Ротор для электрической машины и электрическая машина

Изобретение относится к ротору для электрической машины. Технический результат - повышение эффективности охлаждения ротора. Ротор (301) для электрической машины (201) содержит полюсный сердечник (303), который имеет охлаждаемый, намагничиваемый роторный участок (313) из сверхпроводящего материала. При этом роторный участок (313) имеет ротационно-симметричную геометрию. Полюсный сердечник (303) выполнен в виде цилиндра, а роторный участок (313) расположен в окружном направлении на наружной поверхности (309) цилиндра. При этом цилиндр выполнен в виде полого цилиндра (305) для ввода охлаждающей текучей среды во внутреннее пространство (307) полого цилиндра (305). 2 н. и 9 з.п. ф-лы, 3 ил.

 

Изобретение относится к ротору для электрической машины, а также к электрической машине.

Ротор синхронной машины обычно имеет ферромагнитный полюсный сердечник, который имеет сложную форму и тем самым приводит к высокой стоимости изготовления и большим техническим затратам на изготовление. При этом форма полюсного сердечника обычно определяется количеством полюсов ротора. Таким образом, полюсный сердечник ротора предназначен для точного количества полюсов. Пространство между полюсами, как правило, не вносит вклада в создание крутящего момента.

В патенте US 4 987 674 А показана система ротора динамоэлектрической машины. Система ротора содержит цилиндрические сверхпроводящие магниты.

В выложенной заявке WO 01/08173 А1 показана система ротора с четырехполюсной топологией.

В выложенной заявке WO 00/49703 А1 показана сверхпроводящая машина, содержащая систему статора и систему ротора.

В выложенной заявке FR 2 392 527 А1 показан ротор электрической машины.

В выложенной заявке WO 03/065767 А1 показано устройство для нагревания холодных частей большой термической массы.

Поэтому в основу данного изобретения положена задача создания ротора с полюсным сердечником, который можно универсально применять в электрических машинах с различным количеством полюсов.

Положенная в основу изобретения задача состоит также в создании электрической машины с таким ротором, при этом обеспечивается универсальная возможность изменения количества полюсов.

Эти задачи решены с помощью соответствующего предмета независимых пунктов формулы изобретения. Предпочтительные варианты выполнения являются предметом соответствующих зависимых пунктов формулы изобретения.

Согласно одному аспекту предлагается ротор для электрической машины. Ротор содержит полюсный сердечник, который имеет охлаждаемый, намагничиваемый роторный участок из сверхпроводящего материала. Роторный участок имеет ротационно-симметричную геометрию.

Согласно другому аспекту предлагается электрическая машина. Электрическая машина содержит ротор с полюсным сердечником, который имеет охлаждаемый, намагничиваемый роторный участок из сверхпроводящего материала. Роторный участок имеет ротационно-симметричную геометрию. Кроме того, предусмотрено намагничивающее устройство, которое предназначено для индуцирования магнитного потока через сверхпроводящий материал.

Таким образом, изобретение содержит идею предусмотрения роторного участка полюсного сердечника из сверхпроводящего материала. С помощью намагничивающего устройства может быть индуцирован магнитный поток через сверхпроводящий материал. Таким образом, образуется магнитный поток через сверхпроводящий материал. Тем самым роторный участок намагничивается. За счет того, что предусмотрена возможность охлаждения роторного участка, предпочтительно обеспечивается возможность охлаждения сверхпроводящего материала до температуры ниже критической температуры сверхпроводящего материала. Это охлаждение предпочтительно приводит к тому, что магнитный поток удерживается в сверхпроводящем материале. Магнитный поток, так сказать, замораживается. Удерживание можно называть, в частности, также прикреплением. Таким образом, роторный участок может предпочтительно образовывать, в частности, полюс магнитного поля. Критическая температура может называться также температурой перехода и является, в частности, температурой, ниже которой электрическое сопротивление сверхпроводящего материала падает до нуля Ом.

Даже когда намагничивающее устройство выключается, так что оно больше не индуцирует магнитный поток в сверхпроводящем материале, сохраняется удерживаемый магнитный поток в сверхпроводящем материале. Таким образом, роторный участок предпочтительно намагничивается.

На основании ротационно-симметричной геометрии роторного участка магнитный поток, соответственно, соответствующее магнитное поле не зависит от геометрии роторного участка, а свободно задается предпочтительно намагничивающим устройством. Таким образом, можно свободно устанавливать образующееся магнитное поле ротора с определенным количеством полюсов, поскольку роторный участок на основании своей ротационной симметрии имеет независимую от количества полюсов геометрию.

Ротационно-симметричный роторный участок в смысле данного изобретения означает, в частности, что при повороте вокруг оси, в частности вокруг оси симметрии, роторный участок воспроизводит самого себя. Роторный участок с ротационно-симметричной геометрией содержит также сферическую ротационную симметрию или же цилиндрическую ротационную симметрию. Роторный участок может быть выполнен, например, в виде тела вращения. Тело вращения в смысле данного изобретения является, в частности, телом, которое образовано посредством вращения образующей кривой вокруг оси вращения. При этом кривая и ось лежат в одной плоскости.

Ротор может называться, в частности, также бегунком. Сверхпроводящий материал может называться, в частности, также монолитным сверхпроводником. Участок может называться, в частности, также зоной и обозначать, в частности, пространственно непрерывную поверхность.

Согласно одному варианту выполнения электрическая машина может быть выполнена, в частности, в виде синхронной машины.

Согласно одному варианту выполнения полюсный сердечник выполнен из магнитного материала, в частности, железа и/или X8Ni9, немагнитного материала или из их комбинаций. Полюсный сердечник может содержать в качестве материала, в частности, также медь. Предусмотрение магнитного материала, в частности, предпочтительно обеспечивает, что создается основное магнитное поле, на которое затем накладывается с помощью намагничиваемого роторного участка другое магнитное поле. В частности, полюсный сердечник выполнен из металла, соответственно, содержит металл. Полюсный сердечник может быть выполнен, например, также из алюминия или алюминиевого сплава. В полюсном сердечнике из меди может быть предпочтительно предусмотрено, что полюсный сердечник расположен в ферромагнитной оболочке. На этой оболочке затем расположены, например, другие элементы, такие как, например, соединительный слой, нагреватель, сверхпроводящий материал.

Согласно одному варианту выполнения полюсный сердечник выполнен в виде цилиндра, при этом роторный участок расположен в окружном направлении на наружной поверхности, называемой также боковой поверхностью, цилиндра. При этом под цилиндром в данном случае понимается, в частности, прямой круговой цилиндр, называемый также цилиндром вращения, который образован, например, посредством сдвига круга вдоль прямой через среднюю точку круга, которая лежит перпендикулярно плоскости круга. Таким образом, поперечное сечение прямого кругового цилиндра, перпендикулярное прямой, имеет форму круга. Предусмотрение такого цилиндра в качестве полюсного сердечника, при этом роторный участок расположен в окружном направлении на наружной поверхности, соответственно, боковой поверхности цилиндра, имеет, в частности, то преимущество, что такое тело вращения особенно просто в изготовлении и при обработке. Роторный участок может быть расположен, в частности, на всей наружной поверхности цилиндра, что приводит к особенно эффективному использованию наружной поверхности и дополнительно к этому может создавать продолжительное в пространстве магнитное поле. В частности, обеспечивается оптимальное использование имеющейся в распоряжении поверхности относительно большого крутящего момента электрической машины. Таким образом, наружная поверхность может быть, в частности, полностью покрыта роторным участком. Предпочтительно может быть также предусмотрено, что роторный участок расположен на одном или нескольких частичных участках наружной поверхности. Таким образом, наружная поверхность покрыта, в частности, лишь частично роторным участком. При частичном покрытии предпочтительно экономится сверхпроводящий материал.

Согласно одному варианту выполнения цилиндр выполнен в виде полого цилиндра, так что во внутреннее пространство полого цилиндра можно вводить охлаждающую текучую среду, например жидкий азот, жидкий неон или жидкий гелий, с целью предпочтительного охлаждения полюсного сердечника и тем самым также сверхпроводящего материала. Этот вид охлаждения имеет, в частности, то преимущество, что оно просто выполнимо. Кроме того, охлаждающая текучая среда находится в непосредственном контакте с цилиндром, что обеспечивает быстрое и эффективное охлаждение. Охлаждающая текучая среда в смысле данного изобретения может быть, в частности, охлаждающим газом или охлаждающей жидкостью.

Согласно другому варианту выполнения может быть предусмотрено, что между роторным участком и наружной поверхностью образован термический соединительный слой. Таким образом, предпочтительно обеспечивается возможность точно заданного термического соединения сверхпроводящего материала с полюсным сердечником. Предпочтительно термический соединительный слой имеет заданную теплопроводность, так что можно точно устанавливать перенос тепловой энергии между полюсным сердечником и роторным участком. Например, роторный участок может быть термически слабо соединен с полюсным сердечником. Это означает, в частности, что нагревание сверхпроводящего материала не приводит или почти не приводит к нагреванию полюсного сердечника. Например, может быть предусмотрено, что термический соединительный слой содержит термический диод, который допускает перенос тепловой энергии по существу лишь в одном направлении. Такой термический диод может быть, например, алмазом.

Согласно одному варианту выполнения термический соединительный слой содержит стекловолокно. Стекло имеет, например, по сравнению с медью очень небольшую теплопроводность, так что за счет этого предпочтительно обеспечивается очень слабая тепловая связь. Кроме того, стекловолокно имеет дополнительное преимущество, что оно, как правило, устойчиво к старению и воздействию окружения, химически устойчиво и не горит, так что образуется надежный и длительно стабильный термический соединительный слой.

В другом варианте выполнения может быть предусмотрено, что термический соединительный слой образован из стекловолоконного бандажа. Такой стекловолоконный бандаж может быть, например, намотан вокруг цилиндра, например, намотан в мокром виде, что означает, в частности, что стекловолоконный бандаж наматывается в мокром состоянии, например, с эпоксидной смолой, а затем может затвердевать. В частности, может быть предусмотрено, что стекловолоконный бандаж наклеивается с помощью эпоксидного клея на наружную поверхность. Стекловолоконный бандаж имеет, в частности, заданную толщину. Образование технического соединительного слоя посредством намотки стекловолоконного бандажа имеет, в частности, то преимущество, что его можно наносить на цилиндр неподвижно и с хорошим термическим контактом с наружной поверхностью цилиндра.

В другом предпочтительном варианте выполнения сверхпроводящий материал имеет защитный слой от образующейся при вращении полюсного сердечника центробежной силы. За счет этого сверхпроводящий материал предпочтительно защищен от возникающих при вращении сил. Например, в качестве защитного слоя может быть предусмотрен намотанный в мокром виде стеклянный бандаж, соответственно, стекловолоконный бандаж. Он предпочтительно наматывается в мокром виде с эпоксидной смолой вокруг сверхпроводящего материала и затвердевает, так что создается стабильная и прочная система.

В еще одном варианте выполнения может быть предусмотрено, что роторный участок образован из одной или нескольких плиток. Плитки могут быть, например, наклеены, в частности, с помощью эпоксидного клея. Плитка может иметь, например, прямоугольную форму с длиной, например, примерно 4 см или примерно 5 см и шириной примерно 4 см или примерно 5 см. Плитки могут быть выполнены одинаковыми или различными. Точные размеры зависят от геометрии роторного сердечника, так что указанные выше размеры следует понимать лишь в качестве примера, но не в качестве ограничения. Такие сверхпроводящие плитки имеют, в частности, то преимущество, что обеспечивается простая установка сверхпроводящих материалов на полюсный сердечник, например, на наружную поверхность цилиндра. Кроме того, отдельные плитки можно, например, при повреждениях просто заменять, без необходимости замены при этом всего сверхпроводящего материала.

Согласно другому варианту выполнения на сверхпроводящем материале расположен нагреватель, который может нагревать сверхпроводящий материал по меньшей мере до температуры свыше критической температуры. Таким образом, предпочтительно обеспечивается, в частности, возможность достаточного нагревания снова уже охлажденного ниже критической температуры роторного участка настолько, что обеспечивается возможность прохождения магнитного потока через сверхпроводящий материал, так что в результате образуется соответствующее магнитное поле ротора. Так, например, предпочтительно также во время работы электрической машины можно обновлять или заменять магнитное поле ротора, при этом для этого, в частности, останавливается вращение ротора. Кроме того, можно также изменять количество полюсов машины.

Согласно одному варианту выполнения нагреватель может быть выполнен в виде нагревательной фольги, которая, в частности, наклеивается на сверхпроводящий материал, например, с помощью эпоксидного клея. Предусмотрение нагревательной фольги имеет, в частности, то преимущество, что за счет этого простым образом можно нагревать также большую поверхность сверхпроводящего материала.

В одном предпочтительном варианте выполнения намагничивающее устройство содержит по меньшей мере одну предназначенную для прохождения электрического тока намагничивающую катушку. Такая намагничивающая катушка может быть расположена, например, в роторе, например, обмотка такой катушки может быть намотана вокруг сверхпроводящего материала и/или вокруг цилиндра. Однако намагничивающая катушка может быть также расположена снаружи ротора. Предусмотрение намагничивающей катушки имеет, в частности, то преимущество, что магнитный поток через сверхпроводящий материал можно создавать независимо от работы электрической машины, поскольку при работе электрической машины, отдельные катушки машины, как правило, могут не применяться для этого.

Согласно другому варианту выполнения намагничивающее устройство содержит статорную обмотку статора. В частности, намагничивающее устройство может содержать несколько обмоток статора. Таким образом, предпочтительно применяется уже имеющаяся обмотка статора, которая, в частности, обычно содержится в электрической машине, с целью индуцирования магнитного потока в сверхпроводящем материале. В этом случае можно отказаться от других дополнительных намагничивающих катушек, что снижает стоимость и технические расходы на изготовление. Статор может содержать, в частности, несколько обмоток, через которые можно пропускать ток по отдельности или совместно. Статорные обмотки могут быть выполнены, например, из сверхпроводящего материала, так что при соответствующем охлаждении обмоток ниже температуры перехода обеспечивается возможность работы электрической машины с особенно небольшими потерями.

В другом варианте выполнения для пропускания тока через статор, в частности обмотки, и/или для подачи тока в намагничивающие катушки, может быть предусмотрен источник постоянного тока.

Согласно одному варианту выполнения сверхпроводящий материал может быть, например, высокотемпературным сверхпроводящим материалом (HTcS), где Tc обозначает критическую температуру. В последующем вместо HTcS применяется просто сокращение HTS. Сверхпроводящий материал может быть, например, YBa2Cu3O7, Bi2Sr2CaCuO8, (BiPb)2Sr2Ca2Cu3O10, SmBaCuO, CdBaCuO, YBaCuO или диборидом магния. Критическая температура материала HTS может составлять, например, 23К или больше.

В другом варианте выполнения может быть также образовано несколько роторных участков из сверхпроводящего материала. Например, роторные участки выполнены одинаковыми или различными.

Согласно другому варианту выполнения может быть предусмотрено, что ротор расположен в криостате для тепловой изоляции. Тем самым предпочтительно обеспечивается особенно эффективное и экономное охлаждение ротора. В частности, криостат может быть эвакуирован. Предпочтительно криостат выполнен в виде части ротора, соответственно, содержится в нем, так что он может вращаться вместе с ротором.

Указанные выше свойства, признаки и преимущества данного изобретения, а также способ их достижения поясняются в приведенном ниже описании примеров выполнения изобретения со ссылками на прилагаемые чертежи, на которых изображено:

фиг. 1 - ротор;

фиг. 2 - электрическая машина; и

фиг. 3 - разрез другого ротора.

В последующем для обозначения одинаковых признаков применяются одинаковые позиции.

На фиг. 1 показан ротор 101 для электрической машины (не изображена). Ротор 101 содержит полюсный сердечник 103, который содержит охлаждаемый, намагничиваемый роторный участок 105 из сверхпроводящего материала, который имеет ротационно-симметричную геометрию. Таким образом, роторный участок 105 можно называть также ротационно-симметричным роторным участком. Ротационно-симметричная геометрия роторного участка 105 представлена на фиг. 1 в виде круга, при этом это следует понимать лишь в качестве примера, а не как ограничение. Например, роторный участок может быть образован на наружной поверхности прямого кругового цилиндра, в частности полого цилиндра, с прохождением в окружном направлении вокруг боковой поверхности, при этом круговой цилиндр образует, в частности, полюсный сердечник.

На фиг. 2 показана электрическая машина 201, содержащая ротор 101 из фиг. 1. Кроме того, электрическая машина 201 имеет намагничивающее устройство 203, которое может индуцировать магнитный поток в сверхпроводящем материале роторного участка 105, так что роторный участок 105 предпочтительно намагничивается.

Для этого роторный участок 105, если необходимо, предпочтительно нагревается до температуры выше критической температуры сверхпроводящего материала. Затем намагничивающее устройство 203 индуцирует магнитный поток в сверхпроводящем материале, соответственно, через сверхпроводящий материал. После образования магнитного потока в, соответственно, через сверхпроводящий материал, роторный участок 105 охлаждается до температуры ниже критической температуры, что предпочтительно приводит к удерживанию магнитного потока в сверхпроводящем материале. Магнитный поток, так сказать, замораживается. Это означает также, в частности, что даже при выключении намагничивающего устройства 203 магнитный поток и тем самым соответствующее образованное магнитное поле ротора сохраняются.

На основании ротационной симметрии роторного участка 105 удерживаемое так магнитное поле ротора имеет профиль поля, который не зависит от геометрии роторного участка 105. Таким образом, с помощью намагничивающего устройства 203 можно предпочтительно свободно задавать определенный профиль поля. Кроме того, за счет этого можно предпочтительно устанавливать определенное количество полюсов.

В неизображенном варианте выполнения электрическая машина 201 содержит статор с одной или несколькими статорными обмотками, при этом намагничивающее устройство пропускает ток по меньшей мере через одну из статорных обмоток с целью индуцирования магнитного потока в сверхпроводящем материале. Для пропускания тока через статорные обмотки предпочтительно предусмотрен источник постоянного тока.

На фиг. 3 показан разрез ротора 301 для электрической машины (не изображена). Ротор 301 содержит полюсный сердечник 303, образованный из полого цилиндра 305. Полый цилиндр 305 имеет полое пространство 307, соответственно, внутреннее пространство, в котором может быть размещена, в частности, охлаждающая текучая среда, например жидкий неон, жидкий азот или жидкий гелий для охлаждения полого цилиндра 305. На наружной поверхности 309, соответственно, боковой поверхности полого цилиндра 305 нанесен намотанный мокрым с эпоксидным клеем стекловолоконный бандаж 311. На стекловолоконном бандаже 311 закреплен сверхпроводящий материал 313, например, с помощью эпоксидного клея. При этом стекловолоконный бандаж 311 обеспечивает заданное, слабое термическое соединение сверхпроводящего материала 313 с полюсным сердечником 303. Сверхпроводящий материал 313 образует роторный участок.

Согласно одному неизображенному варианту выполнения может быть предусмотрено, что сверхпроводящий материал 313 нанесен на стекловолоконный бандаж 311 в виде сверхпроводящих плиток.

В роторе 301 вся боковая поверхность 309 полого цилиндра 305 покрыта сверхпроводящим материалом, в частности плитками, так что предпочтительно достигается оптимальное использование имеющейся в распоряжении поверхности относительно большого крутящего момента электрической машины.

В одном неизображенном варианте выполнения может быть также предусмотрено, что боковая поверхность 309 полого цилиндра 305 покрыта лишь частично сверхпроводящим материалом, в частности плитками, за счет чего предпочтительно может быть сэкономлен сверхпроводящий материал. Важно лишь то, что сверхпроводящий материал 313 образован в окружном направлении вокруг боковой поверхности 309, так что образованный с помощью сверхпроводящего материала 313 роторный участок имеет ротационно-симметричную геометрию.

На противоположной стекловолоконному бандажу 311 стороне 315 сверхпроводящего материала 313 расположен нагреватель 317, который предпочтительно выполнен в виде нагревательной фольги. Нагреватель наклеен на сторону 315, например, с помощью эпоксидного клея.

Вокруг этой системы расположен намотанный мокрым стекловолоконный бандаж, который предпочтительно обеспечивает защиту от возникающих при вращении ротационных сил.

Для термической изоляции ротора 301 образован криостат 321 с двойной эвакуированной стенкой 323, при этом ротор 301 расположен в криостате 321. В одном неизображенном варианте выполнения криостат может содержать также одинарную стенку, при этом предпочтительно эвакуировано пространство между ротором 301 и стенкой криостата. В другом, не изображенном варианте выполнения одинарная или двойная стенка криостата может быть металлической, соответственно, выполнена из металлического материала. За счет этого потери на вихревые токи возникают во вращающемся криостате, а не в сверхпроводящем материале 313.

В одном не изображенном варианте выполнения полый цилиндр 305 выполнен в виде металлического полого цилиндра, так что предпочтительно потери на вихревые токи возникают в металлической стенке полого цилиндра, а не в сверхпроводящем материале 313. Полый цилиндр 305 может быть предпочтительно выполнен из меди, что на основании хорошей теплопроводности меди обеспечивает возможность особенно эффективного охлаждения. При полом цилиндре из меди может быть предпочтительно предусмотрено, что он расположен в ферромагнитной оболочке, на которой затем располагается, соответственно, наносится, в частности, стекловолоконный бандаж и другие элементы ротора 301.

В целом изобретение содержит идею предусмотрения ротора с независимой от количества полюсов геометрией, что достигается, в частности, за счет ротационно-симметричного расположения сверхпроводящего материала. В частности, полюсный сердечник может быть полым цилиндром, при этом боковая поверхность полого цилиндра покрыта сверхпроводящим материалом, в частности, в виде сверхпроводящих плиток. Таким образом, эта универсальная конструкция ротора позволяет предпочтительно применять ротор в электрических машинах с различным количеством полюсов.

Кроме того, за счет этого уменьшаются затраты на изготовление, что приводит к большему объему партий, что в конечном итоге приводит к значительному уменьшению стоимости изготовления.

Небольшая потребность в месте для полюсов обеспечивает предпочтительно возможность выполнения особенно тонких роторов. За счет этого предпочтительно обеспечиваются, в частности, более высокие скорости вращения.

Механическая стабилизация ротора для работы с высокими скоростями вращения может быть реализована легко и дешево, в частности, за счет цилиндрической формы.

Охлаждение ротора при намагничивании роторного участка с помощью обмоток, которые расположены снаружи ротора, значительно упрощается по сравнению с роторами, которые должны намагничиваться с помощью дополнительной катушки, соответственно, которые снабжены катушками HTS, т.е. катушками из материала HTS, для намагничивания, поскольку нет необходимости в охлаждении такой дополнительной катушки (с потенциальной опасностью резкого охлаждения). Отсутствуют также соответствующие подводы тока, которые необходимо термически изолировать и охлаждать.

В частности, когда вся боковая поверхность полого цилиндрического полюсного сердечника покрыта сверхпроводящим материалом, в частности сверхпроводящими плитками, то предпочтительно достигается оптимальное использование имеющейся в распоряжении поверхности относительно возможно большего крутящего момента электрической машины.

При намагничивании роторного участка он на основании своей ротационной симметрии, в частности своей цилиндрической симметрии, может стоять в любом положении. Таким образом, отпадает необходимость в точном и затратном позиционировании, поскольку положения полюсов не задаются геометрической формой роторного участка.

Хотя изобретения подробно иллюстрировано и пояснено с помощью предпочтительных примеров выполнения, изобретение не ограничивается раскрытыми примерами, и специалисты в данной области техники могут выводить из них другие варианты без выхода из объема защиты изобретения.

1. Ротор (301) для электрической машины (201), содержащий:
- полюсный сердечник (303), который имеет охлаждаемый, намагничиваемый роторный участок (313) из сверхпроводящего материала, при этом
- роторный участок (313) имеет ротационно-симметричную геометрию,
- при этом полюсный сердечник (303) выполнен в виде цилиндра, и роторный участок (313) расположен в окружном направлении на наружной поверхности (309) цилиндра, и
- при этом цилиндр выполнен в виде полого цилиндра (305) для ввода охлаждающей текучей среды во внутреннее пространство (307) полого цилиндра (305).

2. Ротор (301) по п. 1, в котором между роторным участком (313) и наружной поверхностью (309) образован термический соединительный слой.

3. Ротор (301) по п. 2, в котором термический соединительный слой содержит стекловолокно.

4. Ротор (301) по п. 3, в котором термический соединительный слой образован из стекловолоконного бандажа (311).

5. Ротор (301) по п. 1, в котором сверхпроводящий материал имеет защитный слой от образующейся при вращении полюсного сердечника (303) центробежной силы.

6. Ротор (301) по п. 5, в котором защитный слой выполнен из стеклянного бандажа (319).

7. Ротор (301) по п. 1, в котором роторный участок (313) образован из одной или нескольких сверхпроводящих плиток.

8. Ротор (301) по п. 1, в котором на сверхпроводящем материале расположен нагреватель (317) для нагревания сверхпроводящего материала до температуры свыше критической температуры.

9. Электрическая машина (201), содержащая:
- ротор (301) по любому из пп. 1-8, и
- намагничивающее устройство (203) для индуцирования магнитного потока через сверхпроводящий материал.

10. Электрическая машина (201) по п. 9, в которой намагничивающее устройство (203) содержит по меньшей мере одну предназначенную для прохождения электрического тока намагничивающую катушку.

11. Электрическая машина (201) по любому из пп. 9 или 10, в которой намагничивающее устройство (203) содержит одну или несколько статорных обмоток статора.



 

Похожие патенты:

Изобретение относится к электротехнике, в частности к электрическим машинам, и может быть использовано в электроэнергетических установках и системах электропривода.

Изобретение относится к области электроэнергетики и может найти применение в двигателях и других машинах, используемых в различных областях хозяйственной деятельности человека.

Изобретение относится к вентильным индукторным электрическим машинам с использованием высокотемпературных сверхпроводников. .

Изобретение относится к сверхпроводящему вращающемуся устройству типа сверхпроводящих генераторов, в которых по крайней мере обмотка ротора выполнена сверхпроводящей.

Изобретение относится к электромашиностроению и может быть использовано в энергетических установках. .

Изобретение относится к электромашиностроению и может быть использовано в электрических машинах с обмоткой возбуждения, охлаждаемой до криогенных температур. .

Изобретение относится к электротехнике, а точнее к области прикладной сверхпроводимости, и может быть использовано при эксплуатации крупных магнитов с сильными полями в больших объемах.

Изобретение относится к энергомашиностроению и может быть использовано в электрических генераторах с постоянными магнитами. Технический результат: повышение синусоидальности кривой магнитной индукции в воздушном зазоре и снижение омических потерь в электрической машине от высших гармоник, а также снижение амплитуды высших гармоник.

Изобретение касается электрической машины с жидкостным охлаждением. Технический результат - повышение эффективности охлаждения.

Настоящее изобретение касается сдвоенного двигателя. Технический результат - повышение технологичности сдвоенного двигателя.

Изобретение относится к области производства электрической энергии. Технический результат заключается в повышении КПД генератора.

Изобретение касается электрической машины и устройства её охлаждения. Технический результат заключается в повышении эффективности охлаждения вала.

Изобретение относится к области электротехники. Технический результат - повышение надёжности ротора.

Изобретение относится к электротехнике и может использоваться в качестве привода электрогенераторов, а также любых технических средств, применяемых в народном хозяйстве.

Изобретение относится к области электротехники и может быть использовано в приводных и генераторных установках. Техническим результатом является повышение эффективности электромеханического преобразования энергии в вентильно-индукторной электрической машине за счет снижения магнитных потерь в магнитопроводе.

Изобретение относится к электротехнике, в частности к роторам электрических машин, содержащим постоянные магниты. Технический результат - повышение КПД электрической машины.

Изобретение относится к области боеприпасов. Торпедный дисковый вентильный электродвигатель содержит последовательно сочлененные дисковые вентильные электрические двигательные модули, выполненные в виде неподвижного статора с закрепленными по окружности П-образными сердечниками и роторов с магнитными вставками.

Изобретение относится к ротору для электродвигателя со встроенными постоянными магнитами, который используется, например, для электрических транспортных средств, гибридных транспортных средств и станков. Технический результат - повышение выходного крутящего момента в диапазоне высоких оборотов. Ротор для двигателя со встроенными постоянными магнитами содержит железный сердечник ротора, который сформирован путем наслоения стальных листов основы с плотностью магнитного потока B8000 1,65 Тл или более, измеренной при напряженности магнитного поля 8000 А/м, и коэрцитивной силой 100 А/м или более. Ротор содержит также множество отверстий для вставки постоянных магнитов, которые сформированы с разнесением относительно друг друга на железном сердечнике ротора в круговом направлении железного сердечника ротора. Постоянные магниты размещены в отверстиях для вставки постоянных магнитов. 2 н. и 4 з.п. ф-лы, 6 ил.

Изобретение относится к ротору для электрической машины. Технический результат - повышение эффективности охлаждения ротора. Ротор для электрической машины содержит полюсный сердечник, который имеет охлаждаемый, намагничиваемый роторный участок из сверхпроводящего материала. При этом роторный участок имеет ротационно-симметричную геометрию. Полюсный сердечник выполнен в виде цилиндра, а роторный участок расположен в окружном направлении на наружной поверхности цилиндра. При этом цилиндр выполнен в виде полого цилиндра для ввода охлаждающей текучей среды во внутреннее пространство полого цилиндра. 2 н. и 9 з.п. ф-лы, 3 ил.

Наверх