Контроллер защиты волоконно-оптических линий



Контроллер защиты волоконно-оптических линий
Контроллер защиты волоконно-оптических линий

 

H04B10/00 - Передающие системы, использующие потоки корпускулярного излучения или электромагнитные волны, кроме радиоволн, например световые, инфракрасные (оптические соединения, смешивание или разделение световых сигналов G02B; световоды G02B 6/00; коммутация, модуляция и демодуляция светового излучения G02B,G02F; приборы или устройства для управления световым излучением, например для модуляции, G02F 1/00; приборы или устройства для демодуляции, переноса модуляции или изменения частоты светового излучения G02F 2/00; оптические мультиплексные системы H04J 14/00)

Владельцы патента RU 2579758:

Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (RU)
Федеральное государственное унитарное предприятие "Российский Федеральный ядерный центр - Всероссийский научно-исследовательский институт экспериментальной физики" - ФГУП "РФЯЦ-ВНИИЭФ" (RU)

Изобретение относится к контроллерам защиты волоконно-оптических линий передачи (ВОЛП) от попыток отвода оптического сигнала и может быть использовано в качестве универсального технического средства защиты информации (ТСЗИ) ограниченного доступа, передаваемой по неконтролируемой территории. Технический результат состоит в создание высокочувствительного контроллера защиты ВОЛП независимого от параметров информационных сигналов. Для этого контроллер защиты волоконно-оптических линий содержит генератор, выход которого соединен со входом оптического передатчика, оптический коммутатор и последовательно соединенные оптический приемник, усилитель с автоматической регулировкой усиления, полосовой фильтр, детектор уровня, контроллер, устройство сигнализации, при этом второй выход контроллера соединен со входом оптического коммутатора, выход которого является выходом устройства в волоконно-оптическую линию, третий выход контроллера соединен со входом согласующего устройства, выход которого соединен со вторым входом усилителя с автоматической регулировкой усиления, оптический изолятор, вход которого соединен с выходом оптического передатчика, первый оптический фильтр, первый вход которого является оптическим входом устройства, второй вход соединен с выходом оптического изолятора, длина волны которого соответствует длине волны оптического передатчика, а выход соединен с оптическим входом оптического коммутатора, второй оптический фильтр, оптический вход которого является оптическим входом устройства с волоконно-оптической линии, первый выход соединен с входом оптического приемника, а второй выход является выходом устройства. 1 ил.

 

Изобретение относится к контроллерам защиты волоконно-оптических линий передачи (ВОЛП) от попыток отвода оптического сигнала и может быть использовано в качестве универсального технического средства защиты информации (ТСЗИ) ограниченного доступа, передаваемой по неконтролируемой территории.

Известно «Устройство контроля волоконно-оптических линий» (см. патент РФ №2522893, опубл. в БИ №20 от 20.07.2014 г.), которое содержит последовательно соединенные приемный оптоэлектронный модуль, усилитель с автоматической регулировкой усиления, полосовой фильтр, детектор уровня, микроконтроллер, устройство сигнализации, а также последовательно соединенные передающий оптоэлектронный модуль и цифровой генератор, оптический коммутатор, первый и второй оптические ответвители, согласующее устройство, выход которого соединен со вторым входом усилителя с автоматической регулировкой усиления, а вход с первым выходом микроконтроллера, второй выход которого соединен с входом управления оптического коммутатора, оптический выход которого является выходом устройства в волоконно-оптическую линию, а оптический вход соединен с выходом первого оптического ответвителя, первый вход которого является входом устройства, а второй вход соединен с выходом передающего оптоэлектронного модуля, оптический вход второго оптического ответвителя является оптическим входом устройства с волоконно-оптической линии, первый выход второго оптического ответвителя соединен со входом приемного оптоэлектронного модуля, а выход является выходом устройства.

Устройство контроля работает следующим образом. На оптический вход устройства от передатчика ВОСП поступают информационные оптические сигналы, которые через оптические ответвитель и коммутатор поступают на оптический выход в линию. Одновременно в ВОЛП через ответвитель поступают контрольные оптические сигналы, которые формируются цифровым генератором и передающим оптико-электронным модулем (ПОМ). После прохождения по ВОЛП оптические сигналы поступают на вход устройства и через ответвитель, из которого 99-90% мощности сигнала поступает на оптический выход устройства. От 1 до 10% мощности сигнала поступает на оптический вход приемного оптико-электронного модуля (ПРОМ), где преобразуется в электрический сигнал. Из сигнала с помощью полосового фильтра выделяется одночастотный контрольный сигнал, который усиливается усилителем и детектируется детектором. В результате на вход микроконтроллера поступает контрольный уровень, величина которого пропорциональна амплитуде контрольного сигнала. Микроконтроллер через устройство управляет величиной коэффициента усиления усилителя, устанавливая заданную величину контрольного уровня на своем входе вне зависимости от коэффициента передачи ВОЛП. После установки уровня и включения в режим контроля на электрический вход управления оптического коммутатора подается сигнал разрешения передачи информационных сигналов. Если микроконтроллер обнаружит попытку отвода оптического сигнала из ВОЛП, то он снимает сигнал разрешения с коммутатора и включает устройство тревожной сигнализации.

Устройство является наиболее близким по технической сущности к заявляемому контроллеру защиты и поэтому выбрано в качестве прототипа.

Недостатками вышеуказанного устройства являются:

- ограничения мощности передаваемых информационных сигналов и коэффициента передачи ВОЛП, обусловленные малым ответвлением мощности оптического сигнала для контроля линии;

- высокий порог обнаружения отвода оптической мощности из-за повышенного шума в канале, вызванного обратно отраженным излучением, попадающим в оптический передатчик.

Решаемой технической задачей является создание универсального по отношению к мощности информационных сигналов и коэффициентам передачи ВОЛП высокочувствительного контроллера защиты.

Достигаемым техническим результатом является создание высокочувствительного контроллера защиты ВОЛП независимого от параметров информационных сигналов: мощности сигналов, скорости передачи и способа кодирования информации, коэффициента передачи ВОЛП.

Для достижения технического результата в контроллере защиты волоконно-оптических линий, содержащем генератор, выход которого соединен со входом оптического передатчика, оптический коммутатор и последовательно соединенные оптический приемник, усилитель с автоматической регулировкой усиления, полосовой фильтр, детектор уровня, контроллер, устройство сигнализации, при этом второй выход контроллера соединен со входом оптического коммутатора, выход которого является выходом устройства в волоконно-оптическую линию, третий выход контроллера соединен со входом согласующего устройства, выход которого соединен со вторым входом усилителя с автоматической регулировкой усиления, новым является то, что дополнительно введены оптический изолятор, вход которого соединен с выходом оптического передатчика, первый оптический фильтр, первый вход которого является оптическим входом устройства, второй вход соединен с выходом оптического изолятора, длина волны которого соответствует длине волны оптического передатчика, а выход соединен с оптическим входом оптического коммутатора, второй оптический фильтр, оптический вход которого является оптическим входом устройства с волоконно-оптической линии, первый выход соединен с входом оптического приемника, а второй выход является выходом устройства.

На фиг. 1 представлена функциональная схема заявляемого контроллера защиты ВОЛП.

Контроллер защиты волоконно-оптических линий содержит генератор 6, выход которого соединен со входом оптического передатчика 5, оптический коммутатор 2 и последовательно соединенные оптический приемник 10, усилитель с автоматической регулировкой усиления 11, полосовой фильтр 12, детектор уровня 13, контроллер 14 и устройство сигнализации 15, при этом второй выход контроллера 14 соединен со входом оптического коммутатора 2, выход которого является выходом устройства в волоконно-оптическую линию 4, третий выход контроллера 14 соединен со входом согласующего устройства 16, выход которого соединен со вторым входом усилителя с автоматической регулировкой усиления 11, оптический изолятор 17, вход которого соединен с выходом оптического передатчика 5, первый оптический фильтр 3, первый вход которого является оптическим входом устройства 1, второй вход соединен с выходом оптического изолятора 17, длина волны которого соответствует длине волны оптического передатчика 5, а выход соединен с оптическим входом оптического коммутатора 2, второй оптический фильтр 8, оптический вход которого является оптическим входом устройства с волоконно-оптической линии 7, первый выход соединен с входом оптического приемника 10, а второй выход является выходом устройства 9.

Заявляемое устройство работает следующим образом. На оптический вход 1 (фиг. 1) от передатчика (усилителя, мультиплексора) ВОСП поступают информационные оптические сигналы на рабочей длине волны (волн WDM) λи, которые через оптический фильтр 3 и оптический коммутатор 2 поступают на оптический выход в ВОЛП 4. Одновременно в ВОЛП через ответвитель 3 поступают контрольные оптические сигналы на рабочей длине волны λк, которые формируются цифровым генератором 6 и оптическим передатчиком 5. Причем длина волны λк больше λи. Между оптическим передатчиком 5 и фильтром 3 установлен оптический изолятор 17, работающий на длине волны λк. После прохождения по ВОЛП, суммарный оптический сигнал на длинах волн λик поступает на вход контроллера 7, который находится на противоположном конце линии. Со входа 7 суммарный оптический сигнал поступает на вход оптического фильтра 8, где происходит его разделение по длинам волн. Излучение информационных сигналов с малыми потерями мощности поступает на оптический выход 9 контроллера защиты. Излучение контрольного сигнала с малыми потерями мощности поступает на оптический вход приемника 10, где преобразуется в электрический сигнал. Из сигнала с помощью полосового фильтра 12 выделяется одночастотный контрольный сигнал, который усиливается усилителем 11 и детектируется детектором 13. В результате на вход микроконтроллера 14 поступает контрольный уровень, величина которого пропорциональна амплитуде контрольного сигнала. Контроллер 14 через согласующее устройство 16 управляет величиной коэффициента усиления усилителя 11, устанавливая заданную величину контрольного уровня на своем входе вне зависимости от коэффициента передачи ВОЛП. После установки уровня и включения в режим контроля, на электрический вход управления оптического коммутатора 2 подается сигнал разрешения передачи информационных сигналов. Если контроллер 14 обнаружит попытку отвода оптического сигнала из ВОЛП, то он снимает сигнал разрешения с коммутатора 2 и включает устройство тревожной сигнализации 15.

Для подтверждения работоспособности заявляемого устройства и экспериментального определения параметров был собран макет ВОСП. В оптических передатчике и приемнике были использованы лазерный излучатель LDI-DFB-1625-10/20-H-2-SM1-M-CW и PIN фотодиод PDI-80-RM-H-5-SM1-M предприятия «LaserCom» (г.Минск), генератор собран на микроконтроллере PIC16C622. Для отключения оптических сигналов использовался оптический коммутатор типа OSW-11-135-09-0,3-FC/PC, в качестве оптических фильтров - фильтровые мультиплексоры работающие на длинах волн 1625 нм /1310 нм + 1550 нм предприятия «LaserCom» (г. Минск). Фильтр, усилитель и детектор собраны на операционных усилителях 140УД17. В качестве контроллера использовался микроконтроллер K1986BE92QC «Миландр», (г. Зеленоград), а устройство сигнализации было собрано на светодиоде КИПД19БМ.

Макет устройства был включен в составе 20- канальной защищенной волоконно-оптической системы передачи (ВОСП) по технологии DWDM, осуществляющей дуплексную связь между двумя коммутаторами D-Link DGS-3610-26G на скорости 40 Гбит/с. Цифровая информация передавалась на длинах волн в диапазоне 1535-1560 нм, контроллер работал на длине волны 1625 нм. Испытания макета устройства подтвердили его работоспособность в составе ВОСП.

Контроллер защиты волоконно-оптических линий, содержащий генератор, выход которого соединен со входом оптического передатчика, оптический коммутатор и последовательно соединенные оптический приемник, усилитель с автоматической регулировкой усиления, полосовой фильтр, детектор уровня, контроллер, устройство сигнализации, при этом второй выход контроллера соединен со входом оптического коммутатора, выход которого является выходом устройства в волоконно-оптическую линию, третий выход контроллера соединен со входом согласующего устройства, выход которого соединен со вторым входом усилителя с автоматической регулировкой усиления, отличающийся тем, что дополнительно введены оптический изолятор, вход которого соединен с выходом оптического передатчика, первый оптический фильтр, первый вход которого является оптическим входом устройства, второй вход соединен с выходом оптического изолятора, длина волны которого соответствует длине волны оптического передатчика, а выход соединен с оптическим входом оптического коммутатора, второй оптический фильтр, оптический вход которого является оптическим входом устройства с волоконно-оптической линии, первый выход соединен с входом оптического приемника, а второй выход является выходом устройства.



 

Похожие патенты:

Изобретение относится к транспортным средствам, а именно к размещению оптических осветительных устройств локомотивов железнодорожного транспорта, их установке и размещению и регулируемых из транспортного средства.

Изобретение относится к области волоконно-оптических систем передачи информации, а именно к системам связи со спектральным мультиплексированием. Технический результат состоит в повышении качества работы и увеличении дальности работы линии связи.

Изобретение относится к способам непрерывного контроля оптических волокон (ОВ) и может быть использовано в качестве алгоритма для программного обеспечения контроллера системы защиты ВОСП информации ограниченного доступа.

Изобретение относится к технике оптической связи и может использоваться в сетях передачи данных. Технический результат состоит в обеспечении динамического управления пространственными и временными параметрами направленных оптических пучков путем создания динамически управляемых отражательных голограмм.

Изобретение относится к области оптики. Технический результат состоит в увеличении дальности передачи энергии электромагнитного излучения оптического диапазона, снижении потерь передачи его через атмосферу.

Изобретение относится к области волоконно-оптических систем передачи информации, а именно к когерентным системам связи со спектральным мультиплексированием. Технический результат состоит в повышении спектральной эффективности системы.

Изобретение относится к сетевому узлу, в частности к обеспечению возможности первому блоку подключаться ко второму блоку в режиме самоорганизующейся сети (ad-hoc) в системе, сконфигурированной для удаленных и основных блоков.

Изобретение относится к скоростным модуляторам и может использоваться в бортовых передатчиках спутниковой системы связи и в системах дистанционного зондирования земли.

Изобретение относится к вычислительной технике. Технический результат заключается в ускорении обслуживания запросов абонентов на передачу сообщений.

Изобретение относится к мониторингу продуктивных нефтегазовых скважин в реальном времени. Техническим результатом является обеспечение своевременной идентификации любых проблем и регулирование параметров процесса отработки скважин.

Лазерное приемное устройство, которое может быть использовано в качестве приемного устройства для лазерной локационной системы и системы лазерной космической связи, основано на сверхрегенеративном приеме лазерных сигналов локации и связи в оптическом диапазоне, что позволяет реализовать приемное устройство, обладающее предельной квантовой (однофотонной) чувствительностью и одновременно высокой помехозащищенностью приема лазерных сигналов. Приемное устройство содержит обратную связь на основе акустооптического модулятора, что обеспечивает возможность пространственной фильтрации сигналов. Технический результат заключается в повышении чувствительности лазерного приемного устройства, обеспечении быстрой перестройки частоты полосы приема и узкополосной фильтрации принимаемого лазерного излучения, обеспечении компенсации доплеровских сдвигов частоты приема лазерного излучения, компенсации рассогласования волновых фронтов принимаемого и гетеродинного лазерных излучений на входе фотоприемника. 2 з.п. ф-лы, 6 ил.

Изобретение относится к волоконно-оптическим системам передачи (ВОСП) с селекцией и локализацией аварийных ситуаций и может быть использовано в качестве защищенной системы передачи информации ограниченного доступа за пределами контролируемой зоны. Защищенная волоконно-оптическая система передачи с селекцией и локализацией аварийных ситуаций состоит из двух комплектов приемо-передающей аппаратуры, соединенных между собой волоконно-оптическими линиями, при этом каждый комплект содержит приемо-передающее устройство, соединенное оптическими шнурами с устройством контроля, выход которого соединен со входом волоконно-оптической линии, в каждый комплект введены источник питания и блок рефлектометрического контроля, включающий в себя оптический разветвитель, общий полюс которого соединен с выходом волоконно-оптической линии, первый полюс с помощью оптического шнура соединен со входом устройства контроля, а второй полюс соединен с общим полюсом оптического циркулятора, первый полюс которого соединен с выходом оптического передатчика, вход которого соединен с первым выходом микроконтроллера, а второй полюс циркулятора соединен со входом оптического приемника, первый выход которого соединен со входом аналого-цифрового преобразователя, выход которого соединен с первым входом микроконтроллера, а второй выход оптического приемника соединен со входом детектора среднего уровня, выход которого соединен со вторым входом микроконтроллера, выход управления которого соединен со входом управления реле, вход которого соединен с выходом источника питания, а выход соединен со входом питания устройства контроля, выход индикации микроконтроллера соединен со входом устройства индикации. Достигаемым техническим результатом является повышение среднего времени наработки на ложную тревогу за счет дополнительного анализа аварийных ситуаций. 1 ил.

Изобретение относится к защищенным волоконно-оптическим системам передачи и может быть использовано в качестве дуплексной многоканальной волоконно-оптической системы передачи (ВОСП) информации ограниченного доступа по неконтролируемой территории. Технический результат состоит в уменьшении количества средств мониторинга и контроля и увеличении чувствительности контроля. Для этого в систему передачи со спектральным разделением сигналов введен контроллер защиты, рабочая длина волны которого больше длины волны любого из оптических передатчиков, при этом вход контроллера защиты соединен с оптическим выходом мультиплексора волоконно-оптическим шнуром, а выход соединен волоконно-оптическим шнуром с оптическим входом демультиплексора, линейные входы и выходы контроллеров защиты соединены между собой волоконно-оптическими линиями передачи. 3 ил.

Изобретение относится к технике связи и может быть использовано для передачи сигналов на участках систем связи, которые могут быть подвержены воздействиям высоких механических нагрузок, ионизирующих излучений или иных поражающих факторов. Технический результат заключается в повышении надежности и живучести системы передачи в условиях чрезвычайных ситуаций. Для этого на участках, прилегающих к узлу связи пункта управления, создается запас линейного кабеля связи путем его навива на диэлектрический стержень или зигзагообразной прокладки («змейкой»). В непосредственной близости от трассы кабельной линии связи на этих участках размещаются подземные камеры (контейнеры) с вращающимися барабанами с запасом линейного оптического кабеля. Кабель и подземные камеры снабжены интеллектуальными маркерами. 3 з.п. ф-лы, 3 ил.

Изобретение относится к области информационно-коммуникационных технологий и касается способа увеличения длины распространения инфракрасных монохроматических поверхностных электромагнитных волн (ПЭВ) по плоской металлической поверхности. Способ включает в себя нанесение на поверхность слоя непоглощающего диэлектрика. До нанесения слоя определяют направление максимума диаграммы направленности объемных электромагнитных волн (ОЭВ), излучаемых ПЭВ с их трека. Толщину слоя и показатель преломления его материала выбирают таким образом, чтобы наличие слоя обеспечивало приращение действительной части модуля волнового вектора ПЭВ на величину где ko=2π/λ - волновое число ОЭВ в окружающей поверхность среде; λ - длина волны излучения в окружающей среде; φmах - угол отклонения максимума диаграммы направленности от плоскости поверхности. Технический результат заключается в увеличении длины распространения (ПЭВ) и обеспечении ее защиты от внешних воздействий. 2 ил.

Изобретение относится к области оптических измерений и касается фотоприемного устройства. Фотоприемное устройство содержит последовательно соединенные лавинный фотодиод, усилитель и фильтр, а также компаратор, дискриминатор длительности импульсов, регулируемый источник питания, блок оценки сигналов, источник опорного напряжения, высокочастотный генератор и блок синхронизации. Кроме того, устройство включает в себя последовательно соединенные дополнительный усилитель и детектор. При этом выход детектора соединен с первым входом компаратора, вход дополнительного усилителя соединен с фильтром. В качестве фильтра используется полосовой фильтр с полосой пропускания около середины рабочей полосы частот усилителя. Технический результат заключается в увеличении отношения сигнал/шум при регулировании коэффициента умножения лавинного фотодиода непосредственно по принимаемому оптическому сигналу. 2 ил., 1 табл.

Изобретение относится к технике связи и может использоваться для обнаружения отношения оптического сигнала к шуму, узловое устройство и сетевую систему. Технический результат состоит в повышении качества приема информации. Для этого способ включает в себя: прием обнаруженного оптического сигнала, переносящего шум усиленного спонтанного излучения (ASE); обнаружение первой переменной составляющей тока и первой постоянной составляющей тока обнаруженного оптического сигнала; получение первой информации модуляции обнаруженного оптического сигнала; получение первой информации коррекции, соответствующей первой информации модуляции, согласно первой информации модуляции; и определение отношения оптического сигнала к шуму (OSNR) обнаруженного оптического сигнала согласно первой переменной составляющей тока, первой постоянной составляющей тока и первой информации коррекции. 3 н. и 14 з.п. ф-лы, 19 ил.

Изобретение относится к технике и может использоваться в оптических системах связи. Технический результат состоит в повышении помехоустойчивости. Для этого в способе нелокальной передачи информации двумя источниками фотонов излучают фотоны попарно в запутанном квантово-механическом состоянии, направляют фотоны из каждой пары одного источника на один из двух оптически прозрачных термолюминесцентных кристаллов, содержащих квантово-механически запутанные между ними электронные центры окраски, а запутанные с этими фотонами парные фотоны направляют на измерительное устройство, модулирующее информацию в соответствии с одним из передаваемых двоичных символов, фотоны из каждой пары второго источника направляют на второй оптически прозрачный термолюминесцентный кристалл, а запутанные с этими фотонами парные фотоны направляют на детектирующее устройство таким образом, что при одном значении двоичного символа происходит нарушение интерференционной картины, а при другом его значении - восстановление интерференционной картины. Выделение информации осуществляют на детектирующем устройстве по состоянию интерференционной картины. 2 з.п. ф-лы, 2 ил.

Изобретение относится к области связи, в частности к мультисервисным сетям абонентского доступа (МСАД) на базе интерактивной волоконно-эфирной архитектуры. Технический результат состоит в обеспечении защиты от преднамеренного повреждения кабеля; в повышении точности определения места проникновения одноучастковой когерентной волоконно-оптической охранной системы (ВООС). Для этого разбивают охраняемую территорию крупного хозяйственного объекта как протяженной, так и локальной конфигурации на большое число связанных периметральных участков с длиной периметра каждого участка не более 10-15 км, что позволяет значительно расширить зону обслуживания, разбивают оборудования волоконно-оптической охранной системы на взаимоувязанные подсистему охраны кольцевой топологии, реализующую на каждом участке функцию зондирования периметра с помощью когерентной рефлектометрии, и подсистему связи двойной шинной топологии, реализующую функцию предварительной обработки и последовательной передачи между участками результатов зондирования подсистемы охраны в единый центр управления с использованием временного и спектрального разделения каналов и регенерации сигналов на каждом участке. Вводят в сенсорный волоконно-оптический кабель двух дополнительных одномодовых волокон для раздельной передачи сигналов исходящего и входящего направлений подсистемы связи, что позволяет исключить взаимное влияние обеих подсистем волоконно-оптической охранной системы при сохранении высокой чувствительности к акустическому воздействию. 2 н. и 3 з.п. ф-лы, 8 ил.

Изобретение относится к контроллерам защиты волоконно-оптических линий передачи (ВОЛП) от попыток отвода оптического сигнала и может быть использовано в качестве универсального технического средства защиты информации (ТСЗИ) ограниченного доступа, передаваемой по неконтролируемой территории. Техническим результатом является сужение динамического диапазона входного сигнала за счет его логарифмирования и увеличение изоляции информационного и контрольного сигналов. Для этого контроллер защиты волоконно-оптических линий содержит оптические передатчик и коммутатор, последовательно соединенные устройство сигнализации и контроллер, выход которого соединен со входом оптического коммутатора, оптический выход которого является выходом устройства в волоконно-оптическую линию, последовательно соединенные фотодиод и логарифмический усилитель, а также оптический изолятор, демультиплексор вывода и мультиплексор ввода, вход ввода которого соединен с выходом оптического изолятора, вход которого соединен с выходом оптического передатчика, а общий вход мультиплексора является оптическим входом устройства, выход мультиплексора ввода соединен с оптическим входом оптического коммутатора, оптический вход демультиплексора вывода является входом устройства с волоконно-оптической линии, а выход вывода соединен со входом фотодиода, выход логарифмического усилителя соединен со входом микроконтроллера, а второй оптический выход демультиплексора вывода является выходом устройства. 1 ил.
Наверх