Многоуровневая система спутниковой связи


 


Владельцы патента RU 2575632:

Открытое акционерное общество (ОАО) "Спутниковая система "Гонец" (RU)

Изобретение относится к системам спутниковой связи, имеющим космический и наземный сегменты, и, в частности, к многоуровневой спутниковой системе связи с использованием низкоорбитальных группировок космических аппаратов наблюдения. Технический результат состоит в повышении оперативности связи при отсутствии межспутниковых каналов связи и наземных каналов связи. Для этого космический сегмент состоит из орбитальной группировки из трех спутников-ретрансляторов, равномерно разнесенных относительно друг друга по геостационарной, орбите и орбитальной группировки космических аппаратов наблюдения и связи, состоящей из низковысотной группировки космических аппаратов наблюдения и средневысотной группировки космических аппаратов связи, наземный сегмент состоит из наземных комплексов приема-передачи целевой информации и управления низковысотной группировкой космических аппаратов наблюдения и средневысотной группировкой космических аппаратов связи, а также из наземных комплексов приема-передачи целевой информации и управления орбитальной группировкой спутников-ретрансляторов на геостационарных орбитах. 1 ил.

 

Изобретение относится к системам спутниковой связи, имеющим космический и наземный сегменты, и, в частности, к многоуровневой спутниковой системе связи с использованием низкоорбитальных группировок космических аппаратов наблюдения (ОГ КАН) с высотами орбит 300-700 км, средневысотных орбитальных группировок космических аппаратов связи (ОГ КАС) с высотами орбит спутников на средневысотных эллиптических орбитах с высотами 700-20000 км и орбитальной группировки из трех спутников-ретрансляторов (ОГ СР), равномерно разнесенных относительно друг друга по геостационарной (ГСО) орбите.

Геостационарной орбитой (ГСО) называют орбиту искусственного спутника Земли радиусом 42164 км (6,6 радиусов Земли, 35786 км над поверхностью Земли) которая лежит в плоскости земного экватора. Период обращения по этой орбите равен одним суткам. Поэтому геостационар, то есть спутник, движущийся по геостационарной орбите, не меняет своего положения относительно поверхности Земли (постоянно ″висит″ над одной и той же точкой экватора). Это позволяет значительно упростить конструкцию наземного приемно-передающего оборудования, поскольку антенну, направленную на спутник, не требуется поворачивать.

Из предшествующего уровня техники известна система связи между абонентами, в которой используются две группы космических аппаратов, одна из которых выведена на низкие круговые орбиты, а другая - на геостационарные круговые орбиты. В общем случае, эта космическая группировка спутников включает 36 спутников, расположенных в шести орбитальных плоскостях по шесть спутников в каждой плоскости. Спутники снабжены радиотехническими комплексами-ретрансляторами. Заданная орбита каждого спутника поддерживается ее периодической коррекцией. На Земле расположены диспетчерские станции и станции абонентов. В процессе функционирования системы сигналы абонента, например при осуществлении телефонной связи, ретранслируют сигналы через спутник, находящийся в зоне доступа абонента и расположенный на низкой орбите, на наземную диспетчерскую станцию, находящуюся в зоне видимости данного спутника, а с диспетчерской станции - на спутник, находящийся на геостационарной орбите, а с данного спутника - на диспетчерскую станцию принимающего абонента, с которой сигналы через спутник на низкой орбите ретранслируются на станцию принимающего сигнал абонента (см. патент №2107990, кл. H04B 7/185, 1998 г.).

Недостатком этой системы является то, что для ее эффективного функционирования необходимо наличие значительного количества спутников, что существенно повышает стоимость системы и усложняет ее управление. Кроме того, принцип связи в этой системе чрезмерно сложен. Так, сигналы связи от абонента поступают на находящийся на низкой орбите спутник, оттуда - на наземную диспетчерскую станцию, далее на спутник, находящийся на геостационарной орбите, оттуда - на диспетчерскую станцию принимающего абонента и через спутник, находящийся на низкой орбите, - на станцию принимающего сигнал абонента. С учетом динамики системы, а именно постоянного относительного изменения положения спутников на низкой и геостационарной орбитах, диспетчерских и абонентских станций, необходимо осуществлять изменение положения передающих и принимающих устройств (антенн) спутников и наземных станций, что весьма сложно, а кроме того, такая организация связи приводит к снижению качества передаваемых сигналов. Необходимо также отметить, что осуществление данной системой наблюдения за передвижением объектов, наблюдение за функционированием стационарных объектов, контроль экологии в заданных регионах, контроль метеорологической обстановки, которые осуществляются со спутников, находящихся на низких орбитах, и передача данной информации потребителям через диспетчерские станции приводит к необходимости создания сети диспетчерских станций, что повышает и без того весьма высокую стоимость системы и еще более усложняет ее управление. Попытка улучшить эксплуатационные параметры системы путем введения в ее состав группировки спутников, выведенных на средневысотную орбиту (см. патент РФ №2118056, кл. H04B 7/185, 1998 г.), еще более усложнило систему и ухудшило качество передаваемых сигналов.

Наиболее близким аналогом, выбранным за прототип заявленной полезной модели, является двухуровневая система спутниковой связи (патент на полезную модель №98659 от 20.10.2010 г.), в которой для обеспечения телефонной связи на территории СНГ и глобального обмена данными на всей территории Земли включены космический и наземный сегменты, содержащие, соответственно, группировки спутников, расположенных на низковысотных и средневысотных орбитах для обеспечения связи, мобильные и стационарные абонентские станции, координирующие станции связи, размещенные в расчетных точках Земли и соединенные с наземными ретрансляторами. Космический сегмент состоит из низкоорбитальной спутниковой группировки, содержащей низкоорбитальные космические аппараты, расположенные на круговых орбитах в трех равномерно разнесенных плоскостях и средневысотной спутниковой группировки, состоящей из космических аппаратов, расположенных на средневысотных эллиптических орбитах в двух орбитальных плоскостях, при этом обе космические группировки оснащены межспутниковой связью. В состав наземного сегмента входит управляющий комплекс, потребительский комплекс и наземные каналы связи с сетью общего пользования.

Низкоорбитальная спутниковая группировка состоит из двенадцати низкоорбитальных космических аппаратов по четыре космических аппарата в каждой орбитальной плоскости.

Средневысотная спутниковая группировка состоит из шести космических аппаратов по три космических аппарата в каждой орбитальной плоскости, равномерно разнесенных одна относительно другой.

В состав управляющего комплекса системы входят центр управления системой; центр управления полетом; центр управления связным комплексом; центральные станции (ЦС1, ЦС2); региональные станции (РС-1, PC-2); абонентские терминалы потребителей; наземный пункт управления связью (НПУС-1, НПУС-2); комплекс средств измерений, сбора и обработки информации космодрома - КСИСОИ (функционально).

В состав потребительского комплекса входят подвижные абоненты, включая транспорт, а также региональные и центральные диспетчерские пункты.

Недостатком данной системы является недостаточная оперативность связи при отсутствии межспутниковой связи, которая в настоящее время практически не реализована. Снижение оперативности системы связи неприемлемо для решения ее задач по всем ее абонентским системам, в особенности для низкоорбитальной группировки космических аппаратов наблюдения и средневысотных космических аппаратов связи.

Задачей, на решение которой направлена предложенная полезная модель, является повышение оперативности связи при отсутствии межспутниковых каналов связи.

Решение данной задачи обеспечивается тем, что космический сегмент состоит (фиг.1) из орбитальной группировки из трех спутников-ретрансляторов (ОГ СР), равномерно разнесенных относительно друг друга по геостационарной орбите и орбитальной группировки космических аппаратов наблюдения и связи (ОГ КА НС), состоящей из низковысотной группировки космических аппаратов наблюдения (ОГ КАН) и средневысотной группировки космических аппаратов связи (ОГ КАС), наземный сегмент состоит из наземных комплексов приема-передачи целевой информации и управления низковысотной группировкой космических аппаратов наблюдения и средневысотной группировкой космических аппаратов связи (НК ПП ЦИУ КАН И КАС), а также из наземных комплексов приема-передачи целевой информации и управления орбитальной группировкой спутников-ретрансляторов на геостационарных орбитах (НК ПП ЦИУ СР).

НК ПП ЦИУ КАН и КАС связан по управляющим и информационным спутниковым каналам связи с ОГ КА НС космического сегмента в составе орбитальных группировок космических аппаратов наблюдения и связи и орбитальной группировки из трех спутников-ретрансляторов на геостационарных орбитах и состоит из взаимосвязанных потребительского комплекса, в состав которого входят наземные специальные комплексы (НСК) для приема и обработки информации по каждому типу КАН, и абонентские станции (АС) различного типа и базирования, и управляющего комплекса, в состав которого помимо центра управления системой (ЦУС), центральной станции (ЦС), региональных станций (PC) и центра управления связным комплексом (ЦУСК) дополнительно введены командно-измерительные системы (КИС) КАН и центры управления полетом орбитальной группировкой космических аппаратов наблюдения (ЦУП).

В состав НК ПП ЦИУ СР введен управляющий комплекс спутниками-ретрансляторами, включающий взаимосвязанные центр управления ретрансляцией и связью (ЦУРС) и центр управления полетом спутниками-ретрансляторами (ЦУП СР), а также наземный радиотехнический комплекс, взаимосвязанный с управляющим комплексом спутниками-ретрансляторами по наземному каналу связи (НРТК СР с НКС) расположенный в г. Мурманск и наземные радиотехнические комплексы, не имеющие с управляющим комплексом спутниками-ретрансляторами наземного канала связи (НРТК СР без НКС), расположенные в г. Анадырь и г. Дудинка.

Наземные радиотехнические комплексы состоят из взаимосвязанных по спутниковым радио или оптическим каналам связи с орбитальной группировкой из трех спутников-ретрансляторов на геостационарных орбитах и на прием - с орбитальной группировки космических аппаратов наблюдения и связи.

Наземный комплекс приема-передачи целевой информации и управления орбитальной группировкой космических аппаратов наблюдения и связи взаимосвязан с наземным комплексом приема-передачи целевой информации и управления орбитальной группировкой спутников-ретрансляторов на геостационарных орбитах по наземным каналам связи и сети общего пользования для обмена целевой информацией и управления.

Каждый из наземных радиотехнических комплексов наземного комплекса приема-передачи целевой информации и управления ОГ СР содержит командно-измерительную систему (КИС) и радиолинию управления (РЛУ) и приемо-передачи целевой информации и управления.

ОГ КА НС, содержащая ОГ КАС И ОГ КАН, связана с ОГ СР через НК ПП ЦИУ КАН и КАС для передачи целевой и управляющей информации, с НРТК СР для взаимного обмена информацией различного назначения, а также взаимосвязана с потребительским комплексом и управляющим комплексом КАН и КАС, входящими в состав НК ПП ЦИУ КАН и КАС.

Предложенное построение многоуровневой системы спутниковой связи позволит обеспечить требуемую оперативность связи для всех АС и НСК при отсутствии межспутниковых каналов связи и наземных каналов связи НРТК СР с УКСР за счет гибкого взаимодействия целевой информации и управления ОГ КАН и ОГ КАС с ОГ СР через общий для них наземный сегмент и напрямую.

Многоуровневая система спутниковой связи, включающая орбитальные группировки космических аппаратов на низковысотных, средневысотных и геостационарных орбитах и, как минимум, один наземный пункт управления для обеспечения сбора целевой информации наземных, воздушных, морских и космических абонентов, отличающаяся тем, что космический сегмент состоит из орбитальной группировки из трех спутников-ретрансляторов, равномерно разнесенных относительно друг друга по геостационарной орбите и орбитальных группировок космических аппаратов наблюдения и связи, состоящих из низковысотной группировки космических аппаратов наблюдения и средневысотной группировки космических аппаратов связи, наземный сегмент состоит из наземных комплексов приема-передачи целевой информации и управления низковысотной группировкой космических аппаратов дистанционного зондирования Земли, средневысотной группировкой космических аппаратов наблюдения и связи, а также из наземных комплексов приема-передачи целевой информации и управления орбитальной группировкой спутников-ретрансляторов на геостационарных орбитах, наземный комплекс приема-передачи целевой информации и управления орбитальной группировкой космических аппаратов наблюдения и связи связан по управляющим и информационным спутниковым каналам связи с орбитальной группировкой космического сегмента в составе орбитальных группировок космических аппаратов наблюдения и связи и орбитальной группировки из трех спутников-ретрансляторов на геостационарных орбитах и состоит из взаимосвязанных потребительского комплекса, в состав которого входят наземные специальные комплексы и абонентские станции различного типа и базирования, и управляющего комплекса, в состав которого введены командно-измерительные системы и центры управления полетом орбитальной группировкой космических аппаратов наблюдения и связи, в состав наземного комплекса приема-передачи целевой информации и управления орбитальной группировкой спутников-ретрансляторов на геостационарных орбитах введен управляющий комплекс спутниками-ретрансляторами, включающий взаимосвязанные центр управления ретрансляцией и связью и центр управления полетом спутниками-ретрансляторами, а также наземный радиотехнический комплекс, взаимосвязанный с управляющим комплексом спутниками-ретрансляторами по наземному каналу связи, и наземные радиотехнические комплексы, не имеющие с управляющим комплексом спутниками-ретрансляторами и центром сбора информации наземного канала связи, наземные радиотехнические комплексы состоят из взаимосвязанных по спутниковым радио или оптическим каналам связи с орбитальной группировкой из трех спутников-ретрансляторов на геостационарных орбитах и на прием связанных с орбитальной группировкой космических аппаратов наблюдения и связи, наземный комплекс приема-передачи целевой информации и управления орбитальной группировкой космических аппаратов наблюдения и связи взаимосвязан с наземным комплексом приема-передачи целевой информации и управления орбитальной группировкой спутников-ретрансляторов на геостационарных орбитах по наземным каналам связи и сети общего пользования, каждый из наземных радиотехнических комплексов наземного комплекса приема-передачи целевой информации и управления орбитальной группировкой спутников-ретрансляторов на геостационарных орбитах содержит командно-измерительную систему и радиолинию управления спутниками-ретрансляторами.



 

Похожие патенты:

Изобретение относится к технике связи и может использоваться в системах спутниковой связи. Технический результат состоит в повышении качества принимаемой информации.

Изобретение относится к системе связи, предназначенной, в частности, для сбора показаний коммунальных счетчиков по всему географическому региону. Предложен терминал для связи со спутником связи, содержащий: первый приемопередатчик для связи, с устройством в сети ближней связи; второй приемопередатчик для связи с геостационарным спутником связи в сети, в которой развернуто множество прямых каналов для передачи данных со спутника связи в упомянутый терминал и множество обратных каналов для передачи данных из терминала в упомянутый спутник связи, причем второй приемопередатчик сконфигурирован для передачи данных из упомянутого устройства в одном из упомянутого множества обратных каналов.

Изобретение относится к области автоматизированных систем управления подвижными объектами, в частности космическими аппаратами (КА), и, более конкретно, к способам защиты командно-измерительной системы космического аппарата от несанкционированного вмешательства, возможного со стороны нелегитимных пользователей - злоумышленников.

Изобретение относится к технике связи и может использоваться в системах спутниковой связи. Технический результат состоит в повышении помехоустойчивости системы.

Изобретение относится к области космической техники и может быть использовано для постоянной устойчивой теле- и радиосвязи с участками Земли, находящимися вне зоны видимости одного спутника, с помощью системы связи, состоящей из двух унифицированных геостационарных спутников.

Настоящее изобретение относится к способу устранения помех в телекоммуникационной сети, содержащей многолучевой спутник, область покрытия, составленную из множества ячеек, в которых расположены терминалы, по меньшей мере две из указанных ячейки, называемые первой и второй ячейками, связаны с одной и той же частотной полосой, первую наземную станцию, состоящую из первого демодулятора, способного демодулировать сигналы, передаваемые терминалами, расположенными в первой ячейке, и вторую наземную станцию, состоящую из второго демодулятора, отличного от первого демодулятора, способного демодулировать сигналы, передаваемые терминалами, расположенными во второй ячейке.

Изобретение относится к технике связи и может использоваться в системе связи для летательного аппарата. Технический результат состоит в обеспечении летательного аппарата средствами связи.

Изобретение относится к системе связи, использующей телекоммуникационные сети для установки радиочастотных соединений между одной главной наземной станцией, соединенной с центром управления сетью (ЦУС), и наземными терминалами посредством спутника многоточечной связи, и предназначено для снижения перекрестных помех.

Изобретение относится к технике связи и может использоваться в системах спутниковой связи. Технический результат состоит в повышении быстродействия передачи информации за счет компенсации изменения групповой задержки.

Изобретение относится к области спутниковых телекоммуникаций. Техническим результатом является уменьшение плотности теплового потока на поверхности раздела канала, работающего в режиме вне полосы.

Изобретение относится к радиоэлектронике и может быть использовано в авиации для контроля прохождения маршрута полета самолетом без использования наземных средств контроля. Технический результат состоит в повышении качества контроля и управления воздушным движением. Для этого непрерывно определяют собственные координаты полета воздушного судна, передают их на спутники связи с дальнейшей передачей этими спутниками на единый диспетчерским пункт. Система контроля воздушного движения содержит созвездия датчиков навигационных спутниковых радиосигналов GPS/ГЛОНАС/Галилео и их приемник, введены: созвездие спутников связи, микропроцессор (МП), передатчик, блок ввода и блок вывода, а также 1-N наземных базовых станций, причем: выход приемника навигационных радиосигналов первой шиной USB соединен с первым входом микропроцессора, а блок ввода соединен с вторым его входом; первый выход МП через передатчик и вторую антенну соединен вторым радиоканалом с созвездием спутников связи, выход которых третьим радиоканалом соединен с 1-N наземными базовыми станциями, а второй вход МП через блок вывода второй шиной USB соединен с пультом информации экипажа. 1 ил.
Наверх