Цифровой оценочно-корреляционный компенсационный обнаружитель



Цифровой оценочно-корреляционный компенсационный обнаружитель

 


Владельцы патента RU 2575481:

Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации (RU)

Изобретение относится к радиотехнике и может быть в радиотехнических устройствах для обнаружения источников радиоизлучения (ИРИ) в условиях шума неизвестной интенсивности. Техническим результатом изобретения является повышение чувствительности цифрового обнаружителя панорамного приемника сигналов со случайной амплитудой и начальной фазой в условиях шума с неизвестной интенсивностью с постоянным уровнем ложных тревог (ПУЛТ) на основе уменьшения порогового отношения сигнал/шум на входе, определяющего его чувствительность при заданных значениях вероятности обнаружения и ложной тревоги. Это соответствует увеличению дальности обнаружения ИРИ при наличии сигнала ИРИ, и обеспечивает сокращение времени анализа радиоэлектронной обстановки в заданной анализируемой полосе частот для априори неизвестной загруженности полосы частот ИРИ, а также обеспечение ПУЛТ в соответствии с заданными вероятностями обнаружения и ложной тревоги в случае отсутствия сигнала ИРИ. В цифровом оценочно-корреляционном компенсационном обнаружителе реализуется цифровой метод измерения средней дисперсии шума в канале обнаружения сигнала и ее компенсации путем алгоритмического вычитания на входе порогового блока. Компенсационный обнаружитель содержит процессор БПФ (1); схему косинусного преобразования (2); схему синусного преобразования (3); цифровую линию задержки (4); первый перемножитель (5); первый квадратор (6); второй квадратор (7); накопитель (8); сумматор (9); второй перемножитель (10); регистр хранения коэффициента усреднения 1/Н (11); первую схему вычитания (12); вторую схему вычитания (13); схему выбора максимума (14); накопитель, имеющий М входов (15); электронный ключ (16); схему сравнения (17); третью схема вычитания (18); третий перемножитель (19); четвертый перемножитель (20); регистр хранения коэффициента усреднения 1/М (21); регистр хранения значения функции, определяющей уровень порога обнаружения (22). 1 ил.

 

Изобретение относится к области радиотехники и может быть использовано в панорамных радиоприемных устройствах систем радиомониторинга, станций радиопомех, радиолокационных систем, радиопеленгаторах, средствах радио и радиорелейной связи, а также других устройствах, в которых осуществляется обнаружение сигналов источников радиоизлучения, принимаемых на фоне шума с неизвестной интенсивностью.

Известен оптимальный обнаружитель, содержащий последовательно соединенные приемную антенну, линейный тракт приемника, согласованный фильтр, пороговое устройство, [см. Мартынов В.А., Селихов Ю.И. Панорамные приемники и анализаторы спектра / Под ред. Г.Д. Заварина. - 2-e изд., перераб. и доп. - М.: Советское радио, 1980. - 352 с, ил., рис. 2.6., с. 46].

Недостатком обнаружителя является высокий уровень вероятности ложной тревоги в случае отсутствия полезного сигнала и низкая вероятность обнаружения при наличии сигнала, обусловленная низким отношением сигнал/шум, вследствие отсутствия процедуры компенсации шумовой составляющей на входе порогового устройства.

Известен радиоприемник с компенсацией помех (патент RU 2363014, G01S 7/36, 15.04.08 г.), в котором осуществляется компенсация взаимно коррелированных помех на основе использования различий в значениях взаимно корреляционных функций внутренних шумов приемника и преднамеренных помех в основном и дополнительном компенсационном каналах приема.

Недостатком радиоприемника является низкий уровень вероятности обнаружения сигнала, обусловленный низким отношением сигнал/шум, а при отсутствии сигнала высокий уровень ложных тревог вследствие того, что компенсация помех осуществляется только для случая наличия в канале приема взаимно коррелированных помех и при этом компенсационное напряжение пропорционально уровню помехи в дополнительном канале приема, а не в основном.

Известен радиоприемник с адаптивной компенсацией помех (Радиоприемные устройства: Учебник для вузов / Н.Н. Фомин, Н.Н. Буга, О.В. Головин и др.; под редакцией Н.Н. Фомина. - 3-е издание, стереотип. - М.: Горячая линия - Телеком, 2007. с. 410-411), в котором осуществляется компенсация помехового сигнала на основе использования дополнительного канала приема, сдвинутого по частоте относительно основного и включающего последовательно соединенные перестраиваемый фильтр и вычитающее устройство.

Недостатком данного радиоприемника является то, что уровень шума (помехи) в основном канале приема не учитывается, а это, в свою очередь, приводит к несоответствию уровня компенсационного напряжения истинному значению уровня шума (помехи) в основном канале приема, что приводит к снижению вероятности обнаружения сигнала из-за низкого отношения сигнал/шум, а при отсутствии сигнала к увеличению вероятности ложной тревоги.

Известен обнаружитель [Борисов В.И. и др. Пространственные и вероятностно-временные характеристики эффективности станций ответных помех при подавлении систем радиосвязи. / Под ред. В.И. Борисова. - М.: РадиоСофт, 2008. - рис. 2.9.3, с. 131.] сигналов со случайной амплитудой и начальной фазой в шумах неизвестной интенсивности с поддержанием постоянного уровня ложных тревог (ПУЛТ) и принятием решения по критерию Неймана-Пирсона.

Недостатком обнаружителя сигналов со случайной амплитудой и начальной фазой в шумах неизвестной интенсивности является не соответствие уровня порога обнаружения реально сложившейся помехово-сигнальной обстановке, а, следовательно, требуемые значения вероятностей обнаружения и ложной тревоги не обеспечиваются. Это обусловлено тем, что измерение дисперсии шума в обнаружителе осуществляется при условии отсутствия сигнала в канале обнаружения и при изменении интенсивности шума (помех) на входе приемника результат измерения будет не верен.

Наиболее близким по технической сущности к заявляемому решению является обнаружитель [Борисов В.И. и др. Пространственные и вероятностно-временные характеристики эффективности станций ответных помех при подавлении систем радиосвязи. / Под ред. В.И.Борисова. - М.: РадиоСофт, 2008. - рис. 2.6.1, с. 87] сигналов в шумах неизвестной интенсивности с поддержанием постоянного уровня ложных тревог (ПУЛТ) и принятием решения по критерию Неймана-Пирсона, содержащий процессор быстрого преобразования Фурье (БПФ), М параллельных каналов некогерентной обработки, каждый из которых включает параллельно соединенные схемы косинусного и синусного преобразования (квадратурного преобразования сигнала), первый и второй квадратор и сумматор, при этом, входы схем косинусного и синусного преобразования объединены и являются входом канала некогерентной обработки, при этом выход схемы косинусного преобразования соединен с входом первого квадратора, а выход схемы синусного преобразования соединен с входом второго квадратора, при этом выходы первого и второго квадратора соединены с первым и вторым входами сумматора соответственно, выход которого является выходом канала обработки, при этом выход каждого из М каналов является соответствующим входом М-канальной схемы выбора максимума (СВМ) и М-канального накопителя, выход которого соединен с первым входом второго перемножителя, второй вход которого соединен с выходом регистра хранения коэффициента усреднения 1/М, а выход второго перемножителя соединен с первым входом первого перемножителя, второй вход которого соединен с выходом регистра хранения значения функции, определяющей уровень порога обнаружения в соответствии с требуемым значением вероятности ложной тревоги и измеренным значением средней дисперсии шума, при этом выход первого перемножителя соединен со вторым входом схемы сравнения, первый вход которой соединен со вторым выходом СВМ, первый выход которой соединен с первым входом электронного ключа, второй вход которого соединен с первым выходом схемы сравнения, который является выходом обнаружителя.

Недостатком такого обнаружителя является то, что ПУЛТ обеспечивается только за счет измерения дисперсии внутреннего шума приемника и обнаружителя. Это означает что, в случае изменения интенсивности шума (помех) на входе приемника, заданный уровень порога обнаружения не будет соответствовать реально сложившейся помехово-сигнальной обстановке и не будет обеспечивать требуемые значения вероятностей обнаружения и ложной тревоги.

Техническим результатом изобретения является повышение чувствительности цифрового обнаружителя панорамного приемника сигналов со случайной амплитудой и начальной фазой в условиях шума с неизвестной интенсивностью с ПУЛТ на основе уменьшения порогового отношения сигнал/шум на входе, определяющего его чувствительность при заданных значениях вероятности обнаружения и ложной тревоги, за счет реализации цифрового метода измерения средней дисперсии шума в канале обнаружения сигнала и ее компенсации путем алгоритмического вычитания на входе порогового блока. Это соответствует увеличению дальности обнаружения источника радиоизлучения (ИРИ) при наличии сигнала ИРИ, и обеспечивает сокращение времени анализа радиоэлектронной обстановки в заданной анализируемой полосе частот для априори неизвестной загруженности полосы частот ИРИ, а также обеспечение ПУЛТ в соответствии с заданными вероятностями обнаружения и ложной тревоги в случае отсутствия сигнала ИРИ.

Технический результат достигается тем, что в известном цифровом оценочно-корреляционном компенсационном обнаружителе, содержащем процессор БПФ, имеющий М выходов, М каналов квадратурной обработки, каждый из которых состоит из схем косинусного и синусного преобразования, первого и второго квадратора, сумматора, при этом, входы схем косинусного и синусного преобразования объединены и соединены с соответствующими выходами процессора БПФ, схему выбора максимума (СВМ), имеющую М входов, при этом вход и выход m-го канала квадратурной обработки, где m = 1 M ¯ , соединены соответственно с соответствующими выходами процессора БПФ и входами СВМ, последовательно соединенные регистр хранения коэффициента усреднения 1/М, четвертый перемножитель, третий перемножитель, схема сравнения и электронный ключ, а также накопитель, имеющий М входов, выход которого соединен с вторым входом четвертого перемножителя, регистр хранения значения функции, определяющей уровень порога обнаружения, выход которого соединен с вторым входом третьего перемножителя, вторые входы электронного ключа и схемы сравнения соединены соответственно с первым и вторым выходом СВМ, а выходы электронного ключа и схемы сравнения являются выходами устройства, дополнительно введены М каналов когерентной обработки сигнала, каждый из которых содержит последовательно соединенные цифровую линию задержки (ЦЛЗ), первый перемножитель, накопитель, второй перемножитель, первую и вторую схемы вычитания, а также регистр хранения коэффициента усреднения 1/Н, выход которого соединен с вторым входом второго перемножителя, объединенные вторые входы первой и второй схем вычитания m-го канала когерентной обработки соединены с выходом сумматора соответствующего канала квадратурной обработки, при этом выход первой схемы вычитания соединен - с соответствующим входом накопителя, имеющего М входов, а выход второй схемы вычитания - с соответствующим входом СВМ, при этом вход ЦЛЗ m-го канала когерентной обработки объединен со вторым входом первого перемножителя и соединен с выходом схемы косинусного преобразования соответствующего канала квадратурной обработки, третья схема вычитания первый вход которой соединен с выходом третьего перемножителя, второй вход с выходом четвертого перемножителя, а выход с первым входом схемы сравнения.

Сущность изобретения заключается в том, что дополнительно введенный в каждый частотный канал обнаружителя канал когерентной обработки сигналов и третья схема вычитания, позволяют производить в масштабе времени близком к реальному одновременное раздельное измерение средней дисперсии совокупных помех в канале обнаружения независимо от наличия в нем сигнала, и средней мощности сигнала. Это позволяет: во-первых, алгоритмически путем вычитания осуществлять компенсацию измеренного значения средней дисперсии совокупных помех и, тем самым, при отсутствии сигнала уменьшить уровень ложных тревог, а при его наличии уменьшить пороговое отношение сигнал/шум на входе цифрового обнаружителя панорамного приемника, определяющего его чувствительность при заданных значениях вероятности обнаружения и ложной тревоги; во-вторых осуществлять адаптивное изменение уровня порога обнаружения, в соответствии с реально сложившейся помехово-сигнальной обстановкой и заданными по критерию Неймана-Пирсона значениями вероятностей ложной тревоги и обнаружения и, тем самым, обеспечить постоянный уровень ложных тревог на выходе обнаружителя с учетом компенсации уровня помехи.

На фиг. 1 представлена функциональная схема цифрового оценочно-корреляционного компенсационного обнаружителя, где введены следующие обозначения:

1 - процессор БПФ;

2 - схема косинусного преобразования;

3 - схема синусного преобразования;

4 - ЦЛЗ;

5 - первый перемножитель;

6 - первый квадратор;

7 - второй квадратор;

8 - накопитель;

9 - сумматор;

10 - второй перемножитель;

11 - регистр хранения коэффициента усреднения 1/Н;

12 - первая схема вычитания;

13 - вторая схема вычитания;

14-СВМ;

15 - накопитель, имеющий М входов;

16 - электронный ключ;

17 - схема сравнения;

18 - третья схема вычитания;

19 - третий перемножитель;

20 - четвертый перемножитель;

21 - регистр хранения коэффициента усреднения 1/М;

22 - регистр хранения значения функции, определяющей уровень порога обнаружения.

Заявляемое устройство содержит процессор БПФ 1, имеющий М выходов, М каналов квадратурной обработки, каждый из которых состоит из схем косинусного 2 и синусного 3 преобразования, первого 6 и второго 7 квадратора, сумматора 9, при этом, входы схем косинусного 2 и синусного 3 преобразования объединены и соединены с соответствующими выходами процессора БПФ 1, СВМ 14, имеющую М входов, при этом вход и выход m-го канала квадратурной обработки, где m = 1 M ¯ , соединены соответственно с соответствующими выходами процессора БПФ 1 и входами СВМ 14, последовательно соединенные регистр хранения коэффициента усреднения 1/М 21, четвертый перемножитель 20, третий перемножитель 19, схема сравнения 17 и электронный ключ 16, а также накопитель 15, имеющий М входов, выход которого соединен со вторым входом четвертого перемножителя 20, регистр хранения значения функции, определяющей уровень порога обнаружения 22, выход которого соединен со вторым входом третьего перемножителя 19, вторые входы электронного ключа 16 и схемы сравнения 17 соединены соответственно с первым и вторым выходом СВМ 14, а выходы электронного ключа 16 и схемы сравнения 17 являются выходами устройства, М каналов когерентной обработки сигнала, каждый из которых содержит последовательно соединенные ЦЛЗ 4, первый перемножитель 5, накопитель 8, накапливающий Н отсчетов за время накопления Tнак=H·Δtдискр., где Δtдискр. - интервал дискретизации, второй перемножитель 10, первую 12 и вторую 13 схемы вычитания, а также регистр хранения коэффициента усреднения 1/Н 11, выход которого соединен с вторым входом второго перемножителя 10, объединенные вторые входы схем вычитания 12, 13 m-го канала когерентной обработки соединены с выходом сумматора 9 соответствующего канала квадратурной обработки, при этом выход первой схемы вычитания 12 соединен - с соответствующим входом накопителя 15, имеющего М входов, а выход второй схемы вычитания 13 - с соответствующим входом СВМ 14, при этом вход ЦЛЗ 4 m-го канала когерентной обработки объединен со вторым входом первого перемножителя 5 и соединен с выходом схемы косинусного преобразования 2 соответствующего канала квадратурной обработки, третья схема вычитания 18 первый вход которой соединен с выходом третьего перемножителя 19, второй вход с выходом четвертого перемножителя 20, а выход с первым входом схемы сравнения 17.

ЦЛЗ 4 предназначена для временной задержки в каждом из М каналов действительной части X1(k)=ReX(k), где k - аргумент БПФ в спектральной области, совокупности отсчетов аддитивной смеси сигнала s(t) и шума (помех) n(t) с выхода схемы косинусного преобразования 2 на длительность большую времени корреляции шумовой составляющей.

Первый перемножитель 5 предназначен для перемножения действительной части X1(k)r=ReX(k)r совокупности спектральных отсчетов, взятой в r-й момент времени, со своей копией X1(k)r+i=ReX(k)r+i сдвинутой во времени, где r - аргумент БПФ во временной области, i временной сдвиг отсчетов соответственно.

Накопитель 8 предназначен для накопления значений произведения X3(k)=X1(k)rX1(k)r+I.

Второй перемножитель 10 предназначен для умножения накопленной в накопителе 8 суммы произведений X3(k)=X1(k)rX1(k)r+i с коэффициентом усреднения K = 1 H .

Регистр хранения 11 предназначен для хранения коэффициента усреднения K = 1 H .

Первая схема вычитания 12 предназначена для вычитания из оценки мощности P k с + ш ( ω k ) аддитивной смеси сигнала s(t) и шума (помех) n(t) оценки автокорреляционной функции P k с ( ω k ) *          одной сигнальной составляющей s(t) на частоте ωk и подачи результата вычитания в виде значения оценки мощности P k ш ( ω k ) шума (помех) n(t) на вход накопителя 15, имеющего М входов и вход второй схемы вычитания 13.

Вторая схема вычитания 13 предназначена для вычитания из оценки мощности P k с + ш ( ω k ) аддитивной смеси сигнала s(t) и шума (помех) n(t) оценки мощности P k ш ( ω k ) одной шумовой (помеховой) n(t) составляющей, полученной на выходе первой схемы вычитания и подачи результата вычитания в виде значения оценки мощности P k с ( ω k ) сигнала s(t) на частоте ωk на вход СВМ 14.

Третья схема вычитания 18 предназначена для вычитания из вычисленного значения уровня порога обнаружения на выходе третьего перемножителя 19 оценки мощности P k ш ( ω k ) одной шумовой (помеховой) n(t) составляющей.

Заявляемое устройство работает следующим образом.

На вход процессора БПФ 1 поступает совокупность L временных отсчетов Хi(t) аддитивной смеси сигнала s(t) и шума (помехи) n(t). В процессоре БПФ 1 осуществляется преобразование совокупности L временных отсчетов Xi(t) аддитивной смеси сигнала и шума по алгоритму БПФ. Таким образом, на выходе каждого из М частотных каналов процессора БПФ 1 формируется совокупность отсчетов X ( k ) = m = 0 L 1 x ( r ) e j 2 π k r L , где аргументы в спектральной 2πkΔƒ и временной rΔt областях обозначаются через k и r. После этого с каждого из М выходов процессора БПФ 1 совокупность отсчетов X ( k ) = m = 0 L 1 x ( r ) e j 2 π k r L поступает на входы М параллельных каналов некогерентной обработки, где осуществляется их косинусное X 1 ( k ) = Re X ( k ) = n = 0 N 1 x ( n ) cos n ω k и синусное X 2 ( k ) = Im X ( k ) = n = 0 N 1 x ( n ) sin n ω k преобразование в соответствующих схемах 2 и 3. Результаты косинусного и синусного преобразования, представляющие собой действительную X1(k)=ReX(k) и мнимую Х2(k)=ImХ(k) части совокупности отсчетов аддитивной смеси сигнала s(t) и шума (помех) n(t), с выходов соответствующих схем косинусного 2 и синусного 3 преобразования поступают на первый 6 и второй 7 квадраторы. С выходов первого 6 и второго 7 квадраторов квадраты действительной X 1 2 ( k ) = ( Re X ( k ) ) 2 и мнимой части X 2 2 ( k ) = ( Im X ( k ) ) 2 совокупности отсчетов аддитивной смеси сигнала s(t) и шума (помех) n(t) поступают на сумматор 9, на выходе которого формируется отсчет Y k с + ш = X 1 2 ( k ) + X 2 2 ( k ) с уровнем равным оценке мощности P k с + ш ( ω k ) аддитивной смеси сигнала s(t) и шума (помех) n(t) на частоте ωk.

С выхода схемы косинусного преобразования 2 в каждом из М каналов некогерентной обработки действительная часть Х1(k)=ReX(k) совокупности отсчетов аддитивной смеси сигнала s(t) и шума (помех) n(t) поступает на вход каждого из М дополнительных каналов когерентной обработки на первый и второй входы первого перемножителя 5, причем на его второй вход через ЦЛЗ 4 с временем задержки большим времени корреляции шумовой составляющей, определяемым следующей формулой:

где ƒдискр=2Δƒс - частота дискретизации входного сигнала, определяемая в соответствии с теоремой Котельникова шириной спектра сигнала 2Δƒс.

Таким образом, в первом перемножителе 5 осуществляется перемножение действительной части X1(k)r=ReX(k)r совокупности спектральных отсчетов, взятой в r-й момент времени, со своей копией X1(k)r+i=ReX(k)r+i сдвинутой во времени X3(k)=X1(k)rX1(k)r+i. С выхода перемножителя 5 произведение X3(k)=X1(k)rX1(k)r+i поступает на вход накопителя 8, где осуществляется накопление j = 1 H X 3 ( k ) значений произведения Х3(k)=Х1(k)rХ1(k)r+1 в течение времени накопления Тнак. С выхода накопителя 8 значение суммы j = 1 H X 3 ( k ) поступает на вход перемножителя 10, где осуществляется ее перемножение с коэффициентом усреднения K = 1 H , поступающего с выхода регистра хранения коэффициента усреднения 1/Н 11.

Таким образом, на выходе каждого дополнительного канала когерентной обработки (выход перемножителя 10) формируется оценка автокорреляционной функции P k с ( ω k ) *          сигнальной составляющей, пропорциональной мощности сигнальной составляющей аддитивной смеси сигнала s(t) и шума (помех) n(t) на частоте ωk:

С выхода каждого из М каналов некогерентной (выход сумматора 9) и когерентной обработки (выход перемножителя 10) значения оценок мощности P k с + ш ( ω k ) аддитивной смеси сигнала s(t) и шума (помех) n(t) и автокорреляционной функции K k c = P k с ( ω k ) *          одной сигнальной составляющей аддитивной смеси сигнала s(t) и шума (помех) n(t) на частоте ωk поступаю на первый и второй входы первой схемы вычитания 12, где осуществляете оценка средней мощности P k ш ( ω k ) шумовой (помеховой) n(t) составляющее аддитивной смеси сигнала s(t) и шума (помех) n(t) независимо от наличие сигнала на данной частоте:

С выхода каждого из М каналов некогерентной обработки сигнала (выход сумматора 9) и выхода первой схемы вычитания 12 значения оценок мощности P k с + ш ( ω k ) аддитивной смеси сигнала s(t) и шума (помех) n(t) на частоте ωk и мощности P k ш ( ω k ) шумовой (помеховой) n(t) составляющей поступают на входы второй схемы вычитания 13, где осуществляется оценка средней мощности P k с ( ω k ) полезного сигнала s(t) на данной частоте:

С выхода каждой из М вторых схем вычитания 13 в каждом канале обработки значение оценки средней мощности P k с ( ω k ) полезного сигнала s(t) поступает на соответствующий вход СВМ 14, где осуществляется выбор максимального значения средней мощности P k с ( ω k ) полезного сигнала s(t) и номера соответствующего канала обработки, определяющего частоту сигнала. С выхода каждой из М схем вычитания 12 значения оценок средней мощности шумовой (помеховой) составляющей Y k ш = P k ш ( ω k ) поступают на соответствующие входы накопителя 15, имеющего М входов, где осуществляется их суммирование по всем анализируемым частотным каналам i = 1 M Y k ш ( ω k ) . С выхода М-канального накопителя 15 значение суммы i = 1 M Y k ш ( ω k ) поступает на вход четвертого перемножителя 20, где осуществляется перемножение с коэффициентом усреднения K = 1 M , поступающего с выхода регистра хранения коэффициента усреднения 1/М 21:

< P k ш > = 1 M i = 1 M Y k ш ( ω k ) .

С выхода четвертого перемножителя 20 значение средней по анализируемой полосе частот мощности шумовой (помеховой) составляющей < P k ш > = 1 M i = 1 M Y k ш ( ω k ) поступает на вход третьего перемножителя 19, где осуществляется ее перемножение со значением функции, определяющей уровень порога обнаружения в соответствии с заданной по критерию Неймана-Пирсона вероятностью ложной тревоги РЛТ с выхода регистра хранения 22 и на второй вход третьей схемы вычитания 18.

Таким образом, с выхода третьего перемножителя 19 значение уровня порога обнаружения, определяемого заданной по критерию Неймана-Пирсона вероятностью ложной тревоги РЛТ и измеренным значением средней по анализируемой полосе частот мощности шумовой (помеховой) составляющей < P k ш > = 1 M i = 1 M Y k ш ( ω k ) поступает на первый вход третьей схемы вычитания 18, где осуществляется адаптивное изменение уровня порога обнаружения в соответствии с реальной помехово-сигнальной обстановкой и уровнем компенсации средней мощности шума < P k ш > = 1 M i = 1 M Y k ш ( ω k ) на входе СВМ 14, а с ее выхода значение уровня порога поступает на второй вход схемы сравнения 17 в качестве порогового напряжения. При этом в схеме сравнения 17 осуществляется сравнение максимального значения мощности сигнала P k с ( ω k ) , поступающего со второго выхода СВМ 14 на первый вход схемы сравнения 17 с пороговым напряжением на ее втором входе. При превышении порогового напряжения в схеме сравнения 17 значением мощности сигнала P k с ( ω k ) принимается решение о наличии сигнала, а в противном случае о его отсутствии. При этом на выходе схемы сравнения 17 формируется сигнальный отсчет единичного или нулевого уровня соответственно, а сам сигнальный отсчет поступает в качестве управляющего сигнала на электронный ключ 16 для считывания номера соответствующего канала обработки, где установлен факт наличия сигнала. При этом выход схемы сравнения 17 и электронного ключа 16 являются первым и вторым выходами заявляемого устройства.

Регистр 11 хранения коэффициента усреднения 1/Н, регистр 19 хранения коэффициента усреднения 1/М, регистр 20 хранения значения функции, определяющей уровень порога обнаружения, могут быть реализованы на базе микроконтроллера типа ATMEGA 8515 компании ATMEL.

Электронный ключ 15 может быть выполнен на основе известных практических схем электронных ключей (приведенных, например, в кн. Применение прецизионных аналоговых микросхем / А.Г. Алексеенко, Е.А. Коломбет, Г.И. Стародуб. - Второе изд., перераб. И доп. - М.: Радио и связь, 1985, с. 205-208).

Заявляемое устройство позволяет:

во-первых, обеспечить за счет реализации в каждом канале обработки, в процессе обнаружения сигнала обнаружителем, измерения средней мощности совокупных помех (шума) с последующей ее компенсацией на входе схемы сравнения, что приводит к уменьшению вероятности ложной тревоги на его выходе и, как следствие, к сокращению времени анализа радиоэлектронной обстановки;

во-вторых, при заданных одинаковых требованиях к значениям вероятности ложной тревоги и обнаружения сигнала, в отличие от прототипа, позволяет за счет компенсации измеренного значения средней мощности совокупных помех (шума) на входе схемы сравнения снизить уровень порога обнаружения (порогового напряжения), а, следовательно, позволяет уменьшить пороговое отношение сигнал/шум, определяющее чувствительность приемника по обнаружению, и, как следствие, к увеличению дальности обнаружения сигналов радиоэлектронных средств;

в-третьих, обеспечить постоянство заданного значения вероятности ложной тревоги РЛТ независимо от изменения спектральной плотности шума на входе обнаружителя за счет введения в каждом канале дополнительного канала когерентной обработки, позволяющего реализовать измерение средней мощности шумовой составляющей в каждом канале независимо от наличия в нем сигнала.

Таким образом, совокупность введенных блоков и связей между ними позволяет обеспечить увеличение дальности обнаружения сигналов на основе уменьшения порогового отношения сигнал/шум, определяющего чувствительность приемника; сократить время анализа радиоэлектронной обстановки за счет уменьшения вероятности ложной тревоги при компенсации измеренного значения средней мощности совокупных помех (шума) на входе схемы сравнения и обеспечить постоянство заданного значения вероятности ложной тревоги РЛТ и вероятности обнаружения сигнала, разведываемого источника радиоизлучения, за счет адаптивного изменения уровня порога обнаружения на основе измерения и компенсации средней мощности шума и/или помехи в каждом частотном канале обработки, что отсутствовало в прототипе.

Цифровой оценочно-корреляционный компенсационный обнаружитель, содержащий процессор БПФ, имеющий М выходов, М каналов квадратурной обработки, каждый из которых состоит из схем косинусного и синусного преобразования, первого и второго квадратора, сумматора, при этом входы схем косинусного и синусного преобразования объединены и соединены с соответствующими выходами процессора БПФ, схему выбора максимума (СВМ), имеющую М входов, при этом вход и выход m-го канала квадратурной обработки, где , соединены соответственно с соответствующими выходами процессора БПФ и входами СВМ, последовательно соединенные регистр хранения коэффициента усреднения 1/М, четвертый перемножитель, третий перемножитель, схема сравнения и электронный ключ, а также накопитель, имеющий М входов, выход которого соединен с вторым входом четвертого перемножителя, регистр хранения значения функции, определяющей уровень порога обнаружения, выход которого соединен с вторым входом третьего перемножителя, вторые входы электронного ключа и схемы сравнения соединены соответственно с первым и вторым выходом СВМ, а выходы электронного ключа и схемы сравнения являются выходами устройства, отличающийся тем, что дополнительно введены М каналов когерентной обработки сигнала, каждый из которых содержит последовательно соединенные цифровую линию задержки (ЦЛЗ), первый перемножитель, накопитель, второй перемножитель, первую и вторую схемы вычитания, а также регистр хранения коэффициента усреднения 1/Н, выход которого соединен с вторым входом второго перемножителя, объединенные вторые входы первой и второй схем вычитания m-го канала когерентной обработки соединены с выходом сумматора соответствующего канала квадратурной обработки, при этом выход первой схемы вычитания соединен - с соответствующим входом накопителя, имеющего М входов, а выход второй схемы вычитания - с соответствующим входом СВМ, при этом вход ЦЛЗ m-го канала когерентной обработки объединен со вторым входом первого перемножителя и соединен с выходом схемы косинусного преобразования соответствующего канала квадратурной обработки, третья схема вычитания, первый вход которой соединен с выходом третьего перемножителя, второй вход - с выходом четвертого перемножителя, а выход - с первым входом схемы сравнения.



 

Похожие патенты:

Изобретение относится к области радиотехники и может быть использовано в приемниках глобальных навигационных спутниковых систем, использующих широкополосные сигналы, манипулированные по фазе псевдослучайной последовательностью.
Изобретение относится к технике беспроводной связи и может использоваться для обеспечения пассажирского поезда беспроводной адресной аварийной сигнализацией и внутренней связью.

Изобретение относится к области радиотехники и может быть использовано в широкополосных СВЧ радиоприемных устройствах, входящих в состав аппаратуры радиопротиводействия и радионаблюдения.

Изобретение относится к системам беспроводной связи. Раскрыты модули, системы и способы обеспечения возможности беспроводной работы для электронных устройств.

Изобретение относится к технике связи и может использоваться для передачи сигналов в морской среде по гидроакустическому каналу связи. Технический результат состоит в повышении помехоустойчивости и достоверности передачи данных в условиях распространения сигнала в многолучевом канале связи при условии равенства и превышении помехи над сигналом.

Способ увеличения объема частотного ресурса относится к радиотехнике и может быть использован для создания дополнительных ресурсов передачи и получения информации с помощью радиоволн.

Изобретение относиться к области приема радиосигналов в железнодорожных радиостанциях. Технический результат заключается в повышении помехоустойчивости и качества радиоприема за счет повышения степени подавления зеркального канала в приемнике.

Изобретение относится к области радиотехники. Способ борьбы с гармонической помехой при автокорреляционном методе приема информации с использованием шумоподобных сигналов включает вычисление комплексных огибающих первого и второго периодов принимаемого сигнала, вычисление с помощью дискретного преобразования Фурье спектральных функций этих комплексных огибающих, умножение спектральной функции первого периода сигнала на комплексно-сопряженную спектральную функцию второго периода сигнала, вычисление с помощью обратного дискретного преобразования Фурье взаимно-корреляционной функции между этими комплексными огибающими, выбор максимальной компоненты взаимно-корреляционной функции и сравнение ее с порогом, при этом вычисляют квадраты огибающих спектральных функций первого и второго периодов сигнала, вычисляют дисперсии квадратов огибающих спектральных функций первого и второго периодов сигнала, осуществляют нормировку квадратов огибающих спектральных функций первого и второго периодов сигнала на соответствующие им дисперсии, в нормированных спектральных функциях первого и второго периодов сигнала выполняют поиск максимальных компонент и определяют их позиции, сравнивают значения отобранных максимальных компонент с величиной установленного порога, который определяют в соответствии с допустимой величиной вероятности ложной идентификации гармонической помехи, в случае превышения ими установленного порога в спектральных функциях комплексных огибающих первого и второго периодов элементы, находящихся на позициях отобранных максимальных компонент и их окрестностях, обнуляют, причем окрестности позиций отобранных максимальных компонент определяют уровнем гармонической помехи.

Изобретение относится к технике связи и может использоваться в системах оптической связи. Технический результат состоит в повышении надежности функционирования устройства.

Изобретение относится к системам беспроводной связи и предназначено для предоставления истории информации, ассоциированной с информацией времени, способно отображать внутреннюю или внешнюю ассоциированную информацию, ассоциированную с информацией времени, как один элемент информации, и способно интуитивно предоставлять историю информации, ассоциированной с соответствующим временем, путем управления информацией времени.

Изобретение относится к области шумоподавления в принимаемом многоканальном FM-радиосигнале и может использоваться, в частности в стереофоническом FM-радиоприемнике. Достигаемый технический результат - повышение качества звука путем повышения подавления шума в принимаемом многоканальном FM-радиосигнале. Устройство для подавления шума в принимаемом многоканальном FM-радиосигнале представлено как принимаемый средний сигнал и принимаемый побочный сигнал, содержит модуль определения параметров, сконфигурированный для определения одного или нескольких параметров, служащих признаками корреляции и/или декорреляции между принимаемым средним сигналом и принимаемым побочным сигналом, и модуль шумоподавления, сконфигурированный для генерирования побочного сигнала с подавленным шумом из принимаемого среднего сигнала с использованием одного или нескольких параметров. 3 н. и 29 з.п. ф-лы, 6 ил.

Изобретение относится к области радиотехники и может быть использовано в радиотелеметрических системах для получения информации с подвижных объектов. Достигаемый технический результат - увеличение подавления паразитного побочного излучения соседнего канала передатчика. Радиопередающее устройство содержит выходной усилитель мощности, блок контроля параметров, блок управления сигналом, переключатель частот, первый синтезатор частот, второй синтезатор частот, амплитудный модулятор, первый управляемый аттенюатор, второй управляемый аттенюатор, первый управляемый делитель частоты, второй управляемый делитель частоты. 2 ил.

Изобретение относится к средствам передачи данных для аудиосигнала посредством аудиоинтерфейса. Технический результат заключается в обеспечении возможности передачи восходящего канала для звукового сигнала. В данном устройстве первый вывод аудиоинтерфейса соединен с выходной сигнальной клеммой устройства генерирования звукового сигнала восходящего канала с помощью первой цепи, а второй вывод - с помощью второй цепи. Первый вывод аудиоинтерфейса является выводом микрофона или заземляющим выводом, а второй вывод аудиоинтерфейса является другим выводом микрофона или заземляющим выводом. Первая и вторая цепи являются аттенюаторами. 2 н. и 6 з.п. ф-лы, 9 ил.

Изобретение относится к области геофизических и технологических исследований скважин в процессе бурения. Техническим результатом является расширение функциональных возможностей для передачи информации с любым каналом связи. Предложен электрический разделитель-ретранслятор, содержащий составной металлический корпус с присоединительными резьбами на обоих концах, состоящий из верхнего и нижнего переводников, а также промежуточной изоляционной вставки, расположенной между ними, соединенных между собой резьбовыми соединениями, в которых отдельные металлические части изолированы друг от друга слоем диэлектрика. Кроме того, устройство содержит участок наружного покрытия из диэлектрического материала, диэлектрическую втулку с каналом для прохождения бурового раствора и установленный внутри диэлектрической втулки электронный блок, подсоединенный одним контактом через металлические детали к нижнему переводнику, а другим контактом - к верхнему переводнику. При этом электронный блок снабжен приемопередатчиком сигналов и блоком питания и помещен в дополнительный металлический кожух, снабженный центраторами, который установлен в канале для прохождения бурового раствора с возможностью его беспрепятственного прохождения, и закреплен к нижнему переводнику при помощи гайки со штырем, выполняющих функцию электрического контакта нижней части металлического кожуха электронного блока с указанным переводником. Вход электронной схемы соединен с контактным штырем электрическими проводами, а вход электронного блока в верхней части металлического кожуха соединен проводной связью с электрическим разъемом для ответного соединения с электронным блоком основной телесистемы. 3 ил.

Изобретение относится к области радиотехники и может быть использовано в приемниках глобальных навигационных спутниковых систем, использующих широкополосные сигналы, манипулированные по фазе псевдослучайной последовательностью. Техническим результатом изобретения является повышение помехоустойчивости приема навигационного сигнала путем воспроизведения копии сигналоподобной помехи с учетом времени задержки и последующей компенсацией помехи из входной смеси «сигнал-помеха». В навигационном приемнике с компенсатором помех на его вход поступает смесь навигационного сигнала и сигналоподобной помехи, излучаемой отечественным средством радиоэлектронного противодействия, находящимся в пределах радиовидимости приемника глобальных навигационных спутниковых систем. В канале формирования копии помехи обнаружитель помехи является обнаружителем сигнала с известными параметрами и неизвестным временем задержки и настроен на обнаружение только сигналоподобной помехи. В канале формирования копии помехи осуществляется воспроизведение копии помехи, синхронной по времени задержки с обнаруженной сигналоподобной помехой, с последующим вычитанием сформированной копии помехи из входной смеси навигационного сигнала и сигналоподобной помехи. 1 ил.

Изобретение относится к радиотехнике и может быть использовано в передатчиках сигналов глобальных навигационных спутниковых систем. Достигаемый технический результат - обеспечение возможности работы с псевдошумовыми фазомодулированными сигналами при одновременном повышении точности определения аппаратной задержки выходного сигнала передатчика. Устройство определения аппаратной задержки выходного сигнала передатчика содержит формирователь отсчетов модулирующей последовательности, цифроаналоговый преобразователь, модулятор, усилитель мощности, направленный ответвитель, антенно-фидерный блок, аналого-цифровой преобразователь, блок цифровой обработки, пассивный частотно-независимый сумматор, фильтр нижних частот, при этом блок цифровой обработки содержит фильтр контролируемого сигнала, фильтр опорного сигнала, блок определения фазы опорного сигнала, блок сравнения фаз, корреляционный блок .1 з.п. ф-лы, 4 ил.

Изобретение относится к радиотехнике, в частности к способам оценки частотного сдвига, и может быть использовано в аппаратуре беспроводных телекоммуникационных систем, использующих OFDM сигналы, а также в контрольно-измерительном оборудовании. Технический результат состоит в повышении точности оценки сдвига несущей частоты при низких отношениях сигнал/шум и частотно-селективных замираниях, при использовании одного пилотного OFDM символа, состоящего из 2 одинаковых повторяющихся частей. Для этого дополнительно вводятся: операция устранения частотного сдвига в цифровом виде для каждого OFDM символа, содержащегося в кадре, операция уточненной оценки частотного сдвига по N символам, следующим за пилотным символом, при условии что в уточненной оценке могут участвовать только те OFDM символы, которые могут быть безошибочно демодулированы, после грубой оценки частотного сдвига, операция оценки передаточной функции канала связи по пилотным поднесущим, эквалайзирование, операция восстановления спектра каждого OFDM символа к первоначальному виду, заданному в передатчике, по минимальному расстоянию между полученным отсчетом спектра и соответствующим ему, регламентированным стандартом, по которому работает система связи, расчет отношения спектра одного из OFDM символов, участвующего в уточненной оценке частотного сдвига, к каждому из OFDM символов, участвующему в уточненной оценке частотного сдвига, умножение спектра каждого принятого OFDM символа, участвующего в уточненной оценке частотного сдвига, на рассчитанное отношение, расчет разности фаз между соседними OFDM символами, участвующими в уточненной оценке частотного сдвига, усреднение рассчитанных значений разности фаз, расчет уточненной оценки частотного сдвига как отношения усредненной оценки разности фаз на 2π и на длительность одного OFDM символа, расчет результирующей оценки частотного сдвига как суммы грубой и уточненной оценки. 4 ил.

Изобретение относится к вычислительной технике и может быть использовано в автоматизированных когерентно-импульсных системах для выделения сигналов движущихся целей на фоне пассивных помех. Достигаемый технический результат - осуществление режектирования пассивных помех с априорно неизвестными спектрально-корреляционными свойствами при выделении сигналов движущихся целей. Адаптивный вычислитель для режектирования помех содержит автокомпенсатор, первый и второй блоки задержки, основной и дополнительный блоки измерения коэффициента корреляции, блок вычисления весовых коэффициентов, основной и дополнительный весовые блоки, основной сумматор, синхрогенератор, цифровую линию задержки. 1 з.п. ф-лы, 18 ил.

Изобретение относится к вычислительной технике и может быть использовано в адаптивных устройствах режектирования многочастотных пассивных помех. Достигаемый технический результат - повышение точности адаптивной компенсации текущего значения доплеровской фазы многочастотных пассивных помех. Адаптивный компенсатор фазы пассивных помех содержит блок оценивания фазы, блок задерживания, первый и второй блоки комплексного умножения, блок комплексного сопряжения, блок задержки, синхрогенератор, первый и второй умножители, первый, второй, третий и четвертый функциональные преобразователи, первый и второй блоки памяти, комплексный сумматор, дополнительный вычислитель фазы, дополнительный блок оценивания фазы, первый и второй дополнительные блоки комплексного умножения, дополнительный блок комплексного сопряжения, дополнительный блок задержки и дополнительный блок задерживания. 9 ил.

Изобретение относится к супергетеродинному приемнику сложных фазоманипулированных сигналов с двойным преобразованием частоты. Технический результат заключается в повышении избирательности, помехоустойчивости и достоверности приема сложных фазоманипулированных сигналов. Приемник содержит последовательно включенные антенну, входную цепь и усилитель радиочастоты, последовательно включенные первый гетеродин, первый смеситель и первый усилитель первой промежуточной частоты, последовательно включенные второй гетеродин, второй смеситель, усилитель второй промежуточной частоты, демодулятор и выходную цепь, выход которой является выходом приемника, два узкополосных фильтра, три фазоинвертора, четыре сумматора, два фазовращателя на 90°, перемножитель, амплитудный детектор, ключ, третий смеситель и второй усилитель первой промежуточной частоты. 4 ил.
Наверх