Электромагнитный зонд для каротажа в нефтегазовых скважинах



Электромагнитный зонд для каротажа в нефтегазовых скважинах

 


Владельцы патента RU 2583867:

Открытое акционерное общество "Нефтяная компания "Роснефть" (RU)

Изобретение относится к области геофизических исследований в открытом стволе скважин, бурящихся на нефть и газ, а именно к устройствам для изучения электрических свойств горных пород, окружающих скважину. Технический результат: повышение информативности исследования электрических свойств горных пород вокруг скважины. Сущность: зонд включает немагнитный металлический корпус, две генераторные тороидальные катушки и не менее трех приемных тороидальных катушек, расположенных внутри корпуса осесимметрично на основаниях из немагнитного металла при наличии электрического контакта между основаниями и корпусом, в котором для каждой катушки имеется изолирующий зазор. Зонд снабжен непроводящей вставкой, установленной в верхней части корпуса. Рядом с каждой генераторной тороидальной катушкой на одном основании установлена токоизмерительная тороидальная катушка. Изолирующий зазор в корпусе является общим для каждой пары генераторной и токоизмерительной тороидальных катушек. Зонд включает также электростатический экран, расположенный между генераторной и токоизмерительной катушками. 2 з.п. ф-лы, 1 ил.

 

Электромагнитный зонд для каротажа в нефтегазовых скважинах относится к области геофизических исследований в открытом стволе скважин, бурящихся на нефть и газ, а именно - к устройствам для изучения электрических свойств горных пород, окружающих скважину.

В настоящее время из уровня техники известен ряд устройств-аналогов, из которых наиболее близким к изобретению (прототипом) является устройство для измерения удельной электропроводности и электрической макроанизотропии горных пород (патент РФ на изобретение №2528276). К числу недостатков прототипа можно отнести следующее: корпус прибора не изолирован от каротажного кабеля, поэтому токи, создаваемые верхней и нижней генераторными катушками, не будут равны между собой даже в однородной среде. Кроме этого часть тока генераторных катушек будет перемагничивать тороидальный сердечник, не создавая электрического тока в окружающих породах, а возможность контроля за током, стекающим в среду, окружающую зонд, отсутствует.

Технической целью (задачей) заявляемого изобретения является устранение вышеуказанных недостатков, а его техническим результатом - создание электромагнитного зонда, обеспечивающего большую информативность исследования электрических свойств горных пород вокруг скважины.

Поставленная цель достигается тем, что заявляемое техническое решение, включающее немагнитный металлический корпус, две генераторные тороидальные катушки и не менее трех приемных тороидальных катушек, расположенных внутри корпуса осесимметрично на основаниях из немагнитного металла при наличии электрического контакта между основаниями и корпусом, в котором для каждой катушки имеется изолирующий зазор, конструктивно снабжено непроводящей вставкой, установленной в верхней части корпуса в целях изоляции измерительной части зонда от расположенного выше модуля телеметрии и стыковочного устройства с геофизическим каротажным кабелем, а рядом с каждой генераторной тороидальной катушкой на одном основании установлена токоизмерительная тороидальная катушка, при этом изолирующий зазор в корпусе является общим для каждой пары генераторной и токоизмерительной тороидальных катушек (жирным выделены существенные признаки изобретения, отличающие его от прототипа). Именно вышеуказанная совокупность признаков обеспечивает получение изобретением общего заявленного технического результата.

Установка изолятора в верхней части корпуса заявляемого электромагнитного зонда обеспечивает снижение уровня электрических помех от токов промышленной частоты, стекающих с каротажного кабеля на металлический корпус зонда.

Изолятор также необходим для создания симметрии в конструкции измерительной части зонда. Это, в свою очередь, повышает информативность исследования электрических свойств горных пород вокруг скважины (заявленный технический результат). Действительно, измеряемый сигнал является сверткой диаграммы направленности электромагнитного зонда и распределения удельной электропроводности геологической среды вдоль скважины и представляется следующим образом: σизм=∫g(z)σ(z-τ)dτ, где σизм - измеренный сигнал, g(z) - диаграмма направленности электромагнитного зонда вдоль скважины, σ(z) - истинное распределение удельной электропроводности геологической среды вдоль скважины.

Для уменьшения искажений распределения удельной электропроводности геологической среды вдоль скважины необходимо иметь симметричную диаграмму направленности зонда. В заявляемом техническом решении это достигается путем построения симметричной схемы зондовой системы с использованием изолирующей проставки. В этом случае диаграммы измеряемых сигналов не будут искажать геоэлектрический разрез.

В отношении токоизмерительных тороидальных катушек необходимо отметить следующее: при подаче переменного электрического напряжения на обмотку генераторной тороидальной катушки с ферромагнитным сердечником в ней возникает ток, имеющий две составляющие. Первая составляющая обусловлена вихревыми токами, индуцированными в геологической среде, и зависит от удельной электропроводности среды. Вторая составляющая определяется собственным индуктивным сопротивлением генераторной тороидальной катушки в силу перемагничивания сердечника. Так, ток в обмотке генераторной тороидальной катушки Iг определяется как: Iг=Iσ+IL, где Ισ - составляющая, зависящая от удельной электропроводности геологической среды, IL - составляющая, зависящая от собственного индуктивного сопротивления генераторной тороидальной катушки, определяемая как I L = U г ω L , где Uг - напряжение на выводах обмотки генераторной тороидальной катушки, ω=2πf - круговая частота, f - рабочая частота, L - индуктивность. Поскольку токоизмерительная тороидальная катушка расположена в непосредственной близости от генераторной и имеет с ней один общий изолирующий зазор, обеспечивающий взаимодействие с окружающей геологической средой, то измеряемый ток определяется только вихревыми токами в электропроводящей среде и не зависит от тока индуктивного сопротивления генераторной катушки.

Изобретение, в своих частных случаях выполнения, характеризуется признаками, указанными выше, в совокупности со следующими признаками:

1) между генераторной и токоизмерительной тороидальными катушками расположен электростатический экран, электрически соединенный с основанием и корпусом;

2) между генераторной и токоизмерительной тороидальными катушками расположен электростатический экран, электрически соединенный с основанием и корпусом, при этом корпус электромагнитного зонда выполнен герметичным и разборным.

На фигуре приведен общий вид конструктивной схемы электромагнитного зонда.

Электромагнитный зонд включает в себя следующие элементы: внешний корпус 1, основание 2, генераторные тороидальные катушки 3, токоизмерительные тороидальные катушки 4, приемные тороидальные катушки 5, изолирующий зазор 6, электростатический экран 7, непроводящую вставку 8, модуль телеметрии 9.

Внешний корпус 1 предлагаемого устройства выполнен в виде разборной герметичной немагнитной металлической трубы постоянных толщины и внутреннего диаметра.

Генераторные тороидальные катушки 3 соосно размещены на основании 2, представлены тороидальными катушками общеизвестной конструкции с ферромагнитным сердечником.

Электростатический экран 7 расположен между одной из генераторных катушек 3 и токоизмерительной тороидальной катушкой 4, электрически соединен известным образом с основанием 2 и внешним корпусом 1.

Приемные тороидальные катушки 5 соосно размещены на основании 2 с заданным расстоянием от генераторных катушек 3, представлены тороидальными катушками общеизвестной конструкции с ферромагнитным и диэлектрическим сердечником.

Основание 2 представлено в виде единой трубы постоянных толщины и внутреннего диаметра из немагнитного проводящего металла. Оно закреплено известным образом внутри внешнего корпуса 1.

Заявляемое устройство работает следующим образом: на обмотку генераторных тороидальных катушек 3 подается переменное электрическое напряжение с генератора сигналов (условно не показан), посредством чего в окружающей среде возбуждается переменное электромагнитное поле, проникающее на достаточную для исследования глубину за стенкой скважины. Затем блоком измерительной аппаратуры (условно не показан) регистрируют электрическое напряжение на выводах обмотки генераторных тороидальных катушек 3, электрические токи в обмотках токоизмерительных тороидальных катушек 4, а также электрическое напряжение на выводах обмотки тороидальных приемных катушек 5. По измеренным сигналам определяются электрофизические характеристики окружающих устройство горных пород.

Осуществляется измерение электромагнитных сигналов в токоизмерительных и приемных тороидальных катушках. В первую очередь, выполняется их преобразование в кажущиеся параметры: трансформация в кажущуюся удельную электропроводность и кажущийся коэффициент электрической анизотропии с использованием модели однородной электропроводящей среды. Во вторую очередь, выполняется их преобразование в истинные параметры с использованием процедур численной инверсии в рамках выбранной интерпретационной модели с получением пространственного распределения этих параметров. Все указанные преобразования основаны на решениях вычислительных задач электродинамики в изотропных и анизотропных электропроводящих моделях геологических сред. Для решения этих задач используется метод Фурье-разложения представления, описывающего электромагнитное поле от тороидального источника. Вычисляются все три ненулевые компоненты электромагнитного поля, возбуждаемого тороидальной катушкой: радиальная и вертикальная компоненты напряженности электрического поля (Er, Ez) и тангенциальная компонента напряженности магнитного поля (Ηφ). По значениям Ηφ определяются синфазная и противофазная составляющие эдс, наведенной в приемной тороидальной катушке. В соответствии с законом Фарадея: ε=iωµ0ΜΗφ(σ), где i - мнимая единица, μ0 - магнитная проницаемость вакуума, M - магнитный момент. Значение M определяется амплитудой тока в генераторной катушке, относительными магнитными проницаемостями сердечников генераторной и приемной катушек, числом витков и их площадями. σ(r, φ, z) - пространственное распределение удельной электропроводности среды (при трансформации в кажущуюся удельную электропроводность не зависит от пространственных координат σ=const). Таким образом, устанавливается однозначная связь значений измеряемых сигналов с электрофизическими характеристиками горных пород, вскрытых скважиной.

1. Электромагнитный зонд для каротажа в нефтегазовых скважинах, состоящий из немагнитного металлического корпуса, двух генераторных тороидальных катушек и не менее трех приемных тороидальных катушек, расположенных внутри корпуса осесимметрично на основаниях из немагнитного металла при наличии электрического контакта между основаниями и корпусом, в котором для каждой катушки имеется изолирующий зазор, отличающийся тем, что в верхней части корпуса имеется непроводящая вставка, а рядом с каждой генераторной тороидальной катушкой на одном основании установлена токоизмерительная тороидальная катушка, при этом изолирующий зазор в корпусе является общим для каждой пары генераторной и токоизмерительной тороидальных катушек.

2. Электромагнитный зонд для каротажа в нефтегазовых скважинах по п. 1, отличающийся тем, что между генераторной и токоизмерительной тороидальными катушками расположен электростатический экран, электрически соединенный с основанием и корпусом.

3. Электромагнитный зонд для каротажа в нефтегазовых скважинах по п. 2, отличающийся тем, что корпус выполнен герметичным и разборным.



 

Похожие патенты:

Изобретение относится к области геофизики и может быть использовано для обнаружения геологических формаций. Система (10) обнаружения геологических формаций включает электромагнитное передающее устройство (11), расположенное на поверхности геологической формации (12) вблизи первой скважины (13), имеющей вертикальное направление бурения.

Изобретение относится к области геофизических исследований в нефтегазовых скважинах, а именно к устройствам для изучения электрических свойств горных пород (коллекторов), окружающих скважину, методом электромагнитного каротажа.

Изобретение относится к области геофизических исследований в нефтегазовых скважинах, а именно к устройствам для изучения электрических свойств горных пород (коллекторов), окружающих скважину, методом электромагнитного каротажа.

Изобретение относится к приборам для скважинных измерений, используемым для измерения электромагнитных свойств подземной скважины. Прибор (100) каротажа в процессе бурения включает в себя направленную антенну удельного сопротивления и экран (150, 250, 350, 450, 550) антенны.

Изобретение относится к области геофизики и может быть использовано при разведке нефти и природного газа. Электромагнитная расстановка содержит множество размещенных по оси электромагнитов, расположенных в немагнитном корпусе.

Изобретение относится к скважинным измерительным устройствам, используемым для измерения электромагнитных свойств ствола скважины. Техническим результатом является обеспечение направленного действия антенны с возможностью принимать сигналы с разных сторон.

Устройство для измерения удельной электропроводности и электрической макроанизотропии горных пород относится к области геофизических исследований в нефтегазовых скважинах и может быть использовано для изучения электрических свойств горных пород (коллекторов), окружающих скважину, зондами (скважинными излучателями) методом электромагнитного каротажа.

Изобретение относится к области геофизических исследований обсаженных скважин. Сущность: возбуждение электромагнитного поля производят с помощью генераторной соленоидной катушки индуктивности, питаемой разнополярными импульсами тока длительностью, например, 150 ms.

Изобретение относится к области геофизических исследований электрических свойств горных пород на основе изопараметрического зондирования и может быть использовано для определения электрофизических параметров пластов-коллекторов при бурении скважин на нефть и газ.

Изобретение относится к области геофизики и может быть использовано при изучении электрических свойств горных пород. Заявлен способ измерения удельной электропроводности и электрической макроанизотропии горных пород, включающий электромагнитное возбуждение тока, текущего вдоль проводящей поверхности металлического корпуса каротажного прибора, тороидальной катушкой.
Наверх