится к области радиотехники и электроники и может быть использовано в качестве источника тока или высокоомной нагрузки усилителя в структуре аналоговых микросхем и блоков различного функционального назначения.

Изобретение относится к области радиотехники и связи и может использоваться в устройствах фильтрации радиосигналов, телевидении, радиолокации и т.п. Техническим результатом является уменьшение общего энергопотребления за счет повышения добротности АЧХ ИУ и его коэффициента усиления по напряжению (K0) на частоте квазирезонанса f0.

Изобретение относится к вычислительной технике. Технический результат заключается в уменьшении эквивалентной выходной емкости составного транзистора.

Изобретение относится к области радиотехники и связи и может быть использовано в качестве устройства для прецизионного усиления по мощности аналоговых сигналов, в структурах неинвертирующих усилителей и выходных каскадов различного функционального назначения, в том числе ВЧ- и СВЧ-диапазонов.

Изобретение относится к области радиотехники и связи и может быть использовано также в измерительной технике в качестве прецизионного устройства усиления сигналов различных сенсоров. Технический результат: создание радиационно-стойкого симметричного (по входным цепям) операционного усилителя для биполярно-полевого технологического процесса с малым напряжением смещения нуля (Uсм). Прецизионный операционный усилитель для радиационно-стойкого биполярно-полевого технологического процесса имеет следующие особенности: в схему введены первый и второй дополнительные полевые транзисторы, объединенные истоки которых связаны с первой шиной источника питания через дополнительный токостабилизирующий двухполюсник и подключены к объединенным базам первого и второго выходных транзисторов, затвор первого дополнительного полевого транзистора соединен с коллектором второго выходного биполярного транзистора, затвор второго дополнительного полевого транзистора соединен с коллектором первого выходного биполярного транзистора, причем сток первого дополнительного полевого транзистора соединен с первым входом буферного усилителя, а сток второго дополнительного полевого транзистора соединен со вторым входом буферного усилителя. 5 з.п. ф-лы, 13 ил.

Изобретение относится к области электроники и измерительной техники и может быть использовано в качестве устройства усиления сигналов различных датчиков, например, в мульдифференциальных операционных усилителях (МОУ), в структуре аналоговых микросхем различного функционального назначения, работающих в условиях воздействия радиации. Технический результат - создание радиационно-стойкого входного каскада мультидифференциального операционного усилителя для биполярно-полевого технологического процесса. Входной каскад МОУ содержит два входных полевых транзистора, масштабный резистор, два вспомогательных полевых транзистора, две шины источника питания, вспомогательный двухполюсник и цепь нагрузки. Истоки вспомогательных полевых транзисторов через дополнительный резистор связаны с первой шиной источника питания и объединены с базой дополнительного транзистора. Коллектор дополнительного транзистора связан с объединенными затворами вспомогательных полевых транзисторов, а его эмиттер соединен с источником опорного напряжения. 8 ил.

Изобретение относится к области радиотехники и связи и может быть использовано в качестве устройства усиления аналоговых ВЧ и СВЧ сигналов, в структуре аналоговых микросхем различного функционального назначения (например, широкополосных усилителях). Технический результат: расширение диапазона рабочих частот КУ (повышение верхней граничной частоты fв) без ухудшения коэффициента усиления по напряжению в диапазоне средних частот. Каскодный усилитель с расширенным диапазоном рабочих частот содержит входной преобразователь «напряжение-ток», две шины источника питания, два выходных транзистора, резистор коллекторной нагрузки, дополнительный неинвертирующий усилитель напряжения и корректирующий конденсатор. 5 ил.

Изобретение относится к области радиотехники и связи и может быть использовано в устройствах усиления широкополосных сигналов, в структуре аналоговых интерфейсов различного функционального назначения. Техническим результатом изобретения является обеспечение наибольшей и постоянной полосы пропускания решающего усилителя в широком диапазоне изменения его коэффициента передачи при работе как с активной, так и емкостной или активно емкостной со значительной долей реактивности нагрузкой. В способе обеспечивается управление коэффициентом передачи решающего усилителя при выполнении масштабного изменения сопротивления резисторов четырехполюсника цепи отрицательной обратной связи; преобразования входного напряжения в ток заряда корректирующего конденсатора, причем крутизна преобразования обратно пропорциональна изменению коэффициента передачи четырехполюсника отрицательной обратной связи; стабилизации фазового сдвига сигнала обратной связи дифференциального усилителя решающего усилителя. 10 ил., 1 табл.

Изобретение относится к области радиотехники и связи и может быть использовано также в измерительной технике в качестве прецизионного устройства усиления сигналов различных сенсоров с токовым выходом. Технический результат - обеспечение подавления синфазной составляющей входных дифференциальных токов устройства. Широкополосный преобразователь N-токовых входных сигналов в напряжение на основе операционного усилителя содержит входной дифференциальный каскад с расширенным диапазоном активной работы, источник питания, цепь активной нагрузки и дополнительный каскад преобразования входных токов на транзисторе по схеме с общей базой с N-токовыми входами. Дифференциальный каскад содержит общую эмиттерную цепь, неинвертирующий вход, инвертирующий вход, противофазные токовые выходы. 4 з.п. ф-лы, 16 ил.

Изобретение относится к области радиоэлектроники. Технический результат - повышение коэффициента усиления разомкнутого операционного усилителя. Биполярно-полевой операционный усилитель содержит входной дифференциальный каскад, общая истоковая цепь которого связана с первой шиной источника питания, первый и второй входы входного дифференциального каскада, первый токовый выход входного дифференциального каскада, связанный с эмиттером первого выходного транзистора и через первый токостабилизирующий двухполюсник соединенный со второй шиной источника питания, второй токовый выход входного дифференциального каскада, связанный с эмиттером второго выходного транзистора и через второй токостабилизирующий двухполюсник соединенный со второй шиной источника питания, источник опорного напряжения, связанный с базами первого и второго выходных транзисторов, токовое зеркало, согласованное с первой шиной источника питания, выход которого соединен с токовым выходом устройства. Коллекторы первого и второго выходных транзисторов соединены с первой шиной источника питания, первый токовый выход входного дифференциального каскада связан с эмиттером первого выходного транзистора через первый дополнительный резистор, второй токовый выход входного дифференциального каскада связан с эмиттером второго выходного транзистора через второй дополнительный резистор, причем источник опорного напряжения выполнен на основе дополнительного инвертирующего усилителя синфазного сигнала, выход которого через вспомогательный источник опорного тока связан с первой шиной источника питания, первый вход дополнительного инвертирующего усилителя синфазного сигнала соединен с первым токовым выходом входного дифференциального каскада и базой первого дополнительного транзистора, второй вход дополнительного инвертирующего усилителя синфазного сигнала соединен со вторым токовым выходом входного дифференциального каскада и базой второго дополнительного транзистора, коллектор первого дополнительного транзистора соединен со входом токового зеркала, коллектор второго дополнительного транзистора подключен к выходу токового зеркала и выходу устройства, а эмиттеры первого и второго дополнительных транзисторов связаны со второй шиной источника питания. 1 з.п. ф-лы, 11 ил.

Изобретение относится к области радиоэлектроники и может быть использовано в качестве прецизионного устройства усиления сигналов. Технический результат: уменьшение статического тока, потребляемого ОУ от источников питания (без нагрузки), и уменьшение напряжения смещения нуля. Биполярно-полевой операционный усилитель на основе «перегнутого» каскода содержит входной дифференциальный каскад (1), первую (3) шину источника питания, первый (7) выходной транзистор, первый (8) токостабилизирующий резистор, вторую (9) шину источника питания, второй (11) выходной транзистор, второй (12) токостабилизирующий резистор, цепь динамической нагрузки (13), согласованную с первой (3) шиной источника питания, вход которой (14) подключен к коллектору первого (7) выходного транзистора, а также первый (17) прямосмещенный p-n-переход, второй (18) прямосмещенный p-n-переход, первый (19) и второй (20) дополнительные резисторы. 2 з.п. ф-лы, 8 ил.

Изобретение относится к области радиоэлектроники, в частности усиления сигналов. Технический результат - уменьшение статического тока, потребляемого ОУ при отключенной нагрузке. Биполярно-полевой операционный усилитель на основе «перегнутого» каскода содержит входной дифференциальный каскад, общая истоковая цепь которого связана с первой шиной источника питания, первый и второй входы входного каскада, первый токовый выход входного каскада, связанный с эмиттером первого выходного транзистора, который через первый вспомогательный резистор соединен со второй шиной источника питания, второй токовый выход входного каскада, связанный с эмиттером второго выходного транзистора, который через второй вспомогательный резистор соединен со второй шиной источника питания, цепь динамической нагрузки, согласованную с первой шиной источника питания, вход которой соединен с коллектором второго выходного транзистора, а выход подключен к выходу устройства и коллектору первого выходного транзистора. Первый токовый выход входного каскада связан с эмиттером первого выходного транзистора через первый дополнительный двухполюсник и подключен к базе второго выходного транзистора, а второй токовый выход входного каскада связан с эмиттером второго выходного транзистора через второй дополнительный двухполюсник и подключен к базе первого выходного транзистора. 2 з.п. ф-лы, 9 ил.
Наверх