Способ определения показателей электрического поля сердца


 


Владельцы патента RU 2571889:

Павлов Сергей Валентинович (RU)

Представленная группа изобретений относится к медицине, а именно к кардиологии. Определяют моментные векторы электрического поля по трем выбранным парам проекций на стандартные и/или усиленные отведения. Затем определяют углы между выбранными парами моментных векторов. При этом наибольший из полученных углов принимают за угол расхождения моментной электрической оси сердца, оценку электрического поля сердца проводят по полученному углу расхождения. Определяют суммарные векторы электрического поля за заданный интервал времени для каждого отведения по трем парам проекций на стандартные и/или усиленные отведения. Причем суммарные векторы определяют для каждого отведения как сумма амплитуд положительных и отрицательных зубцов снимаемой ЭКГ на данном интервале. Затем определяют углы между выбранными парами суммарных векторов. И наибольший из полученных углов принимают за угол расхождения электрической оси сердца, оценку электрического поля сердца проводят по полученному углу расхождения. Определяют суммарные векторы электрического поля за заданный интервал времени по трем парам проекций на стандартные и/или усиленные отведения. Причем суммарные векторы определяют для каждого отведения как площадь под снимаемой ЭКГ кривой, деленной на продолжительность выбранного интервала времени. Затем определяют углы между выбранными парами суммарных векторов, причем наибольший из полученных углов принимают за угол расхождения. Группа изобретений позволяет повысить точность оценки электрического поля сердца. 3 н. и 3 з.п. ф-лы.

 

Изобретение предназначено для кардиологии, функциональной диагностики и теоретической медицины. Цель изобретения - расширить диагностические возможности электрокардиографии.

При проведении анализа уровня техники аналогичных способов найдено не было.

Традиционно в каждом отведении определяют сумму амплитуд положительных и отрицательных зубцов комплекса QRS, при этом направление ЭОС либо совпадает с отведением с большим значением, или, в случае двух отведений с одинаковыми или близкими значениями суммы амплитуд зубцов, принимается, что направление ЭОС находится между двумя этими отведениями. Возможно более точное определение направления ЭОС. Исходный вектор определяется по проекциям на два выбранных отведения. Однако на практике направление ЭОС, определяемые по разным парам отведений, не совпадают, причем расхождение может быть достаточно большим, и чем более выраженные патологические изменения миокарда, тем больший угол расхождения. В связи с этим целесообразным выглядит использование угла расхождения ЭОС как дополнительного диагностического критерия.

Предлагается с помощью электрокардиографа регистрировать электрокардиограммы в стандартных отведениях. На основе полученных ЭКГ-диаграмм, для каждого момента времени, определяется исходный вектор по своим проекциям на две оси отведения, для каждой пары отведений, соответственно I-II, II-III, III-I пар отведений. Определяются углы между полученными векторами, соответственно вычисляется три угла. Угол между вектором пары I-II и II-III, II-III и III-I, III-I и I-II. Наибольший угол и является углом расхождения моментной электрической оси сердца. Угол расхождения моментной электрической оси сердца также возможно определять для усиленных отведений aVR, aVL и aVF. Возможен и комбинированный способ для шести осей I, II, III, aVR, aVL и aVF. Угол расхождение моментной электрической оси наибольшего максимума, обычно это зубец R или S, более 30 градусов свидетельствует либо о нарушении проведения по миокарду левого желудочка, либо о дилатации левого и правого желудочков, что может являться показанием для проведения ЭХО-КГ. Помимо этого возможно рассчитывать угол расхождения суммарного вектора за определенный интервал времени, который например, может совпадать с комплексом QRS, зубцом Р или Т. Можно использовать традиционный метод, суммируя амплитуды максимальных зубцов, однако более строгий метод выглядит предпочтительней. Вычисляются площади под кривыми для выбранного интервала и делятся на продолжительность интервала, далее получают углы вышеизложенным способом. Например, наибольший угол между вектором пары 1-11 и II-III, II-III и III-I, III-I и 1-11, на интервале QRS, и является углом расхождения электрической оси сердца для данного интервала. В случае интервала, совпадающего с комплексом QRS, ЭОС на данном интервале будет совпадать с традиционным понятием ЭОС, а угол расхождения ЭОС на данном интервале будет соответствовать углу расхождения "традиционной ЭОС".

1. Способ определения показателей электрического поля сердца, включающий анализ по ЭКГ отведениям, отличающийся тем, что определяют моментные векторы электрического поля по трем выбранным парам проекций на стандартные и/или усиленные отведения, по которым определяют углы между выбранными парами моментных векторов, при этом наибольший из полученных углов принимают за угол расхождения моментной электрической оси сердца, оценку электрического поля сердца проводят по полученному углу расхождения.

2. Способ определения показателей электрического поля сердца, включающий анализ по ЭКГ отведениям, отличающийся тем, что определяют суммарные векторы электрического поля за заданный интервал времени для каждого отведения по трем парам проекций на стандартные и/или усиленные отведения, причем суммарные векторы определяют для каждого отведения как сумма амплитуд положительных и отрицательных зубцов снимаемой ЭКГ на данном интервале, затем определяют углы между выбранными парами суммарных векторов, наибольший из полученных углов принимают за угол расхождения электрической оси сердца, оценку электрического поля сердца проводят по полученному углу расхождения.

3. Способ определения показателей электрического поля сердца, включающий анализ по ЭКГ отведениям, отличающийся тем, что определяют суммарные векторы электрического поля за заданный интервал времени по трем парам проекций на стандартные и/или усиленные отведения, причем суммарные векторы определяют для каждого отведения как площадь под снимаемой ЭКГ кривой, деленной на продолжительность выбранного интервала времени, затем определяют углы между выбранными парами суммарных векторов, причем наибольший из полученных углов принимают за угол расхождения электрической оси сердца, оценку электрического поля сердца проводят по полученному углу расхождения.

4. Способ определения показателей электрического поля сердца по пп. 1, 2, 3, отличающийся тем, что за стандартные отведения приняты отведения соответственно I, II и III, а за усиленные отведения приняты соответственно aVR, aVL, aVF.

5. Способ определения показателей электрического поля сердца по пп. 1, 2, 3, отличающийся тем, что пары стандартных отведений определяют как пары: II-I и II-III, II-III и III-I, III-I и I-II, соответственно, а пары усиленных отведений определяют как пары усиленных отведений: aVR и aVL, aVL и aVF, aVF и aVR.

6. Способ определения показателей электрического поля сердца по пп. 1, 2, 3, отличающийся тем, что пары отведений определяют как пары: I-II и II-III, II-III и III-I, III-I и II-I, aVR и aVL, aVL и aVF, aVF и aVR, а также I и aVR, aVR и II, II и aVF. aVF и III, III и aVL, aVL и I, после чего наибольший из полученных углов принимают за угол расхождения электрической оси сердца.



 

Похожие патенты:

Изобретение относится к области медицины, а именно к педиатрии, пульмонологии, аллергологии, и может быть использовано для прогнозирования формирования бронхиальной астмы у детей раннего возраста, перенесших острый обструктивный бронхит на фоне перинатального поражения центральной нервной системы постгипоксического генеза легкой степени.

Изобретение относится к медицине и может быть использовано для определения влияния диагностического ультразвука как на пациента, так и на оператора ультрасонографии.

Изобретение относится к медицине, а именно к медицине труда, и может быть использовано для определения показаний к экспресс-коррекции психофизиологических состояний.

Изобретение относится к кардиологии и представляет собой способ определения вероятности сохранения миокарда от инфарктного повреждения, для чего создается «база данных» на основе исследования на момент поступления 7 параметров периферической крови, 11 параметров биохимического анализа крови и 6 параметров стандартной 12-канальной электрокардиограммы у 200 больных с Q-инфарктом миокарда и 200 больных, у которых развитие инфаркта миокарда не происходило.

Изобретение относится к области медицины, в частности к кардиологии, и может быть использовано для определения успешности восстановления синусового ритма у больных с пароксизмальной формой фибрилляции предсердий.
Изобретение относится к медицине, а именно к педиатрии. Определяют: величину пиковой скорости выдоха (ПСВ), л/мин, и должное значение пиковой скорости выдоха (ПСВД), л/мин; возраст ребенка (В) - количество полных лет, рост (Р) в см, массу тела (М) в кг с точностью до 0,1 кг; устанавливают коэффициенты: половой принадлежности (Π) - 1 для мужского пола, 0 - для лиц женского пола; тяжесть течения заболевания (ТЗ) - 1 легкое течение БА, 2 среднетяжелое течение БА, 3 тяжелое течение БА; получение базисной терапии (БТ) - 1 ребенок получал терапию в течение года, предшествующего обследованию, 0 не получал; степень тяжести приступа БА (ТП) - 1 легкая степень приступа, 2 среднетяжелая степень, 3 тяжелая степень.

Монитор пациента, содержащий: электрокардиограф (14, 20), контролирующий электрокардиографический сигнал (40) пациента (10); монитор (16, 20) вторичного физиологического сигнала, контролирующий второй физиологический сигнал (50) пациента одновременно с электрокардиографом, контролирующим электрокардиографический сигнал пациента; устройство (42, 44) обнаружения состояния тревоги, выполненное с возможностью обнаружения состояния тревоги, основываясь на электрокардиографическом сигнале пациента; устройство (52, 54, 56) подтверждения правильности состояния тревоги, выполненное с возможностью подтверждения правильности состояния тревоги, основываясь на регулярности импульсов пульсирующего компонента одновременно контролируемого второго физиологического сигнала пациента; и индикатор (24, 26, 58) тревоги, выполненный с возможностью создания воспринимаемого человеком сигнала тревоги при условии одновременного обнаружения состояния тревоги устройством обнаружения состояния тревоги и подтверждения правильности состояния тревоги устройством подтверждения правильности состояния тревоги.
Изобретение относится к области медицины и может быть использовано в кардиологии, эндокринологии, функциональной диагностике и может найти применение в диагностике и выборе тактики лечения ишемической болезни сердца.

Изобретение относится к области медицины, акушерства и перинатологии и может быть использовано для прогнозирования степени риска развития неблагоприятных перинатальных исходов при внутриутробном инфицировании.
Изобретение относится к медицине, охране труда, профотбору для работы горноспасателем. Может быть использовано для профотбора в отраслях промышленности, где используются индивидуальные средства защиты, а также в области охраны труда рабочих промышленных производств с вредными условиями труда.

Изобретение относится к медицине, биологии, системам обеспечения безопасности функционирования человеко-машинных систем. Проводят скрытую оценку и мониторинг опасных психофизиологических состояний (ПФС) оператора человеко-машинных систем в процессе профессиональной деятельности (ПД) с учетом сравнения параметров кардиограммы (ЭКГ) при приеме оператора на работу или переаттестации знаний на объекте-имитаторе при выполнении различных видов ПД и на реальном объекте. Вначале параметры оценивают в исходном состоянии - до начала ПД, далее - во время ПД на объекте-имитаторе, далее - на реальном объекте. По результатам сравнения принимают решение о ПФС оператора. Причем регистрацию ЭКГ проводят скрытно от испытуемого. На ЭКГ выделяют стационарные участки с последующим построением на каждом из них плотностей распределения вероятностей показателей вариабельности сердечного ритма (ВСР). Их принимают за эталоны адекватного ПФС оператора в исходном состоянии и на этапе выполнения типовых задач ПД на объекте-имитаторе. Перед началом ПД на реальном объекте вначале проводят аутентификацию приступающего к работе оператора с одновременной регистрацией его ЭКГ с выделением на ней стационарных участков и построением на каждом из них плотностей распределения регистрируемых на предыдущих этапах показателей ВСР. Определяют степень сходства полученного распределения вероятностей этих показателей на начальном стационарном участке с распределением-эталоном, полученным ранее в исходном состоянии оператора до начала ПД на объекте-имитаторе. Допуск к работе на реальном объекте осуществляют при соблюдении двух условий: наличия аутентификатора оператора и адекватного ПФС оператора, которое устанавливают, если упомянутая степень сходства распределений вероятностей показателей ВСР превышает заданный уровень. В противном случае допуск оператора к работе на реальном объекте блокируется. В процессе ПД на реальном объекте при регистрации ЭКГ сравнивают получаемые на каждом последующем ее стационарном участке распределения вероятностей показателей ВСР с соответствующими ранее полученными распределениями-эталонами. Выделяют наиболее близкое к текущему распределение. По нему устанавливают, в каком ПФС в текущий момент находится испытуемый. Если степень сходства распределений не превышает заданного уровня, оператор в неадекватном состоянии - опасном для продолжения ПД. Способ обеспечивает высокую достоверность оценки ПФС оператора в процессе ПД. 4 ил.

Изобретение относится к области медицины и может быть использовано в спортивной медицине. Исследование проводят в период ночного сна. Регистрируют и анализируют спектр вариабельности сердечного ритма (ВСР). При этом определяют тренд волн высокочастотного и низкочастотного диапазона спектра ВСР, отражающих уровень симпатических и парасимпатических влияний на ритм сердца. При выявлении сглаженности циркадного профиля, снижении спектра волн высокочастотного диапазона менее 0,15 Гц состояние спортсмена оценивают как перетренированность и/или спортивный стресс. При преобладании в спектре ВСР волн высокочастотного диапазона более 0,20 Гц состояние оценивают как норма. Способ позволяет провести экспресс-диагностику и оценить функциональное состояние спортсмена в условиях тренировочного процесса, что достигается за счет анализа спектра ВСР в ночное время. 8 ил., 3 пр.
Наверх