Способ проведения сейсмических испытаний опор линий электропередач

Изобретение относится к области испытательной техники, в частности к методам сейсмических испытаний опор конструкций линий электропередач. Способ включает установку, по меньшей мере, одной опоры линии электропередач в грунтовой лоток сейсмоплатформы, заполненный грунтом или имитирующей грунт смесью с плотностью, соответствующей плотности грунта, для установки в который предназначена испытуемая опора линии электропередач, закрепление на одной или нескольких траверсах опоры линии электропередач, грузов, вес которых соответствует весу проводов и/или волоконно-оптического кабеля между опорами линий электропередач, для сооружения которой предназначена испытуемая опора линии электропередач, приведение грунтового лотка в колебательное движение с одним или несколькими выполняемыми последовательно режимами с соблюдением определенных условий, извлечение испытуемой опоры линии электропередач из грунтового лотка после его остановки и проверка сохранения целостности составляющих ее элементов и/или их соединений. Технический результат заключается в обеспечении моделирования условий реального землетрясения и реальных условий закрепления в грунте и нагружения опоры линии электропередач. 12 з.п. ф-лы, 2 ил., 1 табл.

 

Область применения

Изобретение относится к области строительства линий электропередач, а конкретно к способу проведения сейсмических испытаний опор линий электропередач, который позволяет проверить сейсмостойкость опор различных конструкций для линий электропередач напряжением 0,4-35 кВ, сооружаемых в районах с сейсмичностью до 9 баллов. Могут проводиться испытания опор линий электропередач, сооружаемых на базе железобетонных, металлических, деревянных, композитных и комбинированных стоек.

Уровень техники

Известен способ испытания стоек опор линий электропередач, предусматривающий закрепление в стаканообразном коробе концом для установки в грунте стойки опоры линии электропередач. Стойка фиксируется в стаканообразном коробе с использованием домкратов, установленных между стенками стаканообразного короба и поверхностями стойки. Конец стойки опирается на грунтовую засыпку. Непосредственно испытания проводятся за счет перемещения стаканообразного короба на тележке в одном горизонтальном направлении (SU 169271 А1, МПК G01M 19/00, 1965).

Колебательные движения стаканообразного короба в известном решении не предусмотрены как и движение в вертикальном направлении, что говорит о невозможности смоделировать нагрузки на опору линии электропередач, возникающие при землетрясении. Также в известном решении не обеспечивается возможность моделирования реальной установки стойки в грунт с моделированием грунта или почвы в конкретном районе строительства линии электропередач, для которой предусмотрена испытуемая опора.

Сущность изобретения

Технический результат настоящего изобретения заключается в обеспечении сейсмических испытаний опор линий электропередач с моделированием условий реального землетрясения и реальных условий закрепления в грунте и нагружения опоры линии электропередач.

Достижение этого технического результата реализуется способом проведения сейсмических испытаний опор линий электропередач, который предусматривает:

- установку, по меньшей мере, одной опоры линии электропередач в грунтовой лоток сейсмоплатформы, заполненный грунтом или имитирующей грунт смесью с плотностью, соответствующей плотности грунта, для установки в который предназначена испытуемая опора линии электропередач;

- закрепление на одной или нескольких траверсах опоры линии электропередач, грузов, вес которых соответствует весу проводов и/или волоконно-оптического кабеля между опорами линий электропередач, для сооружения которой предназначена испытуемая опора линии электропередач;

- приведение грунтового лотка в колебательное движение с одним или несколькими выполняемыми последовательно режимами с соблюдением следующих условий: частота не более 300 Гц, продолжительность не менее 1 с, ускорение в вертикальном и в горизонтальном направлениях не менее 0,2 g, скорость не менее 0,1 м/с и смещением не менее 0,01 м;

- извлечение испытуемой опоры линии электропередач из грунтового лотка после его остановки и проверка сохранения целостности составляющих ее элементов и/или их соединений.

Колебательное движение грунтового лотка может осуществляться со следующими режимами: продолжительность 1 с, в вертикальном направлении ускорение с величиной 30 g, скорость 3 м/с и смещение до 0,5 м, в горизонтальном направлении ускорение величиной 40 g, скорость 3 м/с и смещение до 0,5 м.

Колебательное движение грунтового лотка может осуществляться со следующими режимами: продолжительность 5 с, в вертикальном и горизонтальном направлениях ускорение 10 g, скорость 2 м/с и смещение до 0,5 м.

Колебательное движение грунтового лотка может осуществляться со следующими режимами: продолжительность 30 с, в вертикальном и горизонтальном направлениях ускорение 2 g, скорость 1 м/с и смещение до 1,0 м.

В наилучшем варианте осуществления закрепляют количество грузов, соответствующее количеству проводов и/или волоконно-оптическим кабелям, для закрепления которых предназначена испытуемая опора линии электропередач.

На закрепленных на траверсе подвесных изоляторах могут быть закреплены прутки с возможностью имитации закрепленных на траверсах проводов. При этом грузы закрепляют на прутках.

Грузы могут быть закреплены на установленных на траверсе изоляторах опоры линии электропередач.

Грузы могут быть закреплены жестко на несущей конструкции траверсы.

Наряду с установкой грузов, вес которых соответствует весу проводов и/или волоконно-оптического кабеля, на опорах может быть закреплено подвесное оборудование или соответствующий ему по весу груз.

Установку опоры линии электропередач в грунтовой лоток предпочтительно осуществлять на расстоянии от его внутренних стенок и дна, составляющем не менее 0,2 м.

Осуществление изобретения

Для проведения сейсмических испытаний опор линий электропередач в соответствии с изобретением используется сейсмоплатформа, схемы которой показаны на фиг. 1 (вид сбоку) и на фиг. 2 (вид сверху), где цифровыми позициями обозначены следующие элементы сейсмоплатформы:

- опорная конструкция сейсмоплатформы - 1;

- сейсмоплатформа - 2;

- пневматические элементы подушечного типа - 3;

- грунтовой лоток - 4;

- вибромашина - 5;

- конструктивная перегородка - 6;

- основание - 7;

- цементная подготовка - 8.

Может использоваться сейсмоплатформа иной конструкции при условии обеспечения возможности практической реализации условий проведения испытания и режимов, предусмотренных настоящим изобретением.

Способ проведения сейсмических испытаний опор линий электропередач включает:

- установку, по меньшей мере, одной опоры 9 линии электропередач в грунтовой лоток 4 сейсмоплатформы 1, заполненный грунтом или имитирующей грунт смесью с плотностью, соответствующей плотности грунта, для установки в который предназначена испытуемая опора 9 линии электропередач;

- закрепление на одной или нескольких траверсах (на схемах не показаны) опоры 9 линии электропередач, грузов, вес которых соответствует весу проводов и/или волоконно-оптического кабеля между опорами линий электропередач, для сооружения которой предназначена испытуемая опора 9 линии электропередач;

- приведение грунтового лотка 4 в колебательное движение с одним или несколькими выполняемыми последовательно режимами с соблюдением следующих условий: частота не более 300 Гц, продолжительность не менее 1 с, ускорение в вертикальном и в горизонтальном направлениях не менее 0,2 g, скорость не менее 0,1 м/с и смещением не менее 0,01 м (g - величина ускорения свободного падения);

- извлечение испытуемой опоры 9 линии электропередач из грунтового лотка 4 после его остановки и проверка сохранения целостности составляющих ее элементов и/или их соединений.

В таблице приведены основные режимы испытаний, соответствующие нескольким основным амплитудно-временным характеристикам, моделирующим возможные сейсмические нагрузки на опоры линии электропередач при землетрясении.

В таблице обозначены: OZ - вертикальная ось, OX (OY) - горизонтальная ось.

Приведенные в таблице режимы могут при проведении испытаний реализовываться, как отмечено выше, по отдельности или последовательно.

Амплитудные характеристики колебаний принимаются, не менее:

- при сейсмичности 6 и менее баллов амплитуды ускорений - ±50 см/с2, скорости - ±4 см/с, перемещения - ±2,0 см.

- при сейсмичности 7 баллов амплитуды ускорений - ±100 см/с2, скорости - ±8 см/с, перемещения - ±4,0 см.

- при сейсмичности 8 баллов амплитуды ускорений - ±200 см/с2, скорости - ±16 м/с, перемещения - ±8,0 см.

- при сейсмичности 9 баллов амплитуды ускорений - ±400 см/с2, скорости - ±32 см/с, перемещения - ±16,0 см.

Значение амплитуд ускорений, скоростей и перемещений в вертикальном направлении устанавливают, как правило, равными 0,7 значений для горизонтальных направлений.

Сейсмоплатформа 2 обеспечивает двух и/или трехкомпонентное движение и предусматривает измерительно-вычислительный комплекс, предусматривающий средства измерения в контрольных точках:

- на сейсмоплатформе 2 для измерений ускорений и перемещений в направлениях испытательных движений;

- на боковых стенках грунтовой камеры 4 для измерения ускорений в горизонтальных направлениях;

- на дне грунтовой камеры 4 под испытуемой опорой 9 для измерений ускорения в вертикальном направлении.

Установка датчиков измерительно-вычислительного комплекса производиться с обеспечением контакт с объектом испытаний. Контролируется верность воспроизведения требуемых режимов испытания. Допускаются отклонения по амплитуде перемещения ±15%, по амплитуде ускорения ±15%, по частоте вибрации ±0,5 Гц на частотах до 35 Гц, по длительности воздействия ±10%.

Установку опоры 9 линии электропередач в грунтовой лоток 4 осуществляют на расстоянии от его внутренних стенок и дна, составляющем не менее 0,2 м. Обычно 0,2-0,3 м. Опора 9 устанавливается в грунт в штатном положении, предусмотренном для конкретной конструкции испытуемой опоры 9.

В грунтовой камере 4 формируют грунтовую среду с требуемыми характеристиками. Характеристики грунтовой среды при испытаниях должны отвечать характеристикам грунта или почвы региона строительства объекта, для которого предполагается применение данной партии опор. В процессе загрузки грунт послойно (высота слоя не более 30 см) уплотняется до заданных значений. Контроль за характеристиками грунта производят на каждом этапе засыпки. Испытуемую опору 9 устанавливают заданным способом (погружение, вдавливание и т.п.), обеспечивая воспроизведение штатного раскрепления испытуемого образца. Не допускается проведение сейсмических испытаний опор 9 в условиях полной или частичной жесткой заделки.

Испытания опор 9 линии электропередачи проводят в их штатной комплектности. На опоре 9 линии электропередач закрепляют количество грузов, соответствующее количеству проводов и/или волоконно-оптическим кабелям, для закрепления которых предназначена испытуемая опора линии электропередач. Возможен вариант иного числа грузов, иного моделирования нагружения опоры 9 линии электропередач. Грузы закрепляют на установленных на траверсе изоляторах опоры 9 линии электропередач либо грузы закрепляют жестко на несущей конструкции траверсы. В случае, когда опора 9 линии электропередач предусматривает подвесные изоляторы, то на подвесных изоляторах закрепляют прутки с возможностью имитации закрепленных на траверсах проводов, а грузы закрепляют на прутках. Наряду с установкой грузов, вес которых соответствует весу проводов и/или волоконно-оптического кабеля, на опоре 9 может быть закреплено подвесное оборудование, предусмотренное для установки на испытуемой опоре 9 линии электропередач, или соответствующий по весу подвесного оборудования груз.

При осуществлении контроля состояния испытуемой опоры с целью выявления ее повреждений выявляют места повреждений и разрушений. Таковые регистрируются с помощью фотосъемки. Опора 9 линии электропередач считается не прошедшей сейсмические испытания, если:

- нарушена целостность конструкции опоры и/или любого из ее элементов;

- обнаружены деформации и/или повреждения опоры и/или любых ее элементов;

- верхушка опоры отклонена от вертикальной оси более чем на следующую величину: для стальных опор - на 1/200 высоты опоры, для железобетонных опор - на 1/150 высоты, для деревянных опор - на 1/100 высоты.

Реализация изобретения в иных, не оговоренных выше, аспектах осуществляется с использованием известных средств и методов. Приведенный пример осуществления изобретения не является исчерпывающим. Возможны иные соответствующие объему патентных притязаний варианты реализации изобретения.

1. Способ проведения сейсмических испытаний опор линий электропередач, включающий
установку, по меньшей мере, одной опоры линии электропередач в грунтовой лоток сейсмоплатформы, заполненный грунтом или имитирующей грунт смесью с плотностью, соответствующей плотности грунта, для установки в который предназначена испытуемая опора линии электропередач,
закрепление на одной или нескольких траверсах опоры линии электропередач грузов, вес которых соответствует весу проводов и/или волоконно-оптического кабеля между опорами линий электропередач, для сооружения которой предназначена испытуемая опора линии электропередач,
приведение грунтового лотка в колебательное движение с одним или несколькими выполняемыми последовательно режимами с соблюдением следующих условий: частота не более 300 Гц, продолжительность не менее 1 с, ускорение в вертикальном и в горизонтальном направлениях не менее 0,2 g, скорость не менее 0,1 м/с и смещением не менее 0,01 м,
извлечение испытуемой опоры линии электропередач из грунтового лотка после его остановки и проверка сохранения целостности составляющих ее элементов и/или их соединений.

2. Способ по п.1, отличающийся тем, что колебательное движение грунтового лотка осуществляют со следующими режимами: продолжительность 1 с, в вертикальном направлении ускорение с величиной 30 g, скорость 3 м/с и смещение до 0,5 м, в горизонтальном направлении ускорение величиной 40 g, скорость 3 м/с и смещение до 0,5 м.

3. Способ по п.1, отличающийся тем, что колебательное движение грунтового лотка осуществляют со следующими режимами: продолжительность 5 с, в вертикальном и горизонтальном направлениях ускорение 10 g, скорость 2 м/с и смещение до 0,5 м.

4. Способ по п.1, отличающийся тем, что колебательное движение грунтового лотка осуществляют со следующими режимами: продолжительность 30 с, в вертикальном и горизонтальном направлениях ускорение 2 g, скорость 1 м/с и смещение до 1,0 м.

5. Способ по любому из пп.1-4, отличающийся тем, что закрепляют количество грузов, соответствующее количеству проводов и/или волоконно-оптическим кабелям, для закрепления которых предназначена испытуемая опора линии электропередач.

6. Способ по п.5, отличающийся тем, что на закрепленных на траверсе подвесных изоляторах закрепляют прутки с возможностью имитации закрепленных на траверсах проводов, а грузы закрепляют на прутках.

7. Способ по п.5, отличающийся тем, что грузы закрепляют на установленных на траверсе изоляторах опоры линии электропередач.

8. Способ по п.5, отличающийся тем, что грузы закрепляют жестко на несущей конструкции траверсы.

9. Способ по п.5, отличающийся тем, что наряду с установкой грузов, вес которых соответствует весу проводов и/или волоконно-оптического кабеля, на опорах закрепляют подвесное оборудование или соответствующий ему по весу груз.

10. Способ по любому из пп.6-8, отличающийся тем, что наряду с установкой грузов, вес которых соответствует весу проводов и/или волоконно-оптического кабеля, на опорах закрепляют подвесное оборудование или соответствующий ему по весу груз.

11. Способ по п.5, отличающийся тем, что установку опоры линии электропередач в грунтовой лоток осуществляют на расстоянии от его внутренних стенок и дна, составляющем не менее 0,2 м.

12. Способ по любому из пп.6-9, отличающийся тем, что установку опоры линии электропередач в грунтовой лоток осуществляют на расстоянии от его внутренних стенок и дна, составляющем не менее 0,2 м.

13. Способ по п.10, отличающийся тем, что установку опоры линии электропередач в грунтовой лоток осуществляют на расстоянии от его внутренних стенок и дна, составляющем не менее 0,2 м.



 

Похожие патенты:

Использование: испытательная техника, использующая электродинамические вибростенды. Сущность: электродинамический вибростенд предназначен для испытаний многорезонансных изделий синусоидальной вибрацией переменной частоты с использованием автоматического управляющего устройства, содержащего цепь дополнительной отрицательной обратной связи с заграждающим фильтром (9), выполненным в виде последовательно соединенных между собой выделителя основной гармоники (10) с переменной частотой и устройства вычитания (11), выход которого подключен к входу усилителя мощности (3), а входы - соответственно к выходам выделителя (10) и виброизмерительного преобразователя (7), установленного на изделии (6).

Изобретение относится к оборудованию для испытаний приборов на вибрационные и ударные воздействия. Устройство содержит основание, на котором посредством, по крайней мере, трех виброизоляторов закреплена переборка, представляющая собой одномассовую колебательную систему.

Изобретение относится к области транспортного машиностроения. Испытательный стенд для исследовательских и доводочных работ по оценке влияния внешнего воздействия дождя на виброакустику автомобиля содержит установку имитации дождя, состоящую из четырех регулируемых по высоте телескопических стоек с установленным на них дождевальным устройством, устройство подачи воды с расходомером и запорной арматурой, измерительную и анализирующую виброакустическую аппаратуру, установленную в салоне исследуемого ТС, размещенного под дождевальным устройством.

Изобретение относится к вибрационной технике. Способ предполагает использование вибратора, в котором пьезоэлемент выполняют в виде пакета пьезокерамических колец, при этом внутри колец располагают цилиндрическую оправку.

Способ проверки затяжки сердечника статора электрической машины, содержащей сердечник (2) статора и ротор (3), образующие воздушный зазор (5) между собой, причем способ включает в себя этапы, на которых вводят контрольно-измерительный прибор (12), который соединен с подвижной опорой (10), в воздушный зазор (11), вводят пластину (21) между стальными листами (5) сердечника статора и приводят пластину (21) во вращение, располагают локально контрольно-измерительный прибор (12) и осуществляют локальную проверку определенных зон сердечника (2) статора генератора.

Изобретение относится к области измерительной технике и касается оптико-электрического преобразователя механических волн. Преобразователь механических волн содержит осветитель, водяную емкость с зеркальным узлом и стойку, поддерживающую светочувствительный элемент.

Изобретение относится к испытательной технике, а именно к установкам для испытания на вибрацию в трех взаимно перпендикулярных положениях прицела, при воздействии условий внешней среды.

Изобретение относится к области механики сплошных сред и предназначено для оценки напряженно-деформированного состояния объектов механических систем. Способ заключается в измерении пространственной вибрации, накапливании массива векторных величин деформаций и воспроизведении пространственного годографа измерительной точки.

Изобретение относится к испытательному оборудованию и может быть использовано в различных отраслях промышленности для испытания изделий на виброустойчивость в трех взаимно перпендикулярных положениях.

Изобретение относится к измерительной технике, а именно к оптическим измерителям и датчикам вибрации, и служит для решения задачи виброконтроля в условиях вибрационных нагрузок больших электрических машин (турбогенераторы, гидроэлектрические насосы/генераторы, электродвигатели, силовые трансформаторы).

Изобретение относится к области испытаний изделий на случайную вибрацию и может быть использовано при определении вибронадежности машин, приборов и аппаратуры. Устройство содержит цепи формирования, каждая из которых включает первый генератор шума (ГШ), подключенный к его выходу первый фильтр низких частот (ФНЧ), выход которого подключен к управляемому частотно-модулированному генератору (ЧМГ), выход которого соединен с сигнальным входом соответствующего регулируемого усилителя (РУ). Также содержит сумматор, к входам которого подключены выходы РУ, возбудитель колебаний, к входу которого подключен выход сумматора, вибродатчик, а также цепи анализа, каждая из которых включает анализирующий полосовой фильтр (АПФ), который выполнен в виде модулированного фильтра, модулирующий вход которого подключен к выходу соответствующего первого ФНЧ. Амплитудный детектор (АД) и блок сравнения (БС), которые соединены с АПФ. Индикаторное устройство, к входам которого подключены выходы АД. При этом каждая цепь формирования дополнительно содержит последовательно соединенные ГШ, второй ФНЧ, перемножитель, а каждая цепь анализа дополнительно содержит усилитель анализируемого сигнала, который подключен к вибродатчику и соединен с соответствующим вторым ФНЧ и соответствующим АПФ. Причем в каждой цепи анализа БС соединен с соответствующим перемножителем каждой цепи формирования, который соединен с соответствующим РУ. Технический результат заключается в обеспечении возможности воспроизведения случайной нестационарной вибрации. 2 н.п. ф-лы, 1 ил.

Изобретение относится к механическим испытаниям объектов, а именно к устройствам для испытаний объектов на вибронагружение в различных средах при высоких температурах и давлениях. Установка содержит индукционный нагреватель, включающий водоохлаждаемую катушку в виде спирали, выполненной с возможностью соосного размещения объекта испытаний (ОИ) внутри нагревателя, опоры для ОИ, нагружающее устройство, устройство охлаждения, соединенное с протоками охлаждения тоководов нагревателя, контрольно-измерительную аппаратуру, соединенные последовательно пульт управления, соединенный с контрольно-измерительной аппаратурой, преобразователь частоты, батарею конденсаторов, последовательно-параллельно подключенную по крайней мере к одной паре соосно установленных водоохлаждаемых катушек индукционного нагревателя в виде спиралей. Нагружающее устройство выполнено в виде вибровозбудителя, а опоры для ОИ установлены на скользящем столе вибровозбудителя. Устройство охлаждения, пульт управления, преобразователь частоты, батарея конденсаторов могут быть расположены на дистанции от вибровозбудителя с размещенным на его скользящем столе ОИ внутри катушек индукционного нагревателя, а устройство охлаждения снабжено независимым пультом управления подачей охлаждающей воды. Технический результат от использования заявляемого изобретения заключается в обеспечении испытаний крупногабаритных цилиндрических объектов на комплексные термомеханические нагрузки, сокращение времени выхода на заданный температурный режим, снижение теплопотерь, массы и габаритов, повышение температуры испытаний до 1400°C и выше, в повышении КПД установки. 2 з.п. ф-лы, 1 ил.

Изобретение относится к измерительной технике и может быть использовано для градуировки датчиков аэродинамического угла летательных аппаратов. Способ заключается в контроле вибраций датчика, превышение которых свыше определенного уровня происходит в результате изменений динамической характеристики, вызванных поврежденными или изношенными механическими компонентами датчика. Система использует компьютерную обработку сигналов вибраций для выявления повреждений датчика. Технический результат заключается в возможности обнаружения ухудшения рабочих характеристик и повреждений устройства непосредственно в процессе его использования. 3 н. и 21 з.п. ф-лы, 5 ил.

Использование: для оценки виброустойчивости компонента регулирующего клапана текучей среды. Сущность изобретения заключается в том, что в изобретении раскрыты способы и устройства для оценки виброустойчивости компонента регулирующего клапана текучей среды. Типичный способ, раскрываемый здесь, включает в себя выбор компонента регулирующего клапана текучей среды и расположение датчика относительно выбранного компонента. Способ также включает в себя механическое возбуждение выбранного компонента, определение резонансной частоты выбранного компонента и выполнение корректирующих мер, основанных на резонансной частоте выбранного компонента. Технический результат: обеспечение возможности оценки виброустойчивости компонента регулирующего клапана текучей среды. 3 н. и 23 з.п. ф-лы, 6 ил.

Изобретение относится к способам прочностных испытаний самолета. Для оценки нагружения конструкции самолета при летных прочностных испытаниях измеряют значения силовых факторов реакции конструкции датчиками деформаций, размещенными на конструкции самолета, передают измеренные значения и значения параметров полета из памяти бортовых регистраторов в память компьютеров, строят, обучают и тестируют четыре искусственные нейронные сети. На первом шаге находят относительно стационарные по нагружению короткие интервалы времени, на втором шаге вычисляют средние значения параметров полета, силовых факторов, на третьем шаге строят, обучают с учителем и тестируют две отдельные нейросети определенным образом для статических и динамических составляющих, на четвертом шаге выполняют построение многомерных моделей нагружения на основе построенных нейросетей и прогноз на их основе силовых факторов, формируют третью нейронную сеть для прогноза спектральных характеристик динамических составляющих силовых факторов и диагностики повреждений, формируют четвертую нейросеть, используя средние значения параметров полета и средние значения спектральных характеристик динамических составляющих силовых факторов для выявления наиболее влияющих на силовые факторы параметров полета. Обеспечивается повышение точности результатов прочностных исследований и сокращение числа испытательных режимов и полетов. 4 ил.

Изобретение относится к геофизическим, в частности сейсмоакустическим, устройствам исследований и может быть использовано для контроля характеристик преобразователей, применяющихся при мониторинге различных технических объектов. Устройство содержит излучающий элемент, монолитный блок, лазер, фотоприемное устройство, генератор, регистрирующее устройство и калибруемый сейсмоакустический преобразователь. В монолитном блоке выполнено отверстие. Калибруемый сейсмоакустический преобразователь установлен на монолитном блоке центром своей рабочей поверхности на отверстие. На центре рабочей поверхности калибруемого сейсмоакустического преобразователя закреплено зеркало. Излучающий элемент используется с отверстием и закреплен снизу монолитного блока. Отверстия монолитного блока и излучающего элемента установлены концентрично. Приемный модуль расположен в отверстии, не касаясь зеркала, а его выход соединен с помощью оптического волокна с оптическим разветвителем, фотоприемным устройством, лазером. Регистрирующие устройства подсоединены к выходу калибруемого сейсмоакустического преобразователя и фотоприемного устройства. Обеспечивается повышение достоверности и упрощение устройства. 1 ил.

Изобретение относится к геофизическим, в частности сейсмоакустическим, методам исследований и может быть использовано для калибровки характеристик сейсмоакустических преобразователей. Используют монолитный блок с двумя отверстиями малого диаметра симметрично от центра на диагонали. Устанавливают два - эталонный и калибруемый - сейсмоакустических преобразователя на монолитный блок центрами рабочих поверхностей на отверстия. Контролируют акустический контакт эталонного и калибруемого преобразователей с монолитным блоком. Определяют непосредственно смещение рабочих поверхностей эталонного и калибруемого сейсмоакустических преобразователей раздельно через отверстия интерференционными измерителями линейных перемещений. В качестве измерителей линейных перемещений используют многолучевые оптические интерферометры, которые развязаны с монолитным блоком, источником излучения, установленным на монолитном блоке. Возбуждают колебания так, чтобы смещения рабочих поверхностей эталонного и калибруемого сейсмоакустических преобразователей были одинаковы в один и тот же заданный момент времени. Затем измеряют электрические сигналы с выходов эталонного и калибруемого сейсмоакустических преобразователей, по которым проводят калибровку. Обеспечивается повышение достоверности калибровки сейсмоакустических преобразователей. 1 ил.

Изобретение относится к способам проведения усталостных испытаний тонкостенных конструкций, например хвостового оперения вертолета. Способ заключается в нагружении тонкостенной конструкции переменными и постоянными нагрузками, в котором значения воздействующих факторов выше, а число их повторений ниже фактических или эталонных значений, вследствие чего из-за технологического несовершенства начальной кривизны обшивки и циклической потери устойчивости в обшивке возникает трещина (трещины). На концах трещины просверливают отверстия и в районе трещины (трещины) наклеивают материал, размеры которого должны быть больше площади образовавшейся трещины (трещин) и достаточны для полного ее покрытия, а затем испытания продолжают. Технический результат заключается в возможности проведения полного цикла усталостных испытаний при возникновении повреждений. 4 ил., 4 фото.

Изобретение относится к методам неразрушающего контроля физического состояния здания или сооружения посредством измерения амплитуды и частоты их колебаний под воздействием регулируемого вибрационного источника и может быть использовано для определения динамических характеристик и сейсмостойкости зданий и сооружений. В пробуренную скважину под зданием или сооружением или вблизи от них устанавливают рукав высокого давления, заглушенный с одного конца и присоединенный другим концом к гидрообъемному генератору. Регулируемое виброимпульсное воздействие на грунт под зданием создают путем изменения давления рабочей жидкости, подаваемой в рукав высокого давления. Колебания здания или сооружения регистрируют трехкомпонентными вибродатчиками, которые устанавливают вблизи контролируемого объекта или внутри него. Заключение о физическом состоянии здания или сооружения производят на основании сравнения измеренных динамических характеристик здания или сооружения до и после виброимпульсного воздействия. Технический результат заключается в повышении точности оценки физического состояния здания или сооружения при виброимпульсном воздействии на прилегающий грунт. 2 з.п. ф-лы, 1 ил.

Изобретение относится к кабельной промышленности и касается испытания кабеля для подземной прокладки (в канализации, трубах, блоках, коллекторах, в грунтах всех категорий, в воде при пересечении болот и неглубоких рек). Перед началом испытаний середину образца кабеля длиной 500-1000 м с концами, смотанными в бухты, плотно монтируют в контейнере (лотке), наполненном грунтом. Контейнер устанавливают непосредственно на платформу вибростенда. Образец закрепляют на платформе по обеим сторонам вибростенда зажимами и фиксируют относительно основания, например, на стойках. Кабель с обеих сторон сматывается в две бухты с внутренним диаметром не менее 20 номинальным наружным диаметрам кабеля или наматывают на барабаны с диаметром шейки, аналогичным диаметру бухты. Технический результат – определение параметров - критериев годности изделия при отсутствии механических повреждений его конструкции. 2 з.п. ф-лы, 1 ил.
Наверх