Опреснитель или дистиллятор староверова

Изобретение относится к опреснителям и дистилляторам испарительного типа. Аппарат содержит испарительную камеру и камеру конденсата, между которыми находится компрессор, направленный в сторону камеры конденсата. Испарительная камера располагается вверху, а камера конденсата - внизу. Камера конденсата представляет собой трубу или несколько горизонтально расположенных труб. В качестве двигателя для компрессора желательно использовать газотурбинный двигатель. Технический результат: повышение КПД аппарата, то есть уменьшение расхода энергии на единицу чистой пресной воды. 6 з.п. ф-лы, 1 ил.

 

Изобретение относится к опреснителям и дистилляторам испарительного типа (далее «аппарат»).

Известны подобные аппараты, см. Интернет, Википедия. Их недостаток в большом расходе энергии на преодоление скрытой теплоты парообразования, которую не удается вернуть в процесс. Частично возвращается эта энергия в процесс только в ступенчатых аппаратах, но они сложнее и дороже обычных. Вернуть затраченную на испарение воды или другой жидкости энергию мешает то обстоятельство, что при попытке организовать теплообмен, даже противоточный, мы столкнемся с тем, что пар быстро нагреет поступающую воду (далее «соленую») до своей температуры и дальнейшее охлаждение пара прекратится, так как теплота испарения одного и того же количества воды намного больше ее теплоемкости в диапазоне температур 10-100°С, а температура конденсата не превышает температуру кипения при том же давлении.

Задача и технический результат изобретения - повышение кпд аппарата, то есть уменьшение расхода энергии на единицу чистой пресной воды (далее «конденсата»).

Для этого аппарат содержит две камеры - испарительную камеру и камеру конденсата, между которыми находится компрессор, направленный в сторону камеры конденсата.

В качестве компрессора оптимально использовать несколько ступеней от списанного осевого или центробежного компрессора реактивного двигателя самолета - они практически ничего не стоят, а на пониженных оборотах порядка 2700-2800 об/с они будут работать долгие годы. Следует позаботиться лишь о том, чтобы вода не попадала в масло, а масло - в воду.

В качестве двигателя компрессора можно использовать электродвигатель, двигатель внутреннего сгорания, а лучше всего - газотурбинный двигатель. Его отходящие газы имеет достаточно высокую температуру и могут использоваться на заключительном участке подогрева соленой воды. В качестве такого двигателя можно использовать газотурбинные двигатели вертолетов и танков, отработавшие свой ресурс. Причем крепление двигателя должно быть выполнено на поворотном кронштейне, на котором в рабочем положении закреплено два или более двигателя, в этом случае замена двигателя займет всего несколько минут. Для этого достаточно разъединить быстродействующую соединительную муфту, повернуть кронштейн до совпадения с осью компрессора оси другого двигателя и соединить быстродействующую муфту.

Так как в условиях гравитации вода собирается в нижней части емкостей, то испарительная камера располагается вверху и камера конденсата - внизу.

Так как давление в камере конденсата будет больше, чем давление в испарительной камере, то желательно, чтобы камера конденсата представляла собой трубу или несколько горизонтально расположенных труб.

Лучшим материалом для аппарата является медь, но возможно применение пищевой нержавеющей стали или титана.

Все поверхности, предназначенные для рекуперативной теплопередачи, имеют оребрение.

Процесс может вестись при атмосферном или при ином давлении.

Для стартового разогрева в испарительной камере должны иметься электрические или иные водонагреватели.

На чертеже показан данный аппарат. Он состоит из двух камер: испарительной камеры сверху 1 и камеры конденсата 2 внизу. Слева показан противоточный теплообменник 3, в котором горячий конденсат отдает тепло холодной поступающей соленой воде. Камеры имеют выраженную продольность, то есть в длину они намного больше, чем в ширину. И на стыке камер имеется компрессор 4, нагнетающий насыщенный пар в камеру конденсата 2. Компрессор вращается электрическим или газотурбинным двигателем 5. В последнем случае его отходящие газы направляются в теплообменник 6 в конце камеры 1 (на чертеже - справа).

Работает аппарат так: соленая вода сначала подогревается в теплообменнике 3 до температуры 90-95°С (если процесс ведется при атмосферном давлении) и подается в камеру 1. Протекая по ее дну слева направо (на чертеже), вода подогревается и испаряется теплом, возникающим при конденсации пара в камере 2. В начале работы вода нагревается и испаряется стартовыми водонагревателями.

На заключительном этапе испарения вода подогревается в теплообменнике 6 теплом отходящих газов газотурбинного двигателя 5.

Образующийся в камере 1 насыщенный пар с параметрами, допустим, 100°С и с атмосферным давлением адиабатически сжимается компрессором 4, допустим, до 2 атмосфер и под давлением подается в камеру 2. Так как в ней давление больше, то точка равновесия «газ-жидкость» сдвигается в сторону больших температур (а именно - 120°С), и пар начинает конденсироваться на потолке камеры 2, являющемся дном камеры 1. Выделяется скрытое тепло парообразования, нагревая камеру 1 до температуры испарения воды (примерно 105°С).

Для лучшей теплопередачи, кроме оребрения, может использоваться обрызгивание потолка камеры 2 горячим конденсатом.

Тепловой баланс аппарата понятен: тепло испарения компенсируется теплом конденсации, горячий конденсат почти полностью отдает тепло соленой воде, а теплопотери компенсируются мощностью двигателя 5, примерно 90% которой превращается в тепло в компрессоре, и теплоотдачей отходящих газов газотурбинного двигателя. Таким образом, аппарат работает без внешних источников тепла. И очень экономично.

Следует, однако, применить очень хорошую теплоизоляцию - особый мелкопористый пенопласт или даже вакуумную рубашку. Или и то, и другое.

Следует отметить, что площадь камеры 1 должна определенным образом соответствовать производительности компрессора.

Аппарат может работать в непрерывном режиме, как показано на чертеже, непрерывно сливая образующийся в правой части камеры 1 рассол. Рассол, кстати, на Черноморском побережье Крыма можно использовать для наполнения бассейнов, которые при этом по своим лечебным и развлекательным качествам будут аналогичны водам Мертвого моря, можно продавать его как прибавку к столовой поваренной соли для обогащения ее микроэлементами при приготовлении пищи и можно даже вывозить в пластиковых бутылях в другие районы страны. Или можно использовать в технических целях, добывая из него хлор и щелочь. Плюсом такой работы является то, что дно камеры 1 всегда чистое, теплопередача через него максимальна, а аппарат не нуждается в периодической остановке и чистке. Рассол для возврата тепла также можно пропускать через теплообменник.

Или аппарат может работать в циклическом режиме, периодически накапливая осадок солей на дне камеры 1 и периодически останавливая работу для очистки днища от слоя соли. Такой способ менее технологичен, но он имеет другие плюсы - получается твердая соль, которую легко перевозить и которую легко смешивать с поваренной солью. У такого способа есть еще один неожиданный плюс - при кристаллизации соли выделяется тепло в размере примерно 130 Дж/г, которое также участвует в работе.

1. Аппарат для опреснения воды, содержащий испарительную камеру и камеру конденсата, отличающийся тем, что между ними находится компрессор, направленный в сторону камеры конденсата.

2. Аппарат для опреснения воды по п. 1, отличающийся тем, что испарительная камера располагается вверху и камера конденсата - внизу.

3. Аппарат для опреснения воды по п. 1, отличающийся тем, что камера конденсата представляет собой трубу или несколько горизонтально расположенных труб.

4. Аппарат для опреснения воды по п. 1, отличающийся тем, что аппарат выполнен из меди.

5. Аппарат для опреснения воды по п. 1, отличающийся тем, что все поверхности, предназначенные для рекуперативной теплопередачи, имеют оребрение.

6. Аппарат для опреснения воды по п. 1, отличающийся тем, что крепление двигателя компрессора выполнено на поворотном кронштейне, на котором в рабочем положении закреплено два или более двигателя.

7. Аппарат для опреснения воды по п. 1, отличающийся тем, что для стартового разогрева в испарительной камере имеются электрические или иные водонагреватели.



 

Похожие патенты:

Изобретение относится к области обработки воды. Оно может применяться в фильтрах-умягчителях воды засыпного типа, устанавливаемых в санитарно-технических шкафах многоквартирных домов.
Изобретение может быть использовано в питьевом и промышленном водоснабжении, обеззараживании сточных, поверхностных, подземных вод. Для обработки воды в качестве реагента используют ил пресных водоемов - сапропель с рН 8,5 марки Б.

Изобретения относятся к обработке воды и могут быть использованы для реминерализации опресненной воды карбонатом кальция. Способ реминерализации воды включает обеспечение подаваемой воды с концентрацией диоксида углерода в диапазоне от 30 до 60 мг/л, обеспечение водной суспензии, содержащей микроизмельченный карбонат кальция, при этом карбонат кальция характеризуется размером частиц от 0,5 до 50 мкм, а концентрация карбоната кальция в суспензии составляет от 2 до 20% вес.

Изобретение относится к способам опреснения морской воды. Способ опреснения морской воды при помощи тонкопленочного полупроводникового термоэлектрического теплового насоса цилиндрической формы включает использование предварительного теплообмена для подогрева морской воды, предназначенной для выпаривания, за счет отвода теплоты от опресненной воды и концентрированного соленого раствора.

Изобретение относится к получению магнитного материала, содержащего диоксид кремния и оксид железа, и может быть использовано в производстве магнитных сорбентов.

Изобретение может быть использовано в технологии производства питьевой воды и применено в медицине, пищевой промышленности, в сельском хозяйстве. Для осуществления способа предварительно очищенную воду замораживают методом направленной кристаллизации в присутствии шунгита в течение 10-12 ч, жидкую фракцию в виде рассола сливают.

Группа изобретений может быть использована в системах водоподготовки питьевых вод, поступающих из подземного водоисточника, для их биологической очистки от сероводорода.

Изобретение относится к способу и устройству для очистки воды, в частности к регулированию концентрации ионов в водопроводной воде. Согласно изобретению создают основной поток жидкости; создают в основном потоке поперечное электрическое поле при помощи электродов, которые электрически непосредственно контактируют с жидкостью; разделяют основной поток на поток продукта из центральной области основного потока жидкости и потоки отходов из областей основного потока жидкости, находящихся ближе к указанным электродам, разделяют поток продукта из центральной области основного потока жидкости на поток продукта из центральной области потока и потоки отходов из областей потока жидкости, находящихся ближе к электродам, направляют поток из центральной области потока к выходу продукта, а потоки отходов к по меньшей мере одному выходу отходов.

Изобретение относится к способу получения дезинфицирующего средства, включает преобразование пресноводного раствора NaCl в анолит в анодной камере диафрагменного электролизера и в католит в катодной камере, протекание потоков в анодной и катодной камерах в одном направлении снизу вверх, получение дезинфицирующего средства с рН 2,5-5,5 из раствора NaCl, поступившего в анодную камеру непосредственно из смесителя концентрата NaCl с пресной водой, получение дезинфицирующего средства с рН 5,5-8,5 из раствора NaCl, поступившего в анодную камеру после обработки его в катодной камере, изменение рН дезинфицирующего средства в диапазонах 2,5-5,5 и 5,5-8,5 изменением соотношения между величинами потоков в электродных камерах за счет изменения величины потока католита во внешнюю среду, выведение из электролизера дезинфицирующего средства с требуемой концентрацией активного хлора.

Изобретение относится к области сорбционной очистки поверхностных и подземных вод с высоким содержанием титана и его соединений и может быть использовано для очистки воды с получением безопасной для здоровья питьевой воды.

Изобретение относится к полиаминам и способам их применения для противонакипной обработки в промышленных технологических потоках. Предложена композиция для уменьшения или устранения накипи в промышленном процессе, включающая полимерный продукт, полученный путем реакции полиамина, первого химически активного в отношении азота соединения и второго химически активного в отношении азота соединения. Предложены также способ уменьшения или устранения накипи в промышленном процессе путем добавления в указанный процесс данной композиции и способ противонакипной обработки в технологическом потоке. Технический результат - предложенная композиция повышает эффективность производства, так как позволяет проводить удаление накипи с труднодоступных поверхностей технологического оборудования без остановки производственного процесса. 3 н. и 13 з.п. ф-лы, 13 табл., 156 пр.
Изобретение относится к способу обработки сточной воды, которая образуется в коксовой промышленности. Способ обработки сточной воды от коксования включает пропускание сточной воды от коксования через последовательные стадии в таком порядке: коагуляция, удаление частиц и сильноосновная анионообменная смола стирольного типа. Технический результат - эффективная очистка сточной воды от коксования до норм содержания загрязняющих веществ в сточной воде от предприятий черной металлургии с максимальным снижением химической потребности в кислороде. 7 з.п. ф-лы, 5 табл., 4 пр.

Изобретение относится к аноду для выделения кислорода при высоком анодном потенциале, содержащему основу из титана или его сплавов, первый промежуточный слой диоксида марганца, нанесенный на основу, второй промежуточный слой оксидов олова и сурьмы, нанесенный на первый промежуточный слой, и внешний слой, состоящий из диоксида свинца. Настоящее изобретение обеспечивает более продолжительный срок активной службы и исключает использование дорогостоящих благородных металлов. Также изобретение относится к способу получения анода. 2 н. и 6 з.п. ф-лы, 1 пр., 1 табл.

Изобретение относится к технологиям очистки и/или обессоливания жидкости, преимущественно воды, для бытового и/или питьевого водоснабжения, с рециркуляцией и пневматическим запуском и предназначено для использования в бытовых и/или промышленных условиях, на дачных и садовых участках. Способ очистки воды реализуется с помощью системы очистки воды, включающей блок очистки воды 1, содержащий по меньшей мере один блок рециркуляции 5, состоящий из емкости для исходной воды 7, линии рециркуляции 8 и системы клапанов 10, и блок фильтрации 6, состоящий из по меньшей мере одного устройства тонкой очистки воды 11, линии подачи воды 12 от емкости для исходной воды к устройству тонкой очистки воды. Блок очистки воды 1 соединен с блоком исходной воды 2, блоком чистой воды 3 и средством создания давления 4, выполненным с возможностью создавать давление в блоке рециркуляции 5, используя энергию сжатого газа. Блок очистки воды выполнен с возможностью осуществления трехстадийного цикла фильтрации воды, проходящего с возможностью возврата всей дренажной воды в систему очистки до окончания цикла фильтрации воды с непрерывной рециркуляцией при сохранении высокой скорости потока воды с возможностью управления скоростью подачи воды в блок фильтрации воды от блока рециркуляции воды при осуществлении прямой подачи дренажной жидкости через линию рециркуляции к емкости для исходной воды от устройства тонкой очистки воды под давлением при непрерывном перемешивании исходной и дренажной воды. Технический результат - разработка нового энергетически эффективного способа и системы очистки жидкости, позволяющих повысить энергетическую эффективность очистки жидкости при одновременном повышении степени очистки и степени использования исходной жидкости. 2 н. и 26 з.п. ф-лы, 2 ил.

Изобретение относится к области защиты металлов в нефтяной отрасли от микробиологической коррозии. Предложено применение в качестве бактерицида для подавления сульфатвосстанавливающих бактерий в минерализованных водных средах гидрохлорида N-аллил-N-(1-метил-2-бутенильного) производных ариламинов формулы: Технический результат: повышение эффективности бактерицидной активности реагента. 1 табл., 2 пр.

Изобретение относится к управляемому изменению свойств жидкостей путем интенсивного динамического воздействия на них и может быть использовано в пищевой и нефтехимической промышленности, биотехнологии, медицине, в промышленной гидроэкологии для водоподготовки и сельском хозяйстве для получения суспензий и молекулярных растворов. Способ обработки жидкости включает сжатие обрабатываемой жидкости с последующим ее вытеснением через сопло и торможением образующейся на выходе из сопла высокоскоростной гидроструи о рабочую поверхность мишени. При этом рабочая поверхность мишени двигается навстречу гидроструе. Изобретение позволяет снизить себестоимость гидроструйной обработки жидкости, обеспечить возможность обработки жидкости с высокой кинематической вязкостью, в том числе на основе высокомолекулярных соединений, увеличить суммарную стойкость мишеней, реализовать дополнительное воздействие на обрабатываемую жидкость. 12 з.п. ф-лы, 10 ил., 2 табл.

Изобретение относится к обработке воды озоном и может быть использовано в системах водоснабжения городов и населенных пунктов для обеззараживания питьевой воды из поверхностных водоисточников, в частности, с большими сезонными колебаниями степени загрязненности воды. В предлагаемых установке и способе одновременно с ростом расхода озоно-воздушной смеси производится увеличение суммарного количества микроотверстий для ее диспергирования. Для малых доз озона, включая минимальную, используют минимальное количество базовых контактных резервуаров постоянного действия, минимальный удельный расход озоно-воздушной смеси через 1 контактный резервуар и минимальную концентрацию в ней озона, а при более высоких дозах, включая максимальную, используют дополнительное количество контактных резервуаров периодического действия, причем при подключении каждого дополнительного контактного резервуара производят перераспределение и уравнивание расходов обрабатываемой воды между действующими контактными резервуарами, а также увеличивают удельный расход озоно-воздушной смеси через один контактный резервуар ступенями с равным шагом, рассчитанным исходя из двукратного допустимого превышения минимального удельного расхода, принятого для обеспечения минимальной заданной дозы озона. Технический результат состоит в упрощении конструкции и повышении надежности системы диспергирования озоно-воздушной смеси за счет использования обычных металлических диспергаторов из титана, в снижении стоимости оборудования за счет уменьшения общего количества диспергаторов, а также запорно-регулирующей аппаратуры, в увеличении срока службы установки за счет использования контактных резервуаров периодического действия для ротации постоянно действующих, а также в сверхнормативном увеличении общего расхода обрабатываемой воды за счет использования дополнительных свободных контактных резервуаров при малых и средних дозах озона. 2 н.п. ф-лы, 11 ил. 7 табл., 1 пр.

Изобретение относится к химической технологии неорганических веществ и к промышленной экологии. Способ получения фосфата меди(+2)-аммония включает приготовление реакционного водного раствора, содержащего медь(+2), фосфат и аммоний, образование осадка моногидрата фосфата меди(+2)-аммония и его отделение от раствора. В качестве источника меди(+2) используют жидкий отход производства, выбранный из группы, состоящей из отработанного раствора травления печатных плат, отработанного раствора первой промывки печатных плат после травления, отработанного раствора гальванического меднения печатных плат, отработанного раствора травления меди в минеральных кислотах, взятый каждый отдельно или в любом сочетании. Обеспечивается снижение себестоимости продукта и извлечение 99,9% меди(+2) из отработанных растворов. 11 з.п. ф-лы, 2 ил., 8 пр.

Изобретение относится к области сорбционной очистки воды. Способ получения сорбента для очистки воды включает обработку гречневой лузги в растворе гидроксида натрия c концентрацией 500 мг/л в течение двух часов. Соотношение твердой и жидкой фазы при обработке составляет 1:(3-5). Отделение твердой фазы осуществляют фильтрованием с последующей промывкой и сушкой. Заявленное изобретение обеспечивает увеличение выхода сорбента при расширении области его применения. 5 пр., 1 табл.

Изобретение может быть использовано в металлургической и химической отраслях промышленности, применяющих соединения хрома (III) и меди (II), на предприятиях, имеющих травильные и гальванические цеха, в кожевенном производстве при хромовом дублении кож. Для осуществления способа проводят обработку сточных вод ломом асбестоцементного шифера, который измельчают до зерен размером 0,5-3 мм, при контакте фаз в течение 3-5 минут. Способ обеспечивает полное удаление ионов хрома (III) и ионов меди (II) из сточных вод и позволяет повысить скорость очистки сточных вод. Изобретение расширяет круг применяемых для обработки сточных вод эффективных и дешевых реагентов и позволяет утилизировать лом асбестоцементного шифера. 3 пр.

Изобретение относится к опреснителям и дистилляторам испарительного типа. Аппарат содержит испарительную камеру и камеру конденсата, между которыми находится компрессор, направленный в сторону камеры конденсата. Испарительная камера располагается вверху, а камера конденсата - внизу. Камера конденсата представляет собой трубу или несколько горизонтально расположенных труб. В качестве двигателя для компрессора желательно использовать газотурбинный двигатель. Технический результат: повышение КПД аппарата, то есть уменьшение расхода энергии на единицу чистой пресной воды. 6 з.п. ф-лы, 1 ил.

Наверх