Наноструктурное композитное покрытие из оксида циркония

Изобретение может быть использовано в производстве деталей турбинных двигателей и установок, которые требуют формирования на рабочих поверхностях покрытий, имеющих высокое значение адгезии и когезии. Наноструктурное композитное покрытие из оксида циркония, стабилизированного иттрием, наносят на поверхности из никелевого сплава методом ионно-лучевого напыления. Покрытие содержит градиентный переходной слой из градиентного нанокомпозитного материала, содержащего две фазы: металлическую фазу с составом, соответствующим составу защищаемой поверхности из никелевого сплава, и оксид циркония различной стехиометрии. Указанный слой содержит оксид циркония при неокисленном никелевом сплаве. Соотношение фаз в переходном слое изменяется с возрастанием доли оксидной фазы по мере увеличения толщины пленки. Изобретение позволяет сформировать плавный переход от металлического материала к оксиду без межфазной границы макроскопического размера.

 

Изобретение относится к области материаловедения, в частности к способам напыления теплозащитных покрытий, и может найти применение в авиастроении и других областях машиностроения при производстве деталей турбинных двигателей и установок, которые требуют формирования на рабочих поверхностях покрытий, имеющих достаточно высокое значение адгезии и когезии.

В настоящее время, при создании покрытия с заданными свойствами методом послойного напыления, образуются межфазные макроскопические границы в плоскостях, параллельных обрабатываемой поверхности и при циклических термонагрузках разница в значениях коэффициентов термического расширения может привести к расслоению покрытия и его разрушению.

Известен способ напыления теплозащитного покрытия с использованием оксида циркония, стабилизированного Y2 O3, включающий послойное нанесение покрытия на изделие, и покрытие, полученное этим способом (Патент US 6180184, С23С 4/10, 30.01.2001 - прототип).

Термобарьерное покрытие, согласно этому способу, получают из жаропрочных сплавов, стабилизированных иттрием, оксида циркония, которое послойно наносят с помощью вакуумного электронно-лучевого напыления. При этом получают покрытие, имеющее столбчатую структуру, проявляющуюся в одном или нескольких слоях.

Недостатком получаемого покрытия является возможность получения сквозной пористости, приводящей к коррозии подложки и к разрушению покрытия. Кроме этого, в процессе послойного напыления образуются межфазные границы в плоскостях, параллельных поверхности и при циклических термонагрузках разница в значениях коэффициентов термического расширения может привести к расслоению покрытия и его разрушению.

Задачей предложенного технического решения является устранение указанных недостатков и создание способа нанесения оксидного покрытия на металлическую поверхность, применение которого позволит сформировать плавный переход от металлического материала к оксидному покрытию без межфазной границы макроскопического размера.

Решение указанной задачи достигается тем, что предложенное наноструктурное композитное покрытие из оксида циркония, стабилизированного иттрием, для поверхности из никелевого сплава, полученное методом ионно-лучевого напыления на подложки и представляющее собой наноструктурный материал, согласно изобретению содержит градиентный переходной слой из градиентного нанокомпозитного материала, содержащего две фазы: металлическую фазу с составом, соответствующим составу защищаемой поверхности из никелевого сплава, и оксид циркония различной стехиометрии, причем указанный слой содержит оксид циркония при неокисленном никелевом сплаве, при этом соотношение фаз в переходном слое изменяется с возрастанием доли оксидной фазы по мере увеличения толщины пленки.

Предложенное наноструктурное композитное покрытие может быть получено следующим образом.

Для получения указанного наноструктурного композитного покрытия (далее - покрытие) используется магнетронная система с двумя магнетронами. При помощи первого магнетрона распыляют мишень, состав которой соответствует составу металлического изделия - никелевый сплав ХН71МТЮБ, а при помощи второго магнетрона распыляют мишень из циркония с добавками стабилизирующих элементов - иттрия.

Первоначальное распыление мишеней осуществляется в атмосфере аргона, причем интенсивность атомного потока, сформированного от никелевой мишени, превышает интенсивность атомного потока от циркониевой мишени. После формирования первичного сплошного металлического слоя в рабочую камеру добавляется кислород, после чего процесс напыления приобретает характер реактивного - в напыляемой пленке начинает образовываться оксид. В силу различных значений энергий связи в оксиде никеля и оксиде циркония в формирующемся покрытии происходит образование оксида циркония, в то время как никель остается неокисленным.

Таким образом, в результате одновременного распыления никелевого сплава и циркония в смешанной кислородно-аргонной атмосфере происходит напыление композитного материала металл-оксид. В процессе напыления парциальное давление кислорода плавно увеличивается до давления 1,5*10-3 Па, а мощность магнетрона, распыляющего металлический сплав, уменьшают вплоть до его полного отключения. После этого продолжают напыление чистого оксида циркония до достижения им требуемой толщины. В этом случае, в покрытии образуется переходной слой из градиентного нанокомпозитного материала, содержащего две фазы: металлическую фазу с составом, соответствующим составу защищаемой поверхности, и диэлектрическую фазу, собственно, оксид циркония различной стехиометрии, при этом соотношение фаз в переходном слое обеспечивается не постоянным, а переменным, с возрастанием доли оксидной фазы по мере увеличения толщины пленки. В результате создания такого градиентного слоя формируется плавный переход от металлического материала к оксиду без межфазной границы макроскопического размера.

В этом случае, сформированный градиентный слой является не только композитным, но и наноструктурированным, поскольку характерные размеры включений каждой фазы составляют от единиц до нескольких десятков нанометров в зависимости от объемной доли фазы.

Полученная наноструктурированность не только повышает механическую прочность покрытия, но и приводит к изотропному распределению внутренних напряжений при циклических термонагрузках, что повышает жаропрочность и жаростойкость покрытия.

Использование предложенного технического решения позволит создать наноструктурное композитное покрытие из оксида циркония, применение которого позволит сформировать плавный переход от металлического материала к оксиду без межфазной границы макроскопического размера, что, в конечном итоге, позволит повысить механическую прочность покрытия, и приведет к изотропному распределению внутренних напряжений при циклических термонагрузках, что позволит повысить жаропрочность и жаростойкость покрытия.

Наноструктурное композитное покрытие из оксида циркония, стабилизированного иттрием, для поверхности из никелевого сплава, полученное методом ионно-лучевого напыления на подложки и представляющее собой наноструктурный материал, отличающееся тем, что оно содержит градиентный переходной слой из градиентного нанокомпозитного материала, содержащего две фазы: металлическую фазу с составом, соответствующим составу защищаемой поверхности из никелевого сплава, и оксид циркония различной стехиометрии, причем указанный слой содержит оксид циркония при неокисленном никелевом сплаве, при этом соотношение фаз в переходном слое изменяется с возрастанием доли оксидной фазы по мере увеличения толщины пленки.



 

Похожие патенты:

Изобретение относится к области газотермического напыления покрытий, а именно к технологии подготовки поверхности изделия перед нанесением детонационного покрытия.

Изобретение относится к области упрочняющей обработки материалов, в частности к способам химико-термической обработки изделий путем нанесения металлосодержащих покрытий различного назначения.

Изобретение относится к оправке прошивного стана. Прошивная оправка содержит корпус оправки, Ni-Cr-слой, сформированный на поверхности корпуса оправки, и напыленное покрытие, сформированное на поверхности Ni-Cr-слоя.

Изобретение относится к технологии нанесения покрытий на металлические поверхности с использованием концентрических потоков энергии, которые могут быть использованы в горнодобывающей и других отраслях промышленности.

Изобретение относится к технологии нанесения покрытий на металлические поверхности с использованием концентрированных потоков энергии и может быть использовано в горнодобывающей и других отраслях промышленности.

Изобретение относится к области нанесения газотермических покрытий, а именно к способам нанесения плазменных покрытий на детали, работающие в экстремальных условиях.

Изобретение относится к способу и устройству газопламенного напыления наноструктурированных покрытий. Распылитель содержит форкамеру.

Изобретение относится к способу газоплазменного напыления теплозащитного покрытия на лопатки турбины газотурбинного двигателя. На перовой части лопатки формируют связующий жаростойкий подслой на основе интерметаллидных никель-алюминиевых (β+Y1) фаз и термобарьерный керамический слой на основе диоксида циркония путем воздействия плазменным напылением на воздухе сфокусированной плазменной струей со скоростью напыляемых частиц 2400 м/с и температурой 5000-12000 K с обеспечением в связующем жаростойком подслое продольной слоистой микроструктуры интерметаллидных зерен, а в термобарьерном керамическом слое - сфероидальных зерен диоксида циркония со столбчатой субструктурой.

Изобретение относится к области формирования функциональных покрытий, в частности оксида алюминия, на поверхности изделий из титана и его сплавов методами плазменного напыления и микродугового оксидирования.
Изобретение относится к области машиностроения и может быть использовано для создания износостойких покрытий на рабочих поверхностях осевых режущих инструментов за счет увеличения стойкости инструментов и ресурса работы инструментов, который достигается многократностью переточек.

Изобретение относится к порошковой металлургии, в частности к устройствам для нанесения покрытий на абразивные зерна, и может быть применено в инструментальном производстве.
Изобретение относится к области материаловедения, в частности к напылению теплозащитных покрытий, и может найти применение в авиастроении и других областях машиностроения при производстве деталей турбинных двигателей и установок, которые требуют формирования на рабочих поверхностях покрытий, имеющих достаточно высокое значение адгезии и когезии.

Изобретение относится к совместному распылению сплавов и соединений и к установке для упомянутого распыления и может быть использовано для получения пленок с требуемыми свойствами.

Изобретение относится к способу защиты от окисления биполярных пластин топливных элементов и коллекторов тока электролизеров с твердым полимерным электролитом (ТПЭ), заключающемуся в предварительной обработке металлической подложки, нанесении на обработанную металлическую подложку электропроводного покрытия благородных металлов методом магнетронно-ионного напыления.

Изобретение относится к ионно-плазменной технике и предназначено для нанесения покрытий металлов и их соединений на поверхности тел вращения, в частности изделий цилиндрической формы в вакууме.

Изобретение относится к способу и устройству для нанесения на подложку сплава, состоящего из одного первого и одного второго материала в качестве компонентов сплава с переменным их соотношением и к мишени для нанесения на подложку сплава.

Изобретение относится к дуговому устройству для испарения материала при обработке подложки. Устройство содержит катод, анод, источник напряжения для создания на аноде положительного потенциала относительно катода.

Мишень для ионно-плазменного распыления выполнена на основе оксида металла и содержит углерод. Концентрация углерода в мишени выбрана из условия обеспечения при температуре распыления теплового эффекта от экзотермической реакции при окислении углерода кислородом оксида металла и свободным кислородом в зоне распыления, меньшего интегрального теплоотвода в упомянутой зоне, и составляет 0,1-20 ат.% .

Изобретение относится к нанесению покрытий вакуумным напылением. Способ изготовления распыляемой мишени магнетронного источника для нанесения покрытия включает выполнение углубления в металлической основе распылением материала металлической основы в магнетронном источнике и заполнение углубления материалом покрытия.

Изобретение относится к области машиностроения, в частности к технологии упрочнения и повышения коррозионной стойкости лопаток компрессора газотурбинных двигателей, а также может быть использовано в области создания накопителей и преобразователей энергии на основе суперконденсаторов с алюминиевыми электродами.

Изобретение относится к синтезу неорганических соединений, а именно к технологии получения стабилизированного оксида циркония, и может быть использовано для изготовления структурной керамики, твердотельных топливных элементов, кислородных сенсоров, катализаторов, а также в медицинской, электронной и ювелирной промышленности.

Изобретение может быть использовано в производстве деталей турбинных двигателей и установок, которые требуют формирования на рабочих поверхностях покрытий, имеющих высокое значение адгезии и когезии. Наноструктурное композитное покрытие из оксида циркония, стабилизированного иттрием, наносят на поверхности из никелевого сплава методом ионно-лучевого напыления. Покрытие содержит градиентный переходной слой из градиентного нанокомпозитного материала, содержащего две фазы: металлическую фазу с составом, соответствующим составу защищаемой поверхности из никелевого сплава, и оксид циркония различной стехиометрии. Указанный слой содержит оксид циркония при неокисленном никелевом сплаве. Соотношение фаз в переходном слое изменяется с возрастанием доли оксидной фазы по мере увеличения толщины пленки. Изобретение позволяет сформировать плавный переход от металлического материала к оксиду без межфазной границы макроскопического размера.

Наверх