Способ индукционного упрочнения почвообрабатывающего рабочего органа


 


Владельцы патента RU 2582840:

федеральное государственное бюджетное образовательное учреждение высшего образования "Алтайский государственный технический университет им. И.И. Ползунова" (АлтГТУ) (RU)

Способ индукционного упрочнения почвообрабатывающего рабочего органа предназначен для использования в сельхозмашиностроении, строительной и других отраслях промышленности. На упрочняемую поверхность почвообрабатывающего рабочего органа детали наносят шихту, содержащую, мас.%: сормайтовую крупку 40-70, бориды железа 30-60, толщиной слоя от 0,5 до 5,0 мм. После этого изделие нагревают в индукторе токами высокой частоты при удельной мощности 0,8-5,0 кВт на 1 см2 поверхности с частотой 1-80 кГц в течение 0,5-5 минут до оплавления поверхности нанесенной шихты. После окончания нагрева наплавленное изделие охлаждают в воде. Обеспечивается повышение износостойкости почвообрабатывающего рабочего органа. 1 табл.

 

Изобретение относится к машиностроению, в частности к способам упрочнения таких стальных изделий, как почвообрабатывающие органы сельскохозяйственных машин, в соответствии с характером их износа, работающих в условиях абразивного изнашивания и при ударных нагрузках, и может быть использовано при производстве упрочненных рабочих органов почвообрабатывающих машин, обладающих повышенным ресурсом работы, в сельхозмашиностроении, строительной и других отраслях промышленности.

Известен способ индукционной наплавки стальной детали, предназначенный для использования, в частности, в сельхозмашиностроении, заключающийся в том, что предварительно поверхность детали насыщают вольфрамом и кобальтом на глубину 0,1-0,3 мм путем электроискрового легирования с использованием наплавочного оборудования, затем на поверхность детали наносят шихту, содержащую твердый сплав ПС-14-80 и флюс при следующем соотношении компонентов, мас.%: твердый сплав ПС-14-80-85, флюс - 15, с толщиной слоя 3 мм. Далее нагревают деталь в индукторе токами высокой частоты на средних режимах с использованием высокочастотного генератора (патент RU 2338625, МПК B22D 19/00, В23К 13/01, В23Н 9/00 (2006.01)).

Недостатками вышеописанного способа являются пониженная стойкость, а именно, износостойкость деталей с наплавленным слоем, полученным по этому способу (см. таблицу, №№ п/п 1, 2), низкая технологичность вследствие использования дополнительной операции насыщения вольфрамом и кобальтом путем электроискрового легирования, повышенные затраты вследствие необходимости применения дорогостоящих вольфрама и кобальта при условии их нанесения путем электроискрового легирования и вследствие необходимости применения дополнительного наплавочного оборудования.

Наиболее близким к предлагаемому изобретению по технической сущности (прототипом) является способ индукционного упрочнения и восстановления деталей, предназначенный для использования, в частности, в машиностроении, включающий нанесение шихты, содержащей карбид бора, фторид натрия, буру, сормайтовую крупку при следующем соотношении компонентов, мас.%: карбид бора 25-35; фторид натрия 1-3, буру 9-12, сормайтовую крупку 50-65, толщиной слоя от 0,5 до 5,0 мм на упрочняемую поверхность детали, нагрев в индукторе токами высокой частоты при удельной мощности 1,5-3,0 кВт на 1 см2 поверхности детали с частотой 40-80 кГц в течение 1,5-5 минут до оплавления поверхности нанесенной шихты и образования на поверхности наплавленного слоя стеклообразной шлаковой корочки, охлаждение на воздухе до температуры ниже 200°C (патент RU 2507027, МПК B22D 19/10, В23Р 6/00 (2006.01)).

Основным недостатком вышеописанного способа является пониженная стойкость, а именно, износостойкость изделий, с наплавленным слоем, полученным по этому способу (см. таблицу, №№ п/п 3, 4).

Задачей изобретения является повышение стойкости, а именно, износостойкости деталей с наплавленным слоем, полученных по предложенному способу.

Поставленная задача решается тем, что в способе индукционного упрочнения почвообрабатывающего рабочего органа, включающем нанесение шихты, содержащей сормайтовую крупку, толщиной слоя 0,5-5,0 мм на упрочняемую поверхность, нагрев токами высокой частоты до оплавления поверхности нанесенной шихты и охлаждение, согласно изобретению на упрочняемую поверхность почвообрабатывающего рабочего органа наносят шихту, дополнительно содержащую бориды железа, при следующем соотношении компонентов, мас.%:

сормайтовая крупка 40-70,
бориды железа 30-60,

нагрев токами высокой частоты производят при удельной мощности 0,8-5,0 кВт на 1 см2 поверхности почвообрабатывающего рабочего органа с частотой 1-80 кГц в течение 0,5-5 минут, а охлаждение осуществляют в воде.

Повышение износостойкости изделий, наплавленных посредством предложенного способа, обеспечивается частичным растворением в поверхностном слое наплавляемой детали компонентов шихты с образованием равнопрочной с основным металлом границы сплавления, а также легированием наплавленного материала бором с образованием боридной эвтектики, переходящей в диффузионный боридный слой на поверхности наплавленного материала и имеющей высокую поверхностную твердость и износостойкость. Кроме того, между наплавленным и основным металлом отсутствует оксидная прослойка, снижающая прочность сцепления.

Содержание в шихте сормайтовой крупки в количестве 40-70 мас.% оптимально по причине того, что при содержании сормайтовой крупки меньшем чем 40 мас.% формируется упрочненный слой меньшей толщины, обладающий высокой хрупкостью, что может приводить к самоскалыванию наплавленного покрытия уже в процессе охлаждения. При содержании сормайтовой крупки большем чем 70 мас.%, вследствие меньшего содержания флюса, формирования сплошной стеклообразной корки на наплавляемом покрытии не происходит, что приводит к местному окислению покрытия и угару легирующих элементов.

Содержание в обмазке боридов железа в количестве, составляющем 30-60 мас.%, является оптимальным, так как при содержании боридов железа менее 30% возрастает расход сормайтовой крупки, при содержании боридов железа более 60% возможно прогар насыщающей обмазки, что приводит к браку.

Нагрев токами высокой частоты производят при удельной мощности 0,8-5,0 кВт на 1 см2 поверхности почвообрабатывающего рабочего органа с частотой 1-80 кГц является оптимальным, так как вводимая мощность при температуре фазовых превращений пропорциональна частоте. При мощности меньшей чем 0,8 кВт на 1 см2, прогрев наплавляемой шихты и поверхности упрочняемого рабочего органа займет длительное время, кроме того, возрастает риск частичного непроплавления шихты. При частоте менее 1 кГц возрастает время нагрева при температурах выше 800°C, в результате чего возможно неполное сплавление наплавляемого покрытия и основного материала изделия, что может привести к последующему отслаиванию упрочненного слоя. При частоте более 80 кГц происходит быстрый нагрев шихты с последующим ее плавлением, тогда как поверхность изделия не успевает прогреется до подплавления, в результате чего происходит «сползание» наплавленного металла. При мощности нагрева более 5,0 кВт на 1 см2 происходит быстрый разогрев, в результате чего возможен перегрев как наплавляемого материала, так и поверхности изделия, в результате чего формируется неблагоприятная микроструктура, обладающая низкими показателями стойкости.

Время нагрева токами высокой частоты, составляющее 0,5-5 минут, является оптимальным, так как при времени нагрева менее 0,5 минут не удается обеспечить равномерное расплавление шихты и сваривание ее с основой, а при времени нагрева более 5 минут велик риск пережога как наплавляемого металла, так и поверхности изделия, что чревато наличием неметаллических включений на границе сплавления и слабой адгезией наплавленного слоя к восстанавливаемой поверхности.

Предложенное изобретение поясняется таблицей, в которой приведены результаты испытаний на стойкость культиваторных лап для предпосевной обработки почвы, изготовленных из стали 50 Г.

Способ индукционного упрочнения и восстановления почвообрабатывающего рабочего органа осуществляется следующим образом. Шихту, содержащую сормайтовую крупку и бориды железа при следующем соотношении компонентов, мас.%: сормайтовая крупка 40-70, бориды железа - 30-60, наносят на упрочняемую поверхность почвообрабатывающего рабочего органа слоем от 0,5 до 5,0 мм.

После этого деталь нагревают в индукторе токами высокой частоты при удельной мощности 0,8-5,0 кВт на 1 см2 поверхности детали с частотой 1-80 кГц в течение 0,5-5 минут до оплавления поверхности нанесенной шихты и образования на поверхности наплавленного слоя стеклообразной шлаковой корочки. Затем почвообрабатывающий рабочий орган с наплавленным слоем охлаждают в воде и удаляют стеклообразную шлаковую корочку с поверхности наплавленного слоя.

При этом в качестве боридов железа можно использовать смесь моноборида железа и гемиборида железа в соотношении 1:8.

Изобретение иллюстрируется следующим примером.

Подвергали упрочнению почвообрабатывающий рабочий орган - культиваторную лапу для предпосевной обработки почвы из стали 50 Г. Предварительно шихту, содержащую сормайтовую крупку и бориды железа (см. таблицу, №№ п/п 5-12), наносили на поверхность наплавляемого почвообрабатывающего рабочего органа слоем толщиной 3 мм, после чего нагревали в индукторе токами высокой частоты при удельной мощности 2,8 кВт на 1 см2 поверхности детали с частотой 13 кГц в течение 2 минут до оплавления поверхности нанесенной шихты. После окончания нагрева изделие с наплавленным слоем охлаждали в воде.

При этом на поверхности был получен наплавленный слой толщиной 4,5-5,5 мм со средней микротвердостью 1350 HV, содержащий карбиды и карбобориды железа и хрома с микротвердостью 1600-2200 HV (см. таблицу, №№ п/п 5-12). Износостойкость определяли по обработанной площади почвы.

Также осуществляли процесс упрочнения в соответствии со способом, выбранным в качестве аналога (см. таблицу, №№ п/п 1, 2) и способом, выбранным в качестве прототипа (см. таблицу, №№ п/п 3, 4), которые также испытывали.

Как следует из приведенных в таблице данных, при наплавке деталей шихтой с содержанием компонентов за заявленными пределами стойкость упрочненных изделий снижается и происходит искажение размеров упрочненного изделия, приводящее к браку (см. таблицу, №№ п/п 6), либо к формированию наплавленного слоя с низкими эксплуатационными качествами (см. таблицу № п/п 5). Стойкость, а именно, износостойкость изготовленной в соответствии с предложенным изобретением культиваторной лапы, возросла в среднем в 2,5 раза по сравнению со стойкостью лапы, изготовленной в соответствии с прототипом.

Таким образом, использование предложенного изобретения позволяет увеличить износостойкость почвообрабатывающего рабочего органа, упрочненного в соответствии с предложенным способом. Заявленный способ может быть использован на любом предприятии, имеющем оборудование для термической обработки с применением токов высокой частоты, для производства деталей машин и инструмента, обладающих повышенным по сравнению с серийным ресурсом работы.

Способ индукционного упрочнения почвообрабатывающего рабочего органа, включающий нанесение шихты, содержащей сормайтовую крупку, толщиной слоя 0,5-5,0 мм, на упрочняемую поверхность, нагрев токами высокой частоты до оплавления поверхности нанесенной шихты и охлаждение, отличающийся тем, что на упрочняемую поверхность почвообрабатывающего органа наносят шихту, дополнительно содержащую бориды железа, при следующем соотношении компонентов, мас.%:

сормайтовая крупка 40-70,
бориды железа 30-60,

нагрев токами высокой частоты производят при удельной мощности 0,8-5,0 кВт на 1 см2 поверхности детали с частотой 1-80 кГц в течение 0,5-5 минут, а охлаждение осуществляют в воде.



 

Похожие патенты:

Изобретение относится к способу формирования стабильных наноструктурных покрытий плазменной струей. Осуществляют напыление твердосплавных нанопорошков плазменной струей на подложку, расположенную перпендикулярно к направлению оси плазменной струи, с использованием кислород-углеводородных газовых смесей.

Изобретение относится к области нанесения покрытий детонационным способом и может быть использовано для получения порошкового нитрида титана и нанесения покрытий на его основе.

Изобретение относится к области машиностроения и металлургии, а именно к технологической вакуумной установке для получения наноструктурированных покрытий из материала с эффектом памяти формы на поверхности стальной детали.
Изобретение относится к области порошковой металлургии, в частности к способам получения высокопористых ячеистых материалов (ВПЯМ), предназначенных для использования в качестве фильтров, шумопоглотителей, носителей катализаторов, теплообменных систем, конструкционных материалов, работающих в условиях высоких температур, и может найти применение в энергетике, машиностроительной, химической и других отраслях промышленности.

Изобретение относится к способу электровзрывного напыления на поверхности трения композиционных покрытий системы TiB2-Mo. Осуществляют размещение порошковой навески из диборида титана между двумя слоями молибденовой фольги.

Изобретение относится к способу получения защитного упрочняющего покрытия на деталях запорной арматуры. Напыление производят высокоскоростным газопламенным методом со скоростью перемещения горелки относительно обрабатываемой поверхности 0,5÷1,0 м/с.

Изобретение относится к способу и устройству для формирования аморфной покрывающей пленки (варианты). Пленку формируют посредством выпуска пламени, содержащего частицы материала для пламенного напыления, струей из пистолета для пламенного напыления по направлению к материалу-основе, вызывания плавления частиц посредством пламени и охлаждения как частиц, так и пламени посредством охлаждающего газа перед тем, как частицы достигают материала-основы.

Изобретение относится к способу нанесения состава для покрытия, содержащего углерод в форме углеродных нанотрубок, графенов, фуллеренов или их смеси, и металлические частицы, на субстрат с последующей обработкой под давлением и тепловой обработкой покрытия после нанесения на субстрат.

Изобретение относится к обработке поверхности металлов. Способ получения коррозионно-стойкого покрытия на поверхности нелегированной стали включает подготовку порошка в виде нанокомпозитных частиц Fe-Ni, содержащих 3-10 мас.% никеля, и послойное нанесение его на поверхность нелегированной стали с лазерным спеканием.

Изобретение относится к наноэлектронике и наноэлектромеханике и может быть использовано в различных областях современной наноиндустрии, микроэлектронике, альтернативной энергетике и т.д. В способе получения наноструктурного покрытия из гранулированного нанокомпозита «металл-керамика» получают нанокомпозит предпочтительно методом ионно-лучевого распыления с образованием гранул, со средним диаметром преимущественно 2-4 нм, а концентрацию металлической фазы в получаемом нанокомпозите при распылении обеспечивают в пределах 25-30 ат.%.

Изобретение относится к области металлургии, конкретнее к способам обработки металлов с использованием магнитных полей, и может быть использовано для обработки твердотельного порошкообразного магнитного и немагнитного материала в переменном магнитном поле для модификации структурно-зависимых свойств этих материалов.

Изобретение относится к инструментальному производству и может быть использовано для упрочнения поверхности стальных деталей, подвергающихся износу в процессе эксплуатации.

Изобретение относится к получению метаматериалов из структурных элементов на основе полупроводников, диэлектриков и металлов и может быть использовано в машиностроении и электронике в качестве материалов с улучшенными свойствами.

Изобретение относится к области сварки. Способ сварки металлов включает наложение циклической вибрационной нагрузки на кристаллизующийся металл сварочной ванны, частота которой за один цикл ее наложения изменяется по линейному закону в диапазоне от 50 до 250 Гц.

Изобретение относится к литейному производству. .

Изобретение относится к способу лазерной нагартовки и изделию для лазерной нагартовки. .

Изобретение относится к области машиностроения, в частности к виброобработке маложестких деталей для снижения в них остаточных напряжений. .

Изобретение относится к области металлургии и может быть использовано для изготовления емкостей сжиженных газов, низкотемпературного и криогенного оборудования, установок для получения сжиженных газов, оболочек ракет и емкостей для хранения ракетного топлива из стали 01Х18Н9Т.

Изобретение относится к размагничиванию ферромагнитных материалов и изделий, например, после процесса ультразвукового контроля электромагнитоакустическим методом, при проведении которого изделие намагничивается.

Изобретение относится к общему машиностроению и может быть использовано для обеспечения эксплуатационных характеристик покрытий конструкционных и инструментальных материалов.

Изобретение может быть использовано для упрочнения деталей машин индукционной наплавкой твердых сплавов путем создания износостойких покрытий. Шихта содержит мас.%: плавленый флюс на основе борсодержащих компонентов 8-10, состав самораспространяющегося высокотемпературного синтеза 13-17, твердый сплав - остальное.
Наверх