Двигательная установка космического объекта и гидравлический конденсатор для нее



Двигательная установка космического объекта и гидравлический конденсатор для нее
Двигательная установка космического объекта и гидравлический конденсатор для нее
Двигательная установка космического объекта и гидравлический конденсатор для нее

 


Владельцы патента RU 2583994:

Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" (RU)

Изобретение относится к ракетно-космической технике и может быть использовано в двигательных установках (ДУ) космических объектов (КО). ДУ КО содержит криогенный бак с расходным клапаном и с бустерным турбонасосом, баллон высокого давления с газообразным криогенным компонентом для раскрутки турбины бустерного турбонасоса, маршевый двигатель с турбонасосным агрегатом, гидравлический конденсатор. Гидравлический конденсатор содержит корпус со штуцером, патрубок со стенкой с отверстиями, направленными по потоку жидкого криогенного компонента из криогенного бака в маршевый двигатель. Изобретение позволяет повысить энергомассовые характеристики ДУ КО. 2 н.п. ф-лы, 2 ил.

 

Изобретение относится к ракетно-космической технике, а именно к конструкции двигательной установки космического объекта.

Известна двигательная установка в составе ракетного разгонного блока по патенту RU 2412088, содержащая бак окислителя, баллон высокого давления, маршевый двигатель, расходный клапан и бустерный турбонасос, установленные на бак окислителя прототип.

Перед каждым запуском маршевого двигателя открывается расходный клапан окислителя, и окислитель поступает в полость бустерного турбонасоса, который должен обеспечить безкавитационную подачу окислителя в расходную магистраль с необходимым для работы маршевого двигателя давлением. Это давление может быть обеспечено на этапе запуска маршевого двигателя за счет работы турбины бустерного турбонасоса в результате подачи на турбину газа (например, газообразного криогенного компонента из баллона высокого давления). После раскрутки турбины бустерного турбонасоса отработанный газообразный криогенный компонент выводится за пределы ракетного разгонного блока и не используется для улучшения энергомассовых характеристик ракетного разгонного блока.

Известны различного вида вакуумные пневмогидравлические конденсаторы, содержащие корпус и штуцеры, используемые для подачи газов и жидкостей в конденсатор и получения на выходе из него конденсата (К.П. Шумский. Вакуумные аппараты и приборы химического машиностроения, Москва «Машиностроение», 1974, стр. 310). Эти конденсаторы не обеспечивают необходимых характеристик конденсата для безкавитационной работы турбонасосного агрегата маршевого двигателя космического объекта из-за возможного наличия в конденсате газовой составляющей.

Задачей предложенной двигательной установки космического объекта является улучшение ее энергомассовых характеристик.

Задача достигается за счет того, что в двигательной установке космического объекта, содержащей криогенный бак с расходным клапаном и с бустерным турбонасосом, сообщенным гидравлически с баллоном высокого давления, маршевый двигатель с турбонасосным агрегатом, сообщенный расходным трубопроводом с бустерным турбонасосом, в расходный трубопровод введен гидравлический конденсатор, штуцер которого сообщен с помощью трубопровода с выходом из турбины бустерного турбонасоса. Баллон высокого давления заполнен газообразным криогенным компонентом, который используется для раскрутки турбины бустерного турбонасоса.

Задача достигается за счет того, что в гидравлический конденсатор, содержащий корпус с штуцером, внутрь корпуса введен патрубок, при этом между корпусом и патрубком образована полость, которая гидравлически сообщена с внутренней полостью расходного трубопровода с помощью отверстий, выполненных в стенке патрубка и направленных по потоку жидкого криогенного компонента из криогенного бака в маршевый двигатель с температурой не менее чем на 5°C ниже температуры газообразного криогенного компонента, причем расстояние от выхода из гидравлического конденсатора до входа в турбонасосный агрегат маршевого двигателя составляет не менее восьми калибров расходного трубопровода.

На фиг. 1 изображена схема двигательной установки космического объекта. На фиг. 2 представлена конструкция гидравлического конденсатора, где:

1. криогенный бак;

2. расходный клапан;

3. бустерный турбонасос;

4. баллон высокого давления;

5. турбина бустерного турбонасоса;

6. маршевый двигатель;

7. турбонасосный агрегат;

8. расходный трубопровод;

9. выход из бустерного турбонасоса;

10. гидравлический конденсатор;

11. трубопровод;

12. выход из турбины бустерного турбонасоса;

13. штуцер;

14. корпус;

15. патрубок;

16. полость;

17. внутренняя полость расходного трубопровода;

18. отверстия;

19. направление потока жидкого криогенного компонента;

20. выход из гидравлического конденсатора;

21. вход в турбонасосный агрегат.

В двигательной установке космического объекта, содержащей криогенный бак 1 с расходным клапаном 2 и с бустерным турбонасосом 3, сообщенным гидравлически с баллоном высокого давления 4, маршевый двигатель 6 с турбонасосным агрегатом 7, сообщенный расходным трубопроводом 8 с бустерным турбонасосом 3, в расходный трубопровод 8 введен гидравлический конденсатор 10, штуцер 13 которого сообщен с помощью трубопровода 11 с выходом из турбины бустерного турбонасоса 12. Баллон высокого давления 4 заполнен газообразным криогенным компонентом, который используется для раскрутки турбины бустерного турбонасоса 5.

Заполнение баллона высокого давления 4 газообразным криогенным компонентом может быть выполнено, например, с помощью средств наземного оборудования в процессе подготовки космического объекта на стартовой позиции.

В гидравлическом конденсаторе 10, содержащем корпус 14 с штуцером 13, внутрь корпуса 14 введен патрубок 15, при этом между корпусом 14 и патрубком 15 образована полость 16, которая гидравлически сообщена с внутренней полостью расходного трубопровода 17 с помощью отверстий 18, выполненных в стенке патрубка 15 и направленных по потоку жидкого криогенного компонента 19 из криогенного бака 1 в маршевый двигатель 6 с температурой не менее чем на 5°C ниже температуры газообразного криогенного компонента, причем расстояние от выхода из гидравлического конденсатора 20 до входа в турбонасосный агрегат 21 маршевого двигателя 6 составляет не менее восьми калибров расходного трубопровода 8.

Диаметр отверстий 18, суммарная площадь отверстий 18 и угол наклона их оси по отношению к направлению потока жидкого криогенного компонента 19 определяется расходом газообразного криогенного компонента, при этом поток газообразного криогенного компонента для его рассеивания не должен быть направлен непосредственно на отверстия 18. Чем меньше диаметр отверстий 18 и чем их больше на единицу площади, тем эффективнее будет проходить процесс перехода газообразного криогенного компонента в жидкую фазу.

Предложенная двигательная установка космического объекта и гидравлического конденсатора 10 для нее функционирует следующим образом.

После отделения космического объекта от ракеты-носителя и перед каждым маневром его в космическом пространстве осуществляется запуск маршевого двигателя 6. В процессе запуска открывается расходный клапан 2, ведется предварительная раскрутка бустерного турбонасоса 3 и подача газообразного криогенного компонента высокого давления на его турбину из баллона высокого давления 4. Далее жидкий криогенный компонент из бустерного турбонасоса 3 поступает в маршевый двигатель 6 для его запуска. Газообразный криогенный компонент из турбины бустерного турбонасоса 3 поступает в гидравлический конденсатор 10 и расходный трубопровод 8, конденсируется в жидком криогенном компоненте и используется в процессе работы маршевого двигателя 6.

За счет использования газообразного криогенного компонента для работы бустерного турбонасоса 3 с последующим использованием газообразного криогенного компонента в процессе работы маршевого двигателя 6 достигается улучшение энергомассовых характеристик двигательной установки космического объекта.

1. Двигательная установка космического объекта, содержащая криогенный бак с расходным клапаном и с бустерным турбонасосом, сообщенным гидравлически с баллоном высокого давления, маршевый двигатель с турбонасосным агрегатом, сообщенный расходным трубопроводом с бустерным турбонасосом, отличающаяся тем, что в расходный трубопровод введен гидравлический конденсатор, штуцер которого сообщен с помощью трубопровода с выходом из турбины бустерного турбонасоса; баллон высокого давления заполнен газообразным криогенным компонентом, который используется для раскрутки турбины бустерного турбонасоса.

2. Гидравлический конденсатор, содержащий корпус с штуцером, отличающийся тем, что внутрь корпуса введен патрубок, при этом между корпусом и патрубком образована полость, которая гидравлически сообщена с внутренней полостью расходного трубопровода с помощью отверстий, выполненных в стенке патрубка и направленных по потоку жидкого криогенного компонента из криогенного бака в маршевый двигатель с температурой не менее чем на 5°С ниже температуры газообразного криогенного компонента, причем расстояние от выхода из гидравлического конденсатора до входа в турбонасосный агрегат маршевого двигателя составляет не менее восьми калибров расходного трубопровода.



 

Похожие патенты:

Изобретение относится к ракетно-космической технике и может быть использовано в жидкостных ракетных двигателях (ЖРД). Устройство для крепления агрегатов ЖРД содержит тягу, изготовленную из трубы, со сферическими опорами для крепления к раме или корпусам агрегатов, основные опоры с осевыми отверстиями, промежуточные опоры с резьбовыми частями и осевыми отверстиями, накидные гайки, шайбы со сферической внутренней поверхностью, наконечники с левой и правой резьбами, контргайки.

Изобретение относится к области ракетно-космической техники, а именно к области проектирования и эксплуатации двигательных установок космических аппаратов и разгонных блоков, предназначенных для обеспечения выдачи импульсов тяг космического аппарата по шести степеням свободы.

Изобретение относится к ракетно-космической технике и может быть использовано в двигательных установках (ДУ) космических летательных аппаратов (КЛА). ДУ КЛА содержит криогенный бак с экранно-вакуумной теплоизоляцией и каналом с теплообменником, расходный клапан, бустерный насос, заборное устройство с накопителем капиллярного типа с теплообменником и дроссельным устройством, пневмогидравлическую систему с трубопроводом.

Изобретение относится к ракетным топливам для жидкостных, твердотопливных и гибридных ракетных двигателей, содержащих окислитель и горючие вещества. Окислитель ракетного топлива содержит нитрат бора.

Изобретение относится к обработке металлов давлением, в частности к способам объемной штамповки и ротационной вытяжки с утонением тонкостенных оболочек - тел вращения.

Устройство управления вектором тяги реактивного двигателя (РД) включает истекающий из камеры сгорания топлива поток плазмы вдоль сопла Лаваля, продольные парные электромагниты управления, установленные на внешней поверхности расширяющейся части сопла, МГД-генератор электрического тока, установленный в самом узком (критическом) сечении сопла, стабилизатор и выпрямитель электрического тока, и система управления летательного аппарата (ЛА), управляющая электромагнитами.
Изобретение относится к ракетному топливу для ракетного двигателя. Ракетное топливо содержит горючее и окислитель.

Изобретение относится к ракетному топливу для ракетного двигателя. Ракетное топливо содержит горючее и окислитель.

Изобретение относится к ракетным топливам для жидкостных, твердотопливных и гибридных ракетных двигателей. Ракетное топливо содержит горючее, которое представляет собой боразин, и окислитель.

Способ относится к аэрокосмической технике и включает в себя управление вектором тяги реактивного двигателя, истекающий из камеры сгорания поток топлива вдоль сопла Лаваля, продольные парные электромагниты управления, установленные на внешней поверхности расширяющейся части сопла, МГД-генератор электрического тока, установленный в самом узком (критическом) сечении сопла, стабилизатор и выпрямитель электрического тока и систему управления летательного аппарата, управляющую электромагнитами.

Изобретение относится к области технической кибернетики и может быть использовано в автоматизированных системах управления подготовкой к пуску и проведению пусков ракет-носителей космического назначения различного класса, а также в автоматизированных системах управления технологическими процессами сборки и проведения испытаний сложных технических объектов.

Изобретение относится к способам создания в космосе связки космического аппарата (КА) с космическим объектом (КО). Контролируют положение в пространстве троса (2), развернутого с борта КА (1), используя датчики видеонаблюдения (4) на КА и/или датчики положения (5) на тросе.

Изобретение относится к космической технике и может быть использовано при формировании управляющих сигналов включения двигательной установки космического беспилотного летательного аппарата (БПЛА) при выполнении им пространственного маневра на баллистическом участке траектории полета.

Изобретение относится к управлению ориентацией космического аппарата (КА). Способ включает закрутку КА, измерение расстояния от научной аппаратуры КА по изучению конвекции до оси закрутки, измерение и фиксацию температуры в этой аппаратуре, а также угловой скорости КА.

Изобретение относится к космической технике и может быть использовано для управления космическим аппаратом (КА). Устройство орбитального гирокомпаса (ОГК) для управления угловым движением КА содержит прибор ориентации по Земле (ПОЗ), сумматоры, интеграторы, вновь введенные сумматоры и интеграторы, модули коррекции, модули компенсации взаимовлияний каналов, гироскопический блок измерителей угловых скоростей (БИУС).

Изобретение относится к космической технике и может быть использовано для ориентации космических аппаратов (КА). Система ориентации КА с использованием бесплатформенного орбитального гирокомпаса (БОГК) содержит прибор ориентации по Земле (ПОЗ), блок гироскопических измерителей угловых скоростей (БИУС), программный модуль управления (ПМУ), одиннадцать сумматоров, три модуля усиления (МУ), пять интеграторов, четыре модуля компенсации взаимовлияния каналов (МКВК), косинусный преобразователь (КП), синусный преобразователь (СП), два ключа.

Изобретение относится к управлению ориентацией навигационных спутников с антеннами и солнечными батареями (СБ). Способ включает ориентацию электрической оси антенны (первой оси спутника) на Землю и ориентацию панелей СБ на Солнце.

Изобретение относится к космической технике и может быть использовано для стабилизации космических аппаратов (КА). Система стабилизации КА содержит двигательную установку со сферическими баками окислителя и горючего, ракетный двигатель, каналы управления по тангажу и рысканию с датчиками угла, отклонения линейных ускорений и скорости, отклонения угловых ускорений и скорости, суммирующий усилитель, рулевые машинки, интегрирующие устройства, два логических блока, клапаны, двигатели малой тяги.

Изобретение относится к управлению движением космического объекта (КО), например пилотируемого КО, после его отделения от другого КО, например ракеты-носителя (РН).

Изобретение относится к космической технике и может быть использовано для ориентации космического аппарата (КА). Устройство для ориентации КА по углу крена содержит одиннадцать сумматоров, пять усилителей, пять интеграторов, три нормально разомкнутых переключателя, шесть нормально замкнутых переключателей, четыре блока памяти, модель основного контура ориентации, двигатель-маховик, КА, два блока чистого запаздывания, астродатчик, основной контур ориентации.

Изобретение относится к способам защиты космических аппаратов (КА) от столкновения на орбите с другими телами, в частности, космическим мусором. Способ включает импульсное расталкивание и разведение связанных тросом модулей, образующих КА, для их вывода из опасной зоны. После развертывания троса и фиксации его длины связку модулей переводят в режим попутного маятникового движения. По его завершении осуществляют взаимное сближение модулей, выбирая трос, и последующую их стыковку. Подача и выборка троса выполняются с постоянной силой натяжения, перегрузка от которой пропорциональна величине импульса скорости расталкивания модулей. Технический результат изобретения направлен на упрощение технологии, средств и алгоритмов управления данным маневром уклонения КА. 4 ил.
Наверх