Привод рулевой

Изобретение относится к рулевым приводам многоступенчатых ракет. Привод рулевой содержит рулевые машины, систему питания рулевых машин, узлы развязки, кронштейны для закрепления рулевых машин к днищу ракеты. Узлы развязки закреплены к соплу двигателя. Сопло с помощью опор зафиксировано относительно корпуса ракеты. Узел развязки состоит из корпуса, качалки, фиксатора, пружины, опорной оси. Техническим результатом изобретения является повышение точности фиксации рулевых машин в нулевом положении и повышение жесткости в передаче системы рулевая машина - сопло двигателя. 4 ил.

 

Изобретение относится к ракетной технике и может быть использовано в приводах рулевых ракет с жидкостным ракетным двигателем для второй и верхних ступеней, у которых двигатель и привод рулевой размещены в баке с компонентом топлива предыдущей ступени.

Известен привод рулевой второй ступени, который размещен в баке окислителя первой ступени. См. «Морские стратегические ракетные комплексы», стр. 101. Издательство ООО «Военный Парад» - ОАО «ГРЦ Макеева», 2011 год, Москва. Этот привод рулевой ампулизированный, так как находится в агрессивной среде. Все стыки рулевых машин с системой питания выполнены неразъемными, сварными. Электрические кабели к рулевым машинам подведены в металлических трубах, а трубы приварены к элементам конструкции. Рулевые машины хвостовиками закреплены шарнирно к днищу корпуса ракеты, а штоками закреплены к качалкам узлов развязки через шарнирные подшипники. Корпуса узлов развязки закреплены к соплу двигателя. Жидкостной ракетный двигатель установлен на карданном подвесе, который закреплен на днище. Узел развязки представляет из себя корпус с пазом, в пазу на оси установлена качалка. Качалка выполнена в виде двухплечевого рычага с отверстиями, а на корпусе узла развязки установлена соосно с отверстием на качалке опорная ось, при этом диаметр отверстия на качалке выполнен больше диаметра оси на расчетный угол качания. На наружном периметре качалки выполнены профилированные выемки, а на корпусе узла развязки перпендикулярно к качалке установлены подпружиненные храповики, прижатые к качалке. При отклонении качалки на заданный расчетный угол или на опорную ось храповик входит в профилированную поверхность на качалке и заклинивает качалку относительно корпуса узла развязки, тем самым обеспечивается жесткая кинематическая связь между штоком рулевой машины и соплом двигателя.

Недостатками прототипа является:

1. Большой угол холостого отклонения качалки для обеспечения жесткой механической связи между штоком рулевой машины и соплом двигателя, что снижает точность установки нулевого положения рулевой машины.

2. В зацеплении храповика с качалкой возникают большие удельные давления ввиду линейного контакта храповика с качалкой. Это обусловлено особенностью конструкции храпового механизма.

Несмотря на указанные недостатки, вышеописанный привод рулевой принят в качестве прототипа.

Задачей, на решение которой направлено изобретение, является достижение технического эффекта за счет уменьшения холостого угла отклонения качалки до фиксации с храповиком и уменьшение удельного давления в месте контакта храповика с качалкой. Этот технический эффект достигается тем, что на корпусе узла развязки перпендикулярно к качалке установлен подпружиненный фиксатор, который при отклонении качалки на опорную ось входит в отверстие на качалке, выполненное соосно с отверстием на корпусе, обеспечивая жесткую кинематическую связь между штоком рулевой машины и соплом двигателя ракеты.

Сущность изобретения поясняется графическими материалами.

На фиг. 1 представлен привод рулевой в составе отсека ракеты. Привод рулевой состоит из рулевых машин 1, системы питания рулевых машин 2, узлов развязки 3, кронштейнов 4, закрепленных на днище 15. На фиг. 2 и 3 показан узел развязки 3, который состоит из корпуса 5, качалки 6, фиксатора 7, пружины 8, оси 9, опорной оси 10, кожуха 11. Корпус 5 узла развязки 3 закреплен к соплу 12 двигателя, а качалка 6 соединена со штоком рулевой машины 1 с помощью шарнирных подшипников. На фиг. 3 показан узел развязки 3, в положении, когда фиксатор 7 оперт на качалку 6. При этом качалка 6 может поворачиваться относительно оси 9 на расчетный рабочий угол, не опираясь на опорную ось 10. На фиг. 4 показан узел развязки 3 в положении, когда качалка повернута на опорную ось 10 и фиксатор 7 под действием пружины 8 вошел в отверстие на качалке 6. При этом фиксатор 7 соединяет качалку 6 с корпусом 5, обеспечивая жесткую кинематическую связь между штоком рулевой машины и соплом двигателя ракеты.

Предлагаемый привод рулевой работает следующим образом. При хранении, транспортировке и перегрузках ракеты узлы развязки 3 на рулевом приводе находятся в положении, как показано на фиг. 3. Жесткая кинематическая связь между рулевой машиной 1 и соплом 12 двигателя отсутствует, при этом мембрана и шток рулевой машины 1 не нагружаются. Силы, нагружающие шток и мембрану рулевой машины 1, могли бы возникнуть при перегрузках ракеты, когда появляется прогиб корпуса ракеты, а сопло 12 двигателя закреплено к корпусу ракеты 14 опорами 13. Все возникающие перемещения сопла 12 компенсируются узлом развязки 3, так как фиксатор 7 оперт на качалку 6, которая может свободно поворачиваться в пределах заданного расчетного угла.

При работе рулевого привода, когда происходит разделение ступеней и запускается двигатель, рабочая жидкость от турбонасосного агрегата двигателя ракеты под давлением поступает в систему питания рулевых машин 2. Далее рабочая жидкость поступает на вход рулевых машин 1. Шток рулевой машины 1 по команде от системы управления ракеты выдвигается. При этом разрушается мембрана ампулизации на рулевой машине 1, а качалка 6 поворачивается относительно оси 9 до упора на опорную ось 10 и фиксатор 7 под действием пружины 8 входит в отверстие качалки 6, как показано на фиг. 4. Происходит соединение качалки 6 с корпусом 5 узла развязки и обеспечивается жесткая кинематическая связь между штоком рулевой машины и соплом двигателя ракеты.

Техническим результатом предлагаемого изобретения является улучшение точности фиксации рулевых машин в нулевом положении и повышение жесткости в передаче системы рулевая машина-сопло двигателя.

Привод рулевой для управления вектором тяги жидкостного ракетного двигателя, содержащий систему питания рулевых машин, ампулизированные рулевые машины, кронштейны для закрепления элементов рулевого привода, при этом между камерой сгорания двигателя ракеты и рулевой машиной установлен узел развязки, который выполнен в виде корпуса с пазом, внутри паза на одной оси закреплена качалка, другая опорная ось на корпусе закреплена неподвижно и качалка относительно опорной оси может качаться в пределах зазора между осью и отверстием на качалке, выполненным больше диаметра оси, обеспечивающим ее расчетный угол качания, отличающийся тем, что на кронштейне ближе к наружному периметру качалки, перпендикулярно к качалке установлен подпружиненный фиксатор, который при отклонении качалки на опорную ось входит в отверстие на качалке, выполненное соосно с отверстием на кронштейне, обеспечивая жесткую кинематическую связь между штоком рулевой машины и соплом двигателя ракеты.



 

Похожие патенты:

Изобретение относится к ракетно-космической технике и может быть использовано для снижения площадей районов падения отделяющихся частей (ОЧ) ракет космического назначения (РКН).

Группа изобретений относится к области ракетной техники. Способ отделения маршевой ступени ЛА включает механическое удержание в разомкнутом состоянии цепи запуска электровоспламенителя механизма разделения ступеней при пуске ЛА на стартовом участке траектории полета.

Изобретение относится к ракетной технике и представляет собой ракетную часть со стабилизирующим устройством реактивного снаряда. Корпус ракетной части перед стабилизирующим устройством выполнен с коническим кольцевым уступом, при этом больший диаметр корпуса расположен под наружным кольцом.

Изобретение относится к военной технике и может быть использовано в крылатых ракетах. Противокорабельная крылатая ракета, имеющая в поперечном сечении эллиптическую или овальную форму, содержит корпус цилиндрической формы с каналом внутри, крыло, конфузор в форме эллипсоида вращения или параболоида вращения, расширяюще-сужающуюся полость, диффузор, скругление, цилиндрическую часть, реактивный двигатель, воздушный винт, излучатель радиолокационного излучения, приемник радиолокационного излучения, пилоны.

Изобретение относится к гиперзвуковым крылатым ракетам (ГПКР), оснащенным гиперзвуковым прямоточным воздушно-реактивным двигателем (ГПВРД). ГПКР содержит маршевую ступень с конструкцией, построенной на основе двух модулей.

Изобретение относится к боеприпасам, в частности к переносным тактическим боеприпасам. Переносной тактический боеприпас содержит корпус, кумулятивный боевой элемент, источник питания, координатор цели.

Изобретение относится к ракетной технике и может быть использовано при полете ракет. Подают распыленное рабочее тело через форсунки и нагреватель в теплообменную камеру без доступа кислорода под действием поршня и сил инерции, придают основной импульс ракете от разогретого рабочего тела, выходящего из сопла, придают дополнительный импульс ракете за счет воспламенения и сгорания поступившего из сопла рабочего тела в обойме, установленной на стабилизаторах ракеты.

Группа изобретений относится к способу определения коэффициента команды одноканальных вращающихся ракет и снарядов и устройству для его определения. Для определения коэффициента команды закручивают ракету или снаряд вокруг оси крена в плоскости слежения за имитатором цели.

Изобретение относится к области приборостроения, а именно к области автоматического регулирования, и может быть использовано в системах высокоточного управления движением центра масс подвижных объектов, в частности аэробаллистических летательных аппаратов.

Изобретение относится к области ракетной техники и может быть использовано в бикалиберных управляемых ракетах. Бикалиберная управляемая ракета содержит маршевую ступень и отделяемый стартовый двигатель.

Изобретение относится к ракетной технике, а именно к корпусу боевого элемента с раскрывающимся стабилизатором. Корпус содержит цилиндрическую наружную оболочку. Стабилизатор выполнен в виде щитков с дугообразными в поперечном направлении стабилизирующими поверхностями. Последние закреплены в корпусе на осях, перпендикулярных продольной оси корпуса элемента. Корпус снабжен дополнительной внутренней оболочкой, коаксиально установленной относительно наружной оболочки. Максимальный диаметр внутренней оболочки составляет 0,60…0,85 внутреннего диаметра наружной оболочки. В кольцевой полости, образованной двумя оболочками, упорядоченно размещены поражающие элементы. Стабилизирующие поверхности раскрывающегося стабилизатора смещены к передней части корпуса и закреплены на осях. Расстояние от передних кромок поверхностей до задней части корпуса элемента составляет 0,2…0,5 максимального диаметра корпуса. Длина стабилизирующих поверхностей выполнена в пределах 1,0…1,5 максимального диаметра корпуса. Как вариант поражающие элементы могут быть выполнены в виде двух отдельных фракций, отличающихся между собой геометрическими параметрами. Причем фракция с более крупными размерами поражающих элементов расположена в передней части корпуса боевого элемента. Повышает надежность за счет уменьшения аэродинамических нагрузок, повышает эффективность, увеличивает поражающее действие, улучшает габаритно-массовые характеристики. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области вооружения, а именно к реактивным боеприпасам. Активно - реактивный снаряд стартует из пусковой трубы, заглушенной с донной части. Снаряд содержит ракетную часть с канальным маршевым зарядом, воспламенителем и сопловым блоком, газогенератор с дополнительным зарядом картузного снаряжения, инициатор. Инициатор размещен в торце корпуса газогенератора и соединен газоводом с форсажной трубкой. Форсажная трубка проходит через картуз и центральное сопло и направлена к воспламенителю через канал маршевого заряда. Газогенератор закреплен на сопловом блоке и имеет тарировочные подрезы на пояске корпуса. Техническим результатом изобретения является повышение надежности инициирования и эффективности неуправляемого реактивного снаряда. 1 з.п. ф-лы, 1 ил.

Изобретение относится к боеприпасам, в частности к управляемым боеприпасам. Управляемый боеприпас содержит электронную аппаратуру управления и систему спутниковой навигации с антенной, установленную в носовом обтекателе. Носовой обтекатель боеприпаса снабжен корпусом с устройством разделения. Боеприпас снабжен блоком точного наведения, например головкой самонаведения, расположенным непосредственно за носовым обтекателем так, что корпус с устройством разделения размещается между системой спутниковой навигации и блоком точного наведения. Передняя часть корпуса жестко связана с системой спутниковой навигации, задняя часть корпуса с устройством разделения закреплена на блоке точного наведения с обеспечением возможности отделения носового обтекателя на траектории. В каналах, выполненных в корпусе устройства разделения, проложены электрические транзитные цепи, соединяющие систему спутниковой навигации и электронную аппаратуру управления. Достигается повышение точности при стрельбе боеприпасом. 1 ил.
Изобретение относится к области авиации, в частности к крылатым ракетам. Беспилотный летательный аппарат содержит корпус, баки, крыло и двигатель. Корпус и баки аппарата выполнены из радиопрозрачного материала. Аппарат имеет воздушно-винтовой движитель. Все радионепрозрачные элементы аппарата закрыты кожухом стелс-формы. Аппарат имеет индикатор радиолокационного облучения и электродвигатели воздушного винта. Выхлоп и воздушный поток системы охлаждения двигателя направлены вниз или вниз-назад. Выхлопная система имеет теплоизолирующие продольные створки выхлопа, имеющие возможность закрываться. Силовой набор корпуса аппарата выполнен из радиопрозрачного материала. Силовой набор корпуса и чехол стелс-формы имеют камуфляжную окраску. Выхлоп и воздушный поток системы охлаждения направлены вниз или вниз-назад. При обнаружении облучения радиолокатором противника аппарат выключает основной двигатель, закрывает теплоизолирующие продольные створки и включает электродвигатель, отключив муфту основного двигателя и включив муфту электродвигателя или электродвигателей. Достигается снижение заметности и повышение дальности полета. 3 н. и 6 з.п. ф-лы.

Изобретение относится к авиационной технике, а именно к раскладываемым аэродинамическим поверхностям летательных аппаратов. Раскладываемая аэродинамическая поверхность содержит соединенные корневую и раскладываемую части. Корневая часть закреплена на поворотной оси раскладываемой аэродинамической поверхности и содержит установленные и соединенные осью шатун и поршень. Шатун установлен с возможностью поворота относительно оси. Поршень установлен с возможностью возвратно-поступательного движения вдоль поворотной оси. Корневая и раскладываемая части соединены кулисами, одна из которых является центральной и соединяется с шатуном осью, а другие расположены по обе стороны от нее. Кулисы установлены с возможностью поворота на осях, расположенных перпендикулярно поворотной оси и параллельно хорде аэродинамической поверхности. Обеспечивает раскладывание при повышенных аэродинамических нагрузках за минимальное время при минимальных компоновочных характеристиках. 6 ил.

Изобретение относится к области вооружения, реализующего задачи повышения точности стрелкового оружия, более конкретно к способам управления вращающейся пулей и снарядом высокоточного оружия. Способ повышения точности нарезного стрелкового оружия включает: подключение источника питания к схеме управления полетом пули, при выстреле фиксируют отклонение пули от центра цели, подсвеченного лазером, преобразованный сигнал с учетом гироскопического эффекта вращающейся пули подают на привод аэродинамического руля в интервалы времени нахождения руля перпендикулярно позиционно-чувствительной фотолинейки. Конструктивно устройство содержит оптическую систему, позиционно-чувствительную фотолинейку (ПЧФ) с зарядовой связью, усилитель-нормализатор, генератор линейно изменяющегося напряжения, датчик импульсов управления, усилитель-нормализатор пороговое устройство, датчик импульсов управления, счетчик импульсов, электронный ключ, выход которого через усилитель-формирователь подключен к входу привода аэродинамического руля. Технический результат - улучшение управляемости вращающейся пули и повышение точности нарезного стрелкового оружия за счет реализации управления пулей на всем протяжении ее полета от ствола оружия до цели. 2 н.п. ф-лы, 4 ил.

Группа изобретений относится к области систем управления летательными аппаратами и может быть использована в контуре управления рулевого привода ракет с широтно-импульсным методом регулирования. Задачей группы изобретений является снижение энергопотребления рулевым приводом при увеличении мощности управляющего электромагнита (УЭМ) с целью повышения его быстродействия. В предлагаемом способе регулирования номинального тока управляющего электромагнита (УЭМ) широтно-импульсный модулированный сигнал (ШИМ-сигнал) управления подвергают дополнительной модуляции, при которой после срабатывания УЭМ в соответствии с указанным сигналом управления через время t0 формируют сигнал на отключение тока в возбужденной обмотке УЭМ длительностью Тотк, по истечении которого формируют сигнал на включение тока в указанной обмотке длительностью Твкл. Цикл сигналов длительностью Тотк и Твкл повторяют до момента отключения обмотки в соответствии с сигналом управления. При этом длительность t0, Тотк и Твкл подбирают таким образом, чтобы номинальный ток был больше тока срабатывания в момент прихода якоря УЭМ на упор. Устройство для осуществления указанного способа содержит источник питания, формирователь ШИМ-сигнала управления, выход которого подключен к первому входу схемы совпадения, последовательно соединенные нагрузку в виде обмотки УЭМ и электронный ключ, управляющий вход (база транзистора) которого подключен к выходу схемы совпадения, а эмиттерный вывод - к одному из выводов источника питания. В устройство введены генератор тактовых импульсов и регулятор тока, состоящий из счетчика, выходы D3, D4, D15 которого подключены соответственно ко входам элемента ИЛИ, выход которого подключен ко второму входу схемы совпадения, и двух последовательно включенных D-триггеров, выходы «О» которых через элемент ИСКЛЮЧАЮЩЕЕ ИЛИ подключены к «RST» входу счетчика, а входы «С» D-триггеров и счетчика подключены к генератору тактовых импульсов, причем «D» вход первого D-триггера подключен к выходу формирователя ШИМ-сигнала управления, а второй вывод обмотки УЭМ подключен к другому выводу источника питания. 2 н.п. ф-лы, 4 ил.

Предложен адаптивный цифровой спектральный селектор цели. Он содержит оптико-электронный следящий гирокоординатор с тремя каналами спектроделения оптического излучения, тремя фотоприемниками, тремя импульсными усилителями с однократным дифференцированием, выходы которых подключены к амплитудным детекторам, а выходы детекторов к схеме сравнения уровней, или вычислителям отношений уровней, а выходы схемы сравнения, или вычислителей отношений - к схеме определения и формирования "стробов" принадлежности сигналов цели или помехе. При этом в каждый канал введены последовательно соединенные корректоры сигналов в виде дифференцирующего устройства второго дифференцирования и бинарного квантователя, управляемые кодом делители напряжений, компараторы и анализаторы с переменными логическими переключательными функциями. Также введен задатчик коэффициентов деления делителей и логических функций анализаторов, причем первый выход задатчика подключен к входу управления делителей, а второй к входу задания логических функций анализаторов. 4 ил.

Ракета // 2613391
Изобретение относится к ракетной технике и может быть использовано в малогабаритных ракетах с отделяемой стартовой ступенью. Технический результат - упрощение конструкции ракеты при повышении надежности ее работы. Ракета содержит маршевую ступень, зафиксированную в переходном шпангоуте разрушаемыми элементами, отделяемую стартовую ступень с двигателем, скрепленным с переходным шпангоутом накидной гайкой, поршень и обтекатель. При этом накидная гайка снабжена контргайкой, выполненной с охватом обтекателя. Поршень закреплен в кормовой части маршевой ступени и скреплен с переходным шпангоутом разрушаемыми элементами. Переходный шпангоут снабжен перфорациями в виде продольных каналов, образующих с внутренней полостью переходного шпангоута, кормовой частью маршевой ступени и двигателем накопительную камеру. Эта камера сообщена с атмосферой каналами воздухозаборников. Каждый из этих каналов выполнен в виде диффузора и установлен с упором во внутреннюю часть обтекателя, снабженного сквозным пазом. Паз выполнен с охватом воздухозаборника и расположен от заднего торца к круговой выемке с плоским дном на внешней поверхности обтекателя. На каждом воздухозаборнике установлена гайка с упором в плоское дно круговой выемки. Фронтальная часть каждого воздухозаборника снабжена радиусной выемкой, переходящей в плоскую лыску, ширина которой не меньше входной части диффузора и расположенную перпендикулярно продольной оси ракеты. На кормовой части маршевой ступени подвижно установлен аэродинамический конус. Он отжат распорной гайкой от торца переходного шпангоута, который объединен с аэродинамическим конусом зацепом, выполненным в виде раздельных секций. Эти секции равномерно размещены с охватом маршевой ступени и удерживаются от угловых перемещений жесткими выступами. 7 ил.

Предлагаемая группа изобретений относится к области ракетной техники и может быть использована в малогабаритных зенитных и противотанковых ракетах. Бикалиберная ракета (вариант 1) содержит разгонный двигатель и механически связанный с ним переходной обтекатель, телескопически установленные на кормовую часть маршевой ступени. Маршевая ступень и двигатель связаны между собой разрывным винтом, усилие разрыва которого меньше усилия разрушения механической связи между двигателем и переходным обтекателем и больше усилия от перегрузок, действующих на маршевую ступень при эксплуатации, а также меньше разности аэробаллистических сил, действующих на разгонный двигатель и подкалиберную маршевую ступень в полете в конце разгона. Бикалиберная ракета (вариант 2) содержит разгонный двигатель, телескопически соединенный с подкалиберной маршевой ступенью. Маршевая ступень и разгонный двигатель связаны между собой стыковочным узлом, выполненным в виде штока, закрепленного на торце маршевой ступени и установленного во втулку, закрепленную в донной части телескопического соединения двигателя. Шток и втулка зафиксированы между собой штифтом, сила срезания которого больше силы, действующей на маршевую ступень при эксплуатации, и меньше силы, действующей на маршевую ступень в процессе разгона, а между торцами маршевой ступени и двигателя образованы зазоры, величины которых не менее хода, необходимого для срезания штифта. Изобретение позволяет повысить надежность демпфирования возмущений маршевой ступени ракеты при разделении и упростить конструкцию ракет. 2 н.п. ф-лы, 4 ил.
Наверх