Мехатронно-модульный робот и способ многоальтернативной оптимизации моделей автоматизации структурного синтеза для его создания

Изобретение относится к робототехнике. Технический результат заключается в создании мехатронно-модульного робота с многоальтернативной оптимизацией моделей их структурного синтеза для ориентации в окружающей среде. Мехатронно-модульный робот состоит из совокупностей сопряженных между собой тождественных модулей, при этом каждая совокупность состоит из сопряженных между собой модулей, имеющих интерфейсные площадки для стыковки, при этом один из двух модулей является управляющим по отношению к другому/им, причем указанная иерархия в структуре совокупностей мехатронно-модульного робота соблюдается при последующем сопряжении совокупностей до формирования окончательной структуры мехатронно-модульного робота. 2 н. и 1 з.п. ф-лы, 4 ил.

 

Изобретение относится к машиностроению, а именно к робототехнике, и может быть использовано при создании мехатронно-модульных роботов.

Одним из важнейших и перспективных направлений развития современной робототехники связано с разработкой нового класса устройств - многозвенных мехатронно-модульных роботов с адаптивной структурой. Структурный синтез при проектировании реконфигурируемых мехатронно-модульных роботов рассматривается как одновременное, автоматизированное решение двух задач выбора: порядка блочно-модульной сборки и варианта настройки априорно периодического закона изменения обобщенных координат (y, z), определяющего алгоритм управления движением.

Известен способ многоальтернативной оптимизации моделей автоматизации структурного синтеза мехатронно-модульных роботов, заключающийся в проведении синтеза структуры многоинвариантной модели мехатронно-модульных роботов, и последующей фиксации полученных оптимальных решений (И.М. Макаров, В.М. Лохин, С.В. Манько, М.П. Романов, М.В. Кадочников. ИТ, ″Технологии обработки знаний в задачах управления автономными мехатронно-модульными реконфигурируемыми роботами″ приложение к ″Информационные технологии″ №8, М., ″Новые технологии″, 2010, стр.3-7, рис.14-прототип).

Указанный способ многоальтернативной оптимизации моделей автоматизации структурного синтеза мехатронно-модульных роботов заключается в создании конкретных модулей и запоминании конкретных положений отдельных модулей для решения целевых задач.

Недостатками данного способа является его значительная сложность, низкая эффективность ориентации в окружающей среде реконфигурируемых мехатронных устройств, преимущественно мехатронно-модульных роботов.

Задачей предложенного технического решения является устранение указанных недостатков и создание мехатронно-модульного робота и способа многоальтернативной оптимизации моделей автоматизации структурного синтеза мехатронно-модульных роботов для его создания, применение которых позволит ускорить процесс синтеза, а также повысит эффективность ориентации в окружающей среде и надежность работы создаваемых мехатронных устройств, преимущественно мехатронно-модульных роботов.

Решение поставленной задачи достигается тем, что предложенный мехатронно-модульный робот, согласно изобретению, состоит, как минимум, из двух совокупностей сопряженных между собой тождественных модулей, предпочтительно трех и более, при этом каждая совокупность состоит, как минимум, из двух сопряженных между собой модулей, предпочтительнодвух и более, первичного и вновь с ним сопрягаемого/ых вторичного/ых, имеющих интерфейсные площадки для стыковки, при этом один из двух сопрягаемых между собой модулей, преимущественно первичный, является управляющим по отношению к другому/им, вторичному/ым, с ним стыкуемому/им, причем указанная иерархия в структуре совокупностей мехатронно-модульного робота соблюдается при последующем сопряжении совокупностей до формирования окончательной структуры мехатронно-модульного робота, при этом в каждой совокупности стыкуемые с управляющим модулем вторичные модули имеют возможность к самостоятельному осуществлению алгоритма сборки и синтеза структуры робота на более низком уровне, чем упомянутый управляющий модуль, причем количество модулей, объединяемых в упомянутый робот, определено из соотношения: n=1,N, где n - количество модулей, объединяемых в один робот, определено из соотношения n=1+x1+2x2+4x3+8x4, где: x1,x4=1,0 - количество интерфейсных площадок на модуле, N≤16 - предельное количество модулей, которые могут быть объединены в один робот, при этом сопряжение каждого нового модуля с ранее собранным/и осуществлено вдоль выбранного направления и обеспечено стыковкой его первой интерфейсной площадки с одной из свободных на любых других элементах конструкции, занимающих ближайшее крайнее положение в том или ином ряду, причем интерфейсные площадки каждого модуля выполнены с возможностью стыковки с аналогичными площадками, по крайней мере, в четырех диаметрально противоположных направлениях, при этом альтернативные переменные для алгоритмов управления синтезированной мехатронно-модульной конструкцией для описания параметров периодического закона движения выбраны из следующего соотношения:

Angle=А+В sin(ωt+φ),

где А - значение обобщенной координаты, относительно которой происходит периодическое движение; B - амплитуда периодического колебания обобщенной координаты, причем суммарная величина | A | + | B | не превышает максимально допустимого отклонения обобщенной координаты модуля; φ - смещение фазы периодического движения.

В варианте исполнения для оптимизационного структурного синтеза выбраны значения альтернативных переменных x 1 * , x 41 n * ¯ , обеспечивающих максимальное значение функции:

= [ y ( x 1 , x 41 n ¯ ) ] 2 + [ z ( x 1 , x 41 n ¯ ) ] 2 N ( x 1 , x 4 n ¯ ) N c ( x 10 , x 41 n ¯ ) max

при ограничениях n=1, N

| A 1 ( x 10 , x 12 n ¯ ) + B 1 ( x 14 n , x 17 n ¯ ) | y max , | A 2 ( x 26 , x 29 n ¯ ) + B 2 ( x 30 n , x 33 n ¯ ) | z max x 1 , x 41 n ¯ = { 1, 0.

где уmаху, zmax - максимально допустимые отклонения обобщенной координаты модуля относительно ее нулевого значения.

Для создания указанного мехатронно-модульного робота предложен способ, при использовании которого, согласно изобретению, при проведении синтеза структуры многоинвариантной модели мехатронно-модульных роботов, состоящих, как минимум, из двух совокупностей сопряженных между собой тождественных модулей, предпочтительно трех и более, при этом каждая совокупность состоит, как минимум, из двух сопряженных между собой модулей, предпочтительно двух и более, первичного и вновь с ним сопрягаемого/ых вторичного/ых, имеющих интерфейсные площадки для стыковки, при этом один из двух сопрягаемых между собой модулей, преимущественно, первичный, выполняют управляющим по отношению к другому/им, вторичному/ым, с ним стыкуемому/им, причем указанную иерархия в структуре совокупностей мехатронно-модульного робота соблюдают при последующем сопряжении совокупностей до формирования окончательной структуры мехатронно-модульного робота, при этом в каждой совокупности стыкуемые с управляющим модулем вторичные модули имеют возможность к самостоятельному осуществлению алгоритма сборки и синтеза структуры робота на более низком уровне, чем упомянутый управляющий модуль, и последующем фиксировании полученных оптимальных решений, рассматривают множество проектных элементов и вводят соответствующие альтернативные переменные путем представления дискретных чисел, соответствующих этим элементам, в двоичном исчислении, после чего обозначают количество модулей, объединяемых в один робот, преимущественно, без четко выраженной структуры, и обеспечивают сопряжение каждого нового модуля с ранее собранными вдоль выбранного направления и стыковку его первой интерфейсной площадки с одной из свободных на любых других элементах конструкции, занимающих ближайшее крайнее положение в том или ином ряду, причем интерфейсные площадки каждого модуля выполняют с возможностью стыковки с аналогичными площадками, по крайней мере, в четырех диаметрально противоположных направлениях, после чего вводят альтернативные переменные для описания параметров периодического закона движения следующим образом:

Angle=А+В sin(ωt+φ),

где А - значение обобщенной координаты, относительно которой происходит периодическое движение; В - амплитуда периодического колебания обобщенной координаты; причем суммарная величина | A | + | B | не превышает максимально допустимого отклонения обобщенной координаты модуля; φ - смещение фазы периодического движения; при этом настройкой параметров этого закона определяют алгоритмы управления, синтезируемой мехатронно-модульной конструкции, причем для оптимизационного структурного синтеза выбирают значения альтернативных переменных x 1 * , x 41 n * ¯ , обеспечивающих максимальное значение функции:

= [ y ( x 1 , x 41 n ¯ ) ] 2 + [ z ( x 1 , x 41 n ¯ ) ] 2 N ( x 1 , x 4 n ¯ ) N c ( x 10 , x 41 n ¯ ) max

при ограничениях n=1, N

| A 1 ( x 10 , x 12 n ¯ ) + B 1 ( x 14 n , x 17 n ¯ ) | y max ,

| A 2 ( x 26 , x 29 n ¯ ) + B 2 ( x 30 n , x 33 n ¯ ) | z max x 1 , x 41 n ¯ = { 1, 0.

где ymax, zmax - максимально допустимые отклонения обобщенной координаты модуля относительно ее нулевого значения, причем для нахождения максимального значения функции ƒ, используют рандомизированной алгоритм многоальтернативной оптимизации, который дополняют еще одним уровнем в рамках управляемого роя частиц.

Сущность изобретения иллюстрируется чертежами, где на фиг.1 показаны отдельные мехатронно-модульные роботы со свободными интерфейсными площадками, на фиг.2 - мехатронно-модульный робот, состоящий из нескольких модулей, соединенных между собой по свободным интерфейсным площадкам и образующий фигуру в виде многоугольника, на фиг.3 - мехатронно-модульный робот, состоящий из нескольких модулей, соединенных между собой по свободным интерфейсным площадкам и образующий фигуру в виде квадрата, на фиг.4 - мехатронно-модульный робот, состоящий из нескольких модулей, соединенных между собой по свободным интерфейсным площадкам и образующий фигуру в виде прямоугольника.

Мехатронно-модульный робот 1 состоит, как минимум, из двух совокупностей 2 и 3 сопряженных между собой модулей 4, 5 и 6.

Один из двух сопрягаемых между собой модулей, преимущественно, первичный 4, выполнен управляющим по отношению к другому, вторичному 5, с ним стыкуемому, причем указанная иерархия в структуре совокупностей мехатронно-модульного робота соблюдается при последующем сопряжении совокупностей до формирования окончательной структуры мехатронно-модульного робота. В каждой совокупности стыкуемые с управляющим модулем 4 вторичные модули 5 имеют возможность к самостоятельному осуществлению алгоритма сборки и синтеза структуры робота на более низком уровне, чем упомянутый управляющий модуль 4. В свою очередь, модуль 5, являющийся вторичным и управляемым по отношению к модулю 4, является первичным и управляющим по отношению к модулю 6. Указанная иерархия в структуре совокупностей мехатронно-модульного робота соблюдается при последующем сопряжении совокупностей 2 и 3 до формирования окончательной структуры мехатронно-модульного робота.

Сопряжение каждого нового модуля с ранее собранным/и осуществлено вдоль выбранного направления и обеспечено стыковкой его первой свободной интерфейсной площадки 7 с одной из свободных аналогичных площадок 7 на любых других элементах конструкции, занимающих ближайшее крайнее положение в том или ином ряду. Несвободная интерфейсная площадка 8 образована за счет стыковки между собой двух свободных интерфейсных площадок 7.

Предложенный мехатронно-модульный робот функционирует следующим образом.

Выбирается первичный управляющий модуль 4 со свободной интерфейсной площадкой 7 и стыкуется с любым произвольно выбранным модулем 5 с аналогичной свободной интерфейсной площадкой 7. При стыковке между собой двух свободных интерфейсных площадок 7 образуется несвободная интерфейсная площадка 8. Дальнейшее присоединение свободных модулей 6 к образованному модулю, состоящему из двух соединенных между собой модулей 4 и 5, происходит вдоль выбранного направления с образованием требуемой конечной структуры мехатронно-модульного робота.

Совокупность 2 или 3 образована модулями 4,5 и 6, состыкованными в заданном порядке между собой.

Предложенный способ по созданию мехатронно-модульного робота может быть реализован следующим образом.

Рассматривают множество проектных элементов и вводят соответствующие альтернативные переменные путем представления дискретных чисел, соответствующих этим элементам, в двоичном исчислении.

Обозначают количество модулей, объединяемых в один мехатронно-модульный робот 1, без четко выраженной структуры, n = 1, N ¯ . Тогда в двоичном исчислении получают при N≤16, где: N - количество сторон, n - количество возможный итераций.

n = 1 + x 1 + 2 x 2 + 4 x 3 + 8 x 4 , г д е x 1 , x 4 ¯ = { 1, 0.

При блочно-модульной сборке робота 1 полагают, что сопряжение каждого нового модуля с ранее собранными осуществляется вдоль выбранного направления и обеспечивается стыковкой его первой свободной интерфейсной площадки 7 с одной из свободных аналогичных интерфейсных площадок 7 на любых других модулях 4,5 и 6, как элементах конструкции, занимающих ближайшее крайнее положение в том или ином ряду.

Выделяют этот алгоритм преимущественно как Асб. Описание порядка сборки приводят к указанию направления и места крепления очередного элемента с использованием алгоритма Асб.

В направлении для стыковки n-го модуля ncm принимают четыре значения ncm=1 - север, ncm=2 - восток, ncm=3 - юг, ncm=4 - запад и представляют через альтернативные переменные:

n c m . n = 1 + x 5 n + 2 x 6 n , г д е n = 1, N , ¯ x 5 n , x 6 n = { 1, 0.

Номер площадки, выбираемой для стыковки n-го модуля в двоичном исчислении, записывают в следующем виде:

n c m . n = 1 + x 7 n + 2 x 8 n + 4 x 9 n ,

где n= 2, N , ¯ x 7 n , x 9 n ¯ = { 1, 0.

Альтернативные переменные для описания параметров периодического закона вводят следующим образом:

Angle=А+В sin(ωt+φ),

где А - значение обобщенной координаты, относительно которой происходит периодическое движение;

В - амплитуда периодического колебания обобщенной координаты; суммарная величина | A | + | B | не должна превышать максимально допустимого отклонения обобщенной координаты модуля;

φ - смещение фазы периодического движения.

Настройкой параметров этого закона определяют алгоритмы управления, синтезируемой мехатронно-модульной конструкции. Указанные параметры характеризуются дискретными значениями, имеющими соответствующие численные номера в пределах N≤16.

Затем для оптимизационного структурного синтеза выбирают значения альтернативных переменных x 1 * , x 41 n * ¯ , обеспечивающих максимальное значение функции.

= [ y ( x 1 , x 41 n ¯ ) ] 2 + [ z ( x 1 , x 41 n ¯ ) ] 2 N ( x 1 , x 4 n ¯ ) N c ( x 10 , x 41 n ¯ ) max

при ограничениях n=1, N

| A 1 ( x 10 , x 12 n ¯ ) + B 1 ( x 14 n , x 17 n ¯ ) | y max , | A 2 ( x 26 , x 29 n ¯ ) + B 2 ( x 30 n , x 33 n ¯ ) | z max x 1 , x 41 n ¯ = { 1, 0.

где ymax, zmax - максимально допустимые отклонения обобщенной координаты модуля относительно ее нулевого значения.

Для нахождения максимального значения функции f используют рандомизированный алгоритм многоальтернативной оптимизации, который дополняют еще одним уровнем в рамках управляемого роя частиц.

Для синхронизации процедуры метода роя частиц и вариационной процедуры многоальтернативной оптимизации на каждом шаге управляют выбором частицы для обновления скорости изменения координат, которую осуществляют с использованием рандомизированной схемы. С этой целью вводят случайную дискретную величину m, которая принимает значение m=1, М с вероятностью pn. На первом шаге получают

p n 1 = 1 N n = 1, N ¯ .

Далее изменение значений p n k при условии n = 1 M p n ν k = 1 осуществляют следующим образом. Определяют значение случайной величины n ˜ . Пусть n ˜ = ν . Тогда скорости изменения координат на (k+1)-м шаге вычисляются

ν m n r + 1 = { ν m n r , n = 1, N , ¯ n ν , p B m n r + 1 [ q z m n r æ ( 1 m F ) p z m n r æ ( Δ 1 m n F ) n = ν ,

а значение вероятностей pn:

p n k + 1 = { p n k 1 + ε k + 1 n = 1, N ¯ , n ν , p n k + ε k + 1 1 + ε k + 1 , n = ν .

При этом величина ε>0 определяет степень рекордности движения ν-й частицы в направлении к экстремуму оптимизируемой функции.

Использование предложенного технического решения позволит проводить синтез структуры многоинвариантной модели мехатронно-модульных роботов с последующим фиксированием полученных оптимальных решений с последующем повышением количества возможных итераций мехатронно-модульного робота при значительном сокращении времени синтеза.

1. Мехатронно-модульный робот, характеризующийся тем, что он состоит, как минимум, из двух совокупностей сопряженных между собой тождественных модулей, при этом каждая совокупность состоит, как минимум, из двух сопряженных между собой модулей, предпочтительно двух и более, первичного и вновь с ним сопрягаемого/ых вторичного/ых, имеющих интерфейсные площадки для стыковки, при этом один из двух сопрягаемых между собой модулей, преимущественно первичный, является управляющим по отношению к друтому/им, вторичному/ым, с ним стыкуемому/им, причем указанная иерархия в структуре совокупностей мехатронно-модульного робота соблюдается при последующем сопряжении совокупностей до формирования окончательной структуры мехатронно-модульного робота, при этом в каждой совокупности стыкуемые с управляющим модулем вторичные модули имеют возможность к самостоятельному осуществлению алгоритма сборки и синтеза структуры робота на более низком уровне, чем упомянутый управляющий модуль, причем количество модулей, объединяемых в упомянутый робот, определено из соотношения: n=1,N, где n - количество модулей, объединяемых в один робот, определено из соотношения n=l+x1+2x2+4x3+8x4, где x0,x4=l,0 - количество интерфейсных площадок на модуле, N≤16 - предельное количество модулей, которые могут быть объединены в один робот, при этом сопряжение каждого нового модуля с ранее собранным/и осуществлено вдоль выбранного направления и обеспечено стыковкой его первой интерфейсной площадки с одной из свободных на любых других элементах конструкции, занимающих ближайшее крайнее положение в том или ином ряду, причем интерфейсные площадки каждого модуля выполнены с возможностью стыковки с аналогичными площадками, по крайней мере, в четырех диаметрально противоположных направлениях, при этом альтернативные переменные для алгоритмов управления синтезированной мехатронно-модульной конструкцией для описания параметров периодического закона движения выбраны из следующего соотношения:

где А - значение обобщенной координаты, относительно которой происходит периодическое движение; В - амплитуда периодического колебания обобщенной координаты, причем суммарная величина |А|+|В| не превышает максимально допустимого отклонения обобщенной координаты модуля;φ - смещение фазы периодического движения.

2. Мехатронно-модульный робот по п. 1, отличающийся тем, что для оптимизации структурного синтеза используют функцию f рандомизированного алгоритма многоальтернативной оптимизации с выбором значений альтернативных переменных обеспечивающих максимальное значение функции

при ограничениях n=1,N

где ymax, zmax - максимально допустимые отклонения обобщенной координаты модуля относительно ее нулевого значения.

3. Способ создания мехатронно-модульного робота по п. 1, характеризующийся тем, что при проведении синтеза структуры многоинвариантной модели мехатронно-модульных роботов, состоящих, как минимум, из двух совокупностей сопряженных между собой тождественных модулей, при этом каждая совокупность состоит, как минимум, из двух сопряженных между собой модулей, первичного и вновь с ним сопрягаемого/ых вторичного/ых, имеющих интерфейсные площадки для стыковки, при этом один из двух сопрягаемых между собой модулей, преимущественно первичный, является управляющим по отношению к другому/им, вторичному/ым, с ним стыкуемому/им, причем указанная иерархия в структуре совокупностей мехатронно-модульного робота соблюдается при последующем сопряжении совокупностей до формирования окончательной структуры мехатронно-модульного робота, при этом в каждой совокупности стыкуемые с управляющим модулем вторичные модули имеют возможность к самостоятельному осуществлению алгоритма сборки и синтеза структуры робота на более низком уровне, чем упомянутый управляющий модуль, и последующем фиксировании полученных оптимальных решений, рассматривают множество проектных элементов и вводят соответствующие альтернативные переменные путем представления дискретных чисел, соответствующих этим элементам, в двоичном исчислении, после чего обозначают количество модулей, объединяемых в один робот, преимущественно, без четко выраженной структуры, и обеспечивают сопряжение каждого нового модуля с ранее собранными вдоль выбранного направления и стыковку его первой интерфейсной площадки с одной из свободных на любых других элементах конструкции, занимающих ближайшее крайнее положение в том или ином ряду, причем интерфейсные площадки каждого модуля выполняют с возможностью стыковки с аналогичными площадками, по крайней мере, в четырех диаметрально противоположных направлениях, после чего вводят альтернативные переменные для описания параметров периодического закона движения следующим образом:

где А - значение обобщенной координаты, относительно которой происходит периодическое движение; В - амплитуда периодического колебания обобщенной координаты; причем суммарная величина |А|+|B| не превышает максимально допустимого отклонения обобщенной координаты модуля;φ - смещение фазы периодического движения; при этом настройкой параметров этого закона определяют алгоритмы управления, синтезируемой мехатронно-модульной конструкции, причем для оптимизационного структурного синтеза выбирают значения альтернативных переменных обеспечивающих максимальное значение функции:

при ограничениях n=1,N

где ymax, zmax - максимально допустимые отклонения обобщенной координаты модуля относительно ее нулевого значения, причем для нахождения максимального значения функции f используют рандомизированной алгоритм многоальтернативной оптимизации, который дополняют еще одним уровнем в рамках управляемого роя частиц.



 

Похожие патенты:

Изобретение относится к машиностроению, а именно к робототехнике, и может быть использовано при создании мехатронно-модульных роботов. Технический результат заключается в создании мехатронно-модульного робота, применение которого позволит ускорить процесс синтеза, а также повысить эффективность ориентации в окружающей среде и надежность работы создаваемых мехатронных устройств, преимущественно мехатронно-модульных роботов.

Изобретение относится к робототехнике и может быть использовано при создании мехатронно-модульных роботов. Технический результат заключается в обеспечении многоальтернативной оптимизации моделей за счет автоматизации структурного синтеза мехатронно-модульных роботов.

Изобретение относится к средствам управления различными процессами технологического комплекса с обеспечением наилучших критериев качества при регулировании. Техническим результатом является обеспечение более точного и гибкого процесса регулирования.

Группа изобретений относится к области электротехники. Технический результат заключается в увеличении производительности и надежности грузовых платформ за счет локализации объектов в режиме реального времени внутри складских сооружений и за счет увеличения количества одновременно отслеживаемых на складе грузовых платформ.

Изобретение относится к робототехнике и может быть использовано при создании мехатронно-модульных роботов. Технический результат заключается в повышении надежности и работы создаваемых мехатронно-модульных роботов.

Изобретение относится к робототехнике. Технический результат заключается в устранении указанных недостатков и создании мехатронно-модульного робота и способа многоальтернативной оптимизации моделей автоматизации структурного синтеза мехатронно-модульных роботов для его создания, применение которых позволит ускорить процесс синтеза, а также повысить эффективность ориентации в окружающей среде и надежность работы создаваемых мехатронных устройств, преимущественно мехатронно-модульных роботов.

Изобретение относится к машиностроению, а именно к робототехнике, и может быть использовано при создании мехатронно-модульных роботов. Технический результат заключается в повышении эффективности ориентации в окружающей среде реконфигурируемых мехатронных устройств, преимущественно мехатронно-модульных роботов.

Изобретение относится к машиностроению, а именно к робототехнике, и может быть использовано при создании мехатронно-модульных роботов. Технический результат заключается в повышении эффективности ориентации в окружающей среде реконфигурируемых мехатронных устройств, преимущественно мехатронно-модульных роботов.

Изобретение относится к способу и устройству управления модулем, выполненным, в частности, в виде прибора автоматизированной системы с интерфейсом связи на стороне модуля.

Изобретение относится к машиностроению, а именно к робототехнике, и может быть использовано при создании мехатронно-модульных роботов. Технический результат заключается в создании способа многоальтернативной оптимизации моделей автоматизации структурного синтеза мехатронно-модульных роботов.

Изобретение относится к робототехнике. Технический результат заключается в обеспечении многоальтернативной оптимизации моделей за счет автоматизации структурного синтеза мехатронно-модульных роботов, повышении эффективности ориентации в окружающей среде и надежности работы создаваемых мехатронных устройств. Синтез осуществляют, как минимум, из двух совокупностей сопряженных между собой тождественных модулей, с последующим фиксированием полученных оптимальных решений, рассматривают множество проектных элементов и вводят соответствующие альтернативные переменные путем представления дискретных чисел, соответствующих этим элементам, в двоичном исчислении, после чего обозначают количество модулей, объединяемых в один робот, преимущественно, без четко выраженной структуры, и обеспечивают сопряжение каждого нового модуля с ранее собранными вдоль выбранного направления и стыковку его первой интерфейсной площадки с одной из свободных на любых других элементах конструкции, занимающих ближайшее крайнее положение в том или ином ряду, после чего вводят альтернативные переменные, причем для нахождения максимального значения функции используют рандомизированный алгоритм многоальтернативной оптимизации, который дополняют еще одним уровнем в рамках управляемого роя частиц. 4 ил.

Изобретение относится к области автоматических устройств, а именно к цифровому оборудованию систем контроля и управления технологическими процессами. Техническим результатом является повышение надежности. Система логического управления (СЛУ) содержит модуль входов, логический модуль, модуль диагностики, модуль выходов, модуль оптической связи, соединенные между собой с помощью линий связи LVDS. СЛУ содержит оптические линии связи. СЛУ базируется на базовом шасси в двух комплектациях: простая - в шасси размещаются один логический модуль и один модуль диагностики; дублированная - в шасси размещаются два логических модуля (основной и резервный). Система логического управления основана на совместной работе модулей образуя: локальное ядро, разделенное ядро, гибридное ядро. 2 н. и 61 з.п. ф-лы, 41 ил.

Изобретение относится к системам аналитического контроля пульповых продуктов, растворов или суспензий в потоке, применяемых в горно-обогатительной и других отраслях промышленности. Автоматическая система включает автоматический пробоотборный комплекс 1, автоматический комплекс 10 циркуляционной пробоподачи и транспортные магистрали 30. Система дополнительно снабжена автоматическим комплексом 5 пробоподготовки, автоматическим комплексом 14 подготовки и подачи порошковых проб, аналитическим комплексом 20, комплексом 24 сетевого оборудования, центральной станцией 27 управления системой, серверами 28 системы, информационными магистралями 31. Выход пробоотборного комплекса 1 соединен с входом комплекса 5 пробоподготовки, который имеет два выхода, соединенные с комплексом 10 циркуляционной пробоподачи и комплексом 14 подготовки и подачи порошковых проб. Выходы комплекса 10 циркуляционной пробоподачи и комплекса 14 подготовки и подачи порошковых проб соединены с входами комплекса 20. Система управления каждого комплекса объединена в единую информационную сеть с центральной станцией 27 управления автоматической системой аналитического контроля и серверами 28 данной системы через комплекс сетевого оборудования. Комплекс 14 подготовки и подачи порошковых проб состоит из оборудования 15 подготовки порошковых проб, оборудования 16 шифровки/дешифровки порошковых проб, оборудования 17 перемещения порошковых проб, оборудования 18 хранения порошковых проб и устройства 19 управления комплексом. Комплекс 20 состоит из многокюветных поточных пульповых и порошковых анализаторов 22 и 21 физико-химических свойств проб и устройства 23 управления комплексом. Обеспечивается повышение эффективности системы путем повышения достоверности получаемой аналитической информации и расширения функциональных возможностей системы аналитического контроля пульповых продуктов. 2 з.п. ф-лы, 1 ил.

Изобретение относится к способу (варианты) и системе для машинной резки заготовки материала на части и машиночитаемому носителю. В процессе лучевой резки нескольких частей (31, 32, 33, 34) из заготовки материала осуществляют управление резкой с использованием набора регулирующих правил и переменных для резки двумерных форм или шаблонов. Одно правило или комбинация нескольких правил используют для операции резания в зависимости от формы или шаблона, подлежащих резанию, причем указанные форма или шаблон формируют части (31, 32, 33, 34) заготовки материала. Набор регулирующих правил содержит правила для формирования кластера (3А) из частей с разнообразными конфигурациями. Указанные части могут быть расположены близко друг к другу таким образом, что расстояние между смежными частями составляет толщину только одного прореза от режущего луча всякий раз, когда форма указанных частей допускает такую возможность. Различные совокупности правил и переменных обеспечивают возможность достижения надежного процесса резания любой конфигурации частей заготовки материала. 4 н. и 14 з.п. ф-лы, 11 ил.

Изобретение относится к управлению деятельностью организационных систем. Предметная область - системы управления объектами наблюдения в контролируемом пространстве и во внешней среде, включая информационные системы и сети, робототехнические объекты, которые оказывают влияние на состояние деятельности организационных систем. Система управления содержит аналитический центр, центр объективного контроля, преобразователь данных, информационную сеть, средства связи и средства контроля объектов наблюдения, средства связи и средства кодирования робототехнических объектов. Аналитический центр содержит вычислительный комплекс, систему хранения данных аудита деятельности организационных систем, комплекс средств аудита и комплекс средств моделирования. Центр объективного контроля содержит компьютеры, объединенные в компьютерную сеть, видеосистему с компьютером для ее настройки и мультимедиа проектор. В результате расширяются функциональные возможности системы. 1 з.п. ф-лы, 29 ил.

Изобретение относится к технологиям для управления компонентами, ассоциированными с комнатой для совещания, с использованием мобильного телефона. Технический результат - управление ассоциированными с комнатой компонентами с использованием мобильного телефона. Шлюз выполнен с возможностью принимать команду от мобильного телефона. При приеме команды шлюз определяет, является ли команда командой комнаты или командой презентации. Если команда является командой комнаты, шлюз побуждает компонент комнаты отвечать на команду комнаты. Если принятая команда является командой презентации, шлюз побуждает компонент презентации отвечать на команду презентации. Пользователь может вводить команды в мобильный телефон путем осуществления жестов с ним или на экране мобильного телефона путем использования кнопок мобильного телефона или путем взаимодействия со средствами управления пользовательского интерфейса, отображающимися на экране мобильного телефона. 3 н. и 16 з.п. ф-лы, 7 ил.

Информационно-управляющий комплекс автоматизированной системы управления (ИУК АСУ) подготовкой двигательных установок (ПДУ) и технологическим оборудованием (ТО) ракет космического назначения (РКН) на техническом и стартовом комплексах (ТК И СК) содержит автоматизированные рабочие места операторов (АРМ), блок управления связи и коммутации (БУСК) с устройствами коммутации локальной вычислительной сети (КЛВС), шлюз связи с комплексом единого времени (ШСЕВ), блоки ввода-вывода измерительной информации и сигналов управления (БВВИ), табло коллективного пользования (ТКП), блоки кабельных соединений (БКС), блоки соединений датчиков и исполнительных механизмов (БСД), четыре двунаправленные шины данных, исполнительные механизмы БКН, соединенные определенным образом. Блоки БВВИ содержат блок ввода дискретных данных (БДД), аналого-цифровой и цифроаналоговый преобразователи (АЦП И ЦАП), формирователь сигналов управления (ФСУ), устройство первичного электропитания (УПЭ), блоки управляемого вторичного электропитания (БУВЭП), микроконтроллер блока (МКБ), драйверы управления передачи данных по двунаправленным шинам (ДУПД), контроллер целостности цепей управления (КЦУ). БУСК содержит базу данных технологической информации (БДТИ), систему управления информационным обменом (СУИО), устройство управления АРМ пользователя и технологическим процессом (УУ АРМ/ТП). Обеспечивается проведение всех видов испытаний двигательных установок ракеты-носителя на техническом и стартовом комплексах. 24 ил.

Группа изобретений относится к средствам планирования графиков расписания. Технический результат – обеспечение средств создания и изменения графика расписания для устройств различного типа. Для этого в одном из вариантов осуществления графический пользовательский интерфейс отображает график расписания, показывающий соотношение между временем и по меньшей мере одним задаваемым пользователем условием, которое должно быть удовлетворено по меньшей мере одним задаваемым пользователем действием, которое должно быть выполнено, или по меньшей мере одной предустановкой, представляющей выбираемое пользователем состояние окружающей среды для заданного физического пространства. График расписания изменяют при помощи манипулирования графиком, осуществляемого пользователем. График расписания предоставляют программируемому мультимедиа контроллеру. Программируемый мультимедиа контроллер используют для управления по меньшей мере одним устройством в соответствии с графиком расписания. 3 н. и 16 з.п. ф-лы, 11 ил.

Устройство терминального управления на основе вариационных принципов содержит блок отношения, пять блоков сумматоров, четырнадцать блоков умножения, блок вычисления производной, блок линии задержки, вход эталонного сигнала, блок хранения констант, соединенных определенным образом. Обеспечивается повышение точности управления. 5 ил.

Изобретение относится к системам управления работоспособностью автоматизированных технологических объектов газотранспортных систем и может быть использовано на объектах газотранспортных предприятий. Система содержит устройство обработки данных, устройство хранения данных и устройство ввода-вывода данных. Устройство обработки данных выполнено с возможностью получения и обработки данных реального времени и/или исторических данных о технологическом объекте с целью выявления нештатных событий и включает в себя модуль обработки исторических данных, модуль обработки данных реального времени и модуль прогнозирования отказов оборудования технологического объекта. Устройство ввода-вывода данных выполнено с возможностью передачи данных о выявленных нештатных событиях оператору технологического объекта. Устройство хранения данных выполнено с возможностью приема от оператора технологического объекта данных о выявленных оператором технологического объекта нештатных событиях и о его действиях, направленных на предотвращение указанных нештатных событий, и их хранения. Технический результат - повышение надежности и безопасности эксплуатации технологических объектов газотранспортных предприятий. 2 з.п. ф-лы, 2 ил.

Изобретение относится к робототехнике. Технический результат заключается в создании мехатронно-модульного робота с многоальтернативной оптимизацией моделей их структурного синтеза для ориентации в окружающей среде. Мехатронно-модульный робот состоит из совокупностей сопряженных между собой тождественных модулей, при этом каждая совокупность состоит из сопряженных между собой модулей, имеющих интерфейсные площадки для стыковки, при этом один из двух модулей является управляющим по отношению к другомуим, причем указанная иерархия в структуре совокупностей мехатронно-модульного робота соблюдается при последующем сопряжении совокупностей до формирования окончательной структуры мехатронно-модульного робота. 2 н. и 1 з.п. ф-лы, 4 ил.

Наверх