Автономная солнечная варочная печь



Автономная солнечная варочная печь
Автономная солнечная варочная печь
Автономная солнечная варочная печь
Автономная солнечная варочная печь
Автономная солнечная варочная печь
Автономная солнечная варочная печь
F24J2/00 - Использование солнечного тепла, например солнечные тепловые коллекторы (дистилляция или выпаривание воды с использованием солнечной энергии C02F 1/14; кровельные покрытия с устройствами для сбора энергии E04D 13/18; устройства для использования солнечной энергии с целью получения механической энергии F03G 6/00; полупроводниковые устройства, предназначенные для преобразования солнечной энергии в электрическую, H01L 25/00;H01L 31/00; полупроводниковые приборы, содержащие средства для использования тепловой энергии H01L 31/058; генераторы, в которых световое излучение непосредственно преобразуется в электрическую энергию, H02N 6/00)

Владельцы патента RU 2593034:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Пензенский государственный технологический университет" (RU)

Изобретение относится к непосредственному использованию энергии лучей солнечной радиации для приготовления и подогрева пищи в полевых и стационарных условиях. Технический результат - повышение эффективности теплового нагрева варочной посуды. Печь содержит световодную трубу с оптически активным куполом, овальный концентратор лучей солнечной радиации, расположенный под углом внутри световодной трубы. Печь также содержит круговой отражатель параболоидного профиля в поперечном сечении, расположенный по кругу напротив оптически активного купола, и полый корпус, имеющий форму полой усеченной сферы. Внутренняя поверхность печи покрыта теплоотражающей фольгой, а ее полость заполнена теплоаккумулирующим материалом, например парафином 46-48. Наружные поверхности сферической варочной печи и ее полая крышка покрашены теплоизолирующей краской. 1 з.п. ф-лы, 5 ил.

 

Автономная солнечная варочная печь (АСВП) относится к возобновляемым источникам энергии, в частности к непосредственному использованию энергии лучей солнечной радиации для приготовления и подогрева пищи в полевых и стационарных условиях. АСВП может быть использована по назначению в лагерях для летнего отдыха, коттеджах, придорожных кафе, индивидуальных домах сельской местности, в горных аулах и других объектах удаленного расположения.

Известно изобретение Солнечная печь, патент RU 2412404 C1, F24J 2/02, F24J 2/52, от 20/02/2011, содержащая приемник излучения, выполненный в виде полости из теплоизоляционного материала с окном, обращенным в сторону концентратора, и связанный с ним посредством тяг концентратор с азимутально-зенитальной системой ориентации. Приемник излучения со стойкой установлен на опорном подшипнике опоры. Приемник излучения выполнен в виде полости из теплоизоляционного материала с поглощающей плитой в верхней части полости и прозрачным окном. Основным недостатком этого изобретения является необходимость постоянного контроля и установки концентратора на солнце.

Известно изобретение Гелиоэнергетическое устройство для термообработки продуктов, патент RU 2271502 С2, F24J 2/02, F26B 3/28, от 10.03.2006, которое относится к области гелиоэнергетики. Устройство предназначено для термообработки различных видов продукции в диапазоне температуры 50-300°С. Устройство может быть использовано для опреснения морской воды, обеспечения теплой водой и теплом теплиц, ферм, домов, получения электроэнергии для обеспечения домашнего хозяйства, отдаленных объектов, в том числе в местности высокой географической широты. Устройство содержит гелиотермическую печь-камеру, в которой производится термообработка продуктов. Отличительной особенностью данной печи-камеры является применение высококачественного теплоизолирующего пеноматериала значительной толщины с малым удельным весом и осуществление «накачки» энергетически уплотненных потоков солнечных лучей из окружающей среды во внутреннюю нагреваемую полость печи.

Известны конструкции солнечных кухонь, включающие концентратор с системой ориентации и приемник излучения, выполненный в виде объекта нагрева без (Нагревательное устройство с использованием солнечной энергии, авторское свидетельство СССР 167986, кл. F24J 2/40, 1965) или с частичной (Харченко Н.В. Индивидуальные солнечные установки. М.: Энергоатомиздат, 1991, с.115) тепловой изоляцией, следствием чего являются существенные тепловые потери с неизолированной поверхности последнего, кроме того, необходимо постоянно корректировать положение устройства по отношению к солнечным лучам.

Известна конструкция гелиокухни, содержащая приемник излучения и связанный с ним посредством тяг концентратор с азимутально-зенитальной системой ориентации (Устройство для использования солнечной энергии, авторское свидетельство СССР 338759, кл. F24J 2/40, 1972). Однако в известном устройстве приемник излучения выполнен в виде объекта нагрева без тепловой изоляции последнего и его положение в пространстве постоянно изменяется в процессе азимутально-зенитальной ориентации, что является недостатком, усложняющим конструкцию и условия эксплуатации устройства в целом.

Известно также изобретение Гелиокухня, патент RU 2075707 C1, F24J 2/42, F24J 2/52, от 20.03.1997, содержащее приемник излучения и связанный с ним посредством тяг концентратор с азимутально-зенитальной системой ориентации. Азимутально-зенитальная система ориентации выполнена в виде изогнутой направляющей стопорного элемента, закрепленного в радиальном пазу концентратора, которая крепится к опорной раме, установленной неподвижно на поворотном относительно вертикальной оси основании, и имеет на одном конце втулку с имеющим возможность вертикального перемещения относительно последней штырем. Приемник излучения установлен в узлах подвеса опорной рамы с возможностью поворота относительно их продольной оси и выполнен в виде полой сферы из теплоизоляционного материала со сквозным отверстием, обращенным в сторону концентратора. Опорная рама имеет откидывающуюся крышку с фиксатором в закрытом положении. Внутри нее на подставке, связанной с узлами подвеса опорной рамы, установлен объект нагрева, причем радиус концентратора не менее чем в четыре раза превышает внешний радиус сферического полостного приемника излучения. Основными недостатками этого изобретения являются: наличие системы ориентации концентратора на солнце, что усложняет конструкцию и эксплуатацию гелиокухни при наведении фокального пятна в сквозное отверстие; фокусное расстояние концентратора и объект нагрева находятся вблизи диаметральной плоскости концентратора, поэтому тень от полой сферы будет падать на поверхность концентратора, чем понижает эффективность нагрева продукта; нахождение откидывающейся крышки сзади полой сферы ограничивает допуск к продукту нагрева сверху, который является более удобным при организации и контроле приготовления пищи.

В качестве прототипа авторами выбрано изобретение Гелиокухня, патент RU 2075707 C1, F24J 2/42, F24J 2/52, от 20.03.1997, как наиболее близкое по конструкции и техническому решению.

Задачей изобретения является устранение механизмов по слежению за положением Солнца на небосводе; повышение эффективности теплового нагрева варочной посуды в процессе приготовления пищи.

Решение поставленной задачи достигается тем, что солнечная радиация собирается оптически активным куполом и круговым отражателем параболоидного профиля в поперечном сечении, расположенным напротив оптически активного купола в верхней части световодной трубы; собранные лучи солнечной радиации направляются в полую световодную трубу, которая транспортирует эти лучи солнечной радиации на овальный концентратор, выполненный в виде плосковыпуклой линзы и установленный под определенным углом α внутри световодной трубы; овальный концентратор лучей солнечной радиации, выполненный в виде плосковыпуклой линзы, которая обеспечивает устойчивое нахождение фокального пятна на внешней поверхности нагреваемой панели независимо от солнцестояния на небосводе; нагреваемая панель, на которую устанавливается варочная посуда для приготовления и подогрева пищи, выполнена из алюминия или меди, обладающих высокой теплопроводностью; наружная поверхность полой сферической варочной печи имеет вид усеченной сферической поверхности и покрыта теплоизоляционной краской, а внутренняя поверхность печи покрыта теплоотражающей фольгой, причем полость заполнена теплоаккумулирующим материалом (парафином 46-48); полая сферическая варочная печь имеет корпус в виде усеченной сферы и полую крышку сферической формы, внутренняя полость которой также заполнена теплоаккумулирующим материалом (парафином 46-48); между корпусом полой сферической варочной печи и полой откидывающейся крышкой сферической формы имеется силиконовое уплотнительное кольцо; имеется замок натяжного действия, обеспечивающий надежное прилегание полой крышки к полому усеченному сферическому корпусу.

Состав и сущность изобретения показаны на фигуре 1 - общий вид АСВП, на фигуре 2 - вид сверху АСВП; на фигуре 3 - вид оптически активного купола в разрезе; на фигуре 4 - сопряжение и форма продольных плосковыпуклых секторных линз; на фигуре 5 - варочная печь в разрезе а) с закрытой крышкой, б) с открытой крышкой.

Автономная солнечная варочная печь состоит из следующих составных частей: подвижной площадки 1; крепежного кольца 2, имеющего Z-образную форму; овального концентратора 3 лучей солнечной радиации, выполненного в виде плосковыпуклой линзы, установленной внутри световодной трубы 4 (фигура 1) под определенным углом α, обеспечивающим попадание фокального пятна на алюминиевую или медную нагреваемую панель; оптически активного купола 5, состоящего из сопряженных между собой верхней плосковыпуклой линзы 6 (фигура 3) и продольных секторных плосковыпуклых линз 7 (фигуры 4); кругового отражателя 8 (фигуры 1, 3) параболоидного профиля в поперечном сечении, расположенного напротив оптически активного купола в верхней части световодной трубы 4; кухонного стола 9 (фигуры 1, 2); полой сферической варочной печи 10 (фигура 5), наружная поверхность которой покрыта теплоизолирующей краской; опорной дужки 11 для удерживания в отрытом положении полой крышки 12 полой сферической варочной печи 10; полого усеченного сферического корпуса 13 и полой крышки 12 полой сферической варочной печи 10, внутренние поверхности которых покрыты теплоотражающей фольгой 14 (фигура 5), причем полости усеченного сферического корпуса 13 и полой крышки 12 заполнены теплоаккумулирующем материалом 15 (парафином 46-48); цилиндрического шарнира 16, обеспечивающего подвижное соединение полого усеченного сферического корпуса 13 и полой крышки 12; натяжного замка 17, фиксирующего полую крышку 12 в закрытом состоянии; силиконового уплотнительного кольца 18, расположенного между полым усеченным сферическим корпусом 13 и полой сферической крышкой 12 (фигура 5); конусного отверстия 19, расположенного напротив овального концентратора 3 лучей солнечной радиации, предназначенного для прохода плотного потока лучей солнечной радиации в полость усеченного сферического корпуса 13; алюминиевой или медной нагреваемой панели 20, предназначенной для установки варочной посуды (не обозначена) в варочной камере 21 сферической варочной печи 10 (фигура 5).

Автономная солнечная варочная печь работает следующим образом.

Солнечная радиация при любой высоте солнцестояния проникает в оптически активный купол 5. Верхняя плосковыпуклая линза 6 выпуклой стороной собирает солнечные лучи, а плоской стороной формирует параллельные лучи, которые направляются в полую световодную трубу (фигура 3). Одновременно продольные секторные плосковыпуклые линзы 7 также собирают лучи солнечной радиации и параллельными пучками направляют их в полую световодную трубу 4 (фигура 1). Круговой отражатель 8 (фигура 2) параболоидного профиля в поперечном сечении, расположенный напротив оптически активного купола 5 в верхней части световодной трубы 4 (фигуры 1, 2), воспринимает лучи солнечной радиации и отражает их на оптически активный купол. Это позволяет увеличить количество лучей солнечной радиации, попадающих в полую световодную трубу 4, что увеличивает энергоэффективность АСВП. Лучи солнечной радиации, отражаясь от внутренней зеркальной поверхности полой световодной трубы 4, направляются на поверхность овального концентратора 3 (фигура 1) лучей солнечной радиации, выполненного в виде плосковыпуклой линзы, установленной под определенным углом α внутри световодной трубы 4 (фигура 1). Овальный концентратор 3 собирает лучи солнечной радиации в фокальное пятно, которое проецируется на алюминиевую или медную нагреваемую панель 20, предназначенную для установки варочной посуды (не обозначена) в варочной камере 21 для приготовления пищи. Кухонный стол 9 с полой сферической варочной печью 10 также устанавливается на подвижной площадке 1 (фигура 1) таким образом, чтобы фокальное пятно находилось на внешней поверхности алюминиевой или медной нагреваемой панели 20 (фигура 5). Расположение фокального пятна на внешней поверхности алюминиевой или медной нагреваемой панели 20 определяется углом α установки овального концентратора 3 лучей солнечной радиации, выполненного в виде плосковыпуклой линзы, установленной внутри световодной трубы 4 (фигура 1). Техническая реализация заявленной АСВП: оптически активный купол 5 изготавливается из акрилового стекла; полая световодная труба 4 и криволинейный отражатель 8 параболоидного профиля выполняются из алюминиевого листа толщиной 1 мм с зеркальной полировкой одной стороны или зеркальным напылением; полый усеченный сферический корпус 13 полой сферической варочной печи 10 и полая крышка 12 отливаются из алюминиевого сплава, причем толщина корпуса должна быть не менее 2-3 мм; уплотнительное кольцо 18 изготовлено из термостойкой силиконовой резины; конструкция кухонного стола 9 выполнена из дерева твердой породы, верхняя крышка кухонного стола покрыта нержавеющей сталью толщиной 0,5 мм; в качестве теплоаккумулирующего материала применяется парафин 46-48; L-образное крепежное кольцо 2, выполненное из монолитного поликарбоната толщиной 3-4 мм, предназначено для крепления полой световодной трубы 4 к подвижной площадке 1 (фигура 1).

На основании проведенных патентных исследований не обнаружено технических решений с совокупностью признаков и решаемых задач, схожих с заявляемым устройством, что позволяет сделать вывод о его соответствии критерию новизны принятых технических решений изобретения.

Технический результат заявленного изобретения достигается совокупным применением: световодной трубы с оптически активным куполом, причем оптически активный купол составлен из верхней плосковыпуклой линзы, сопряженной с продольными секторными плосковыпуклыми линзами, такое конструктивное применение световодной трубы не требует ориентировки АСВП на Солнце; овального концентратора 3 лучей солнечной радиации, выполненного в виде плосковыпуклой линзы, который обеспечивает качественную концентрацию солнечной радиации в виде фокального пятна в конусном отверстии, расположенном в полости усеченного сферического корпуса; полой сферической варочной печи 10, полости которой заполнены теплоаккумулирующим материалом (парафином 46-48), что позволяет повысить энергоэффективность использования энергии солнечной радиации, кроме того, все составные части АСВП скомпонованы на одной подвижной площадке 1.

Таким образом, создана новая технологическая последовательность эффективного сбора, транспортировки и концентрации лучей солнечной радиации в виде фокального пятна, которое проецируется на алюминиевую или медную нагреваемую панель 20, предназначенную для установки варочной посуды (не обозначена).

Предлагаемая АСВП позволяет: повысить надежность функционирования варочной печи независимо от солнцестояния за счет созданной технологической цепочки сбора лучей солнечной радиации оптически активным куполом, затем транспортирования этих лучей по световодной трубе и далее на овальный концентратор, который образует постоянное неподвижное фокусное пятно на верхней поверхности алюминиевой или медной нагреваемой панели, предназначенной для установки варочной посуды в варочной камере. Это повышает энергоэффективность и существенно отличает заявленное изобретение от прототипа и цитированных аналогов.

1. Автономная солнечная варочная печь (АСВП), содержащая овальный концентратор лучей солнечной радиации, полый корпус в форме усеченной сферы с полой крышкой сферической формы, световодную трубу с оптически активным куполом для транспортировки лучей солнечной радиации на овальный концентратор лучей солнечной радиации, который расположен под углом в нижней части световодной трубы, при этом оптически активный купол выполнен в виде сопряженных между собой плосковыпуклой линзы и продольных секторных плосковыпуклых линз, обеспечивающих направление лучей солнечной радиации в полую световодную трубу, кругового отражателя параболоидного профиля в поперечном сечении, расположенного напротив оптически активного купола в верхней части световодной трубы, причем полый корпус выполнен с возможностью прохода в него лучей солнечной радиации через отверстие, обращенное в сторону концентратора, при этом полый корпус и полая крышка соединены цилиндрическим шарниром, а внутренние полости корпуса и крышки заполнены теплоаккумулирующим материалом, в качестве которого использован парафин 46-48, наружная поверхность полого корпуса покрыта теплоизолирующей краской, а внутренняя поверхность полого корпуса и полой крышки покрыты теплоотражающей фольгой, при этом полая крышка выполнена с опорной дужкой для удержания ее в открытом состоянии и натяжным замком для фиксации в закрытом состоянии, а в полом корпусе установлена алюминиевая или медная нагреваемая панель для установки варочной посуды.

2. Печь по п. 1, отличающаяся тем, что между полым корпусом и полой сферической крышкой установлено уплотнительное кольцо из термостойкой силиконовой резины.



 

Похожие патенты:

Изобретение относится к опреснительным установкам и возобновляемым источникам энергии. Солнечно-ветровая опреснительная установка содержит трубопроводы для подвода опресняемой воды 35, патрубок с краном для слива рассола, циркуляционный насос 26, теплоэлектронагреватель (ТЭН) 30, круговой конусообразный солнечный коллектор 42, внешний полусферический купол 1, фотоэлектрические модули (ФЭМ) 2, внутренний полусферический купол 3, конфузор-диффузор 4, ветроэлектрическую установку 5, внешний вращающийся ротор 9, внутренний неподвижный ротор 6, полость 11, расположенную между внешним полусферическим куполом 1 и внутренним полусферическим куполом 3, круговой лоток 12, датчик температуры (ДТ) 13, датчик давления (разрежения) (ДЦ) 10, вакуумный насос 16, электроклапан 15, коллектор теплонагревателя 31, параболический круговой отражатель солнечной радиации 17, бак 19 теплообменника 18, предназначенного для опресненной воды, окна для забора воздуха 43, круговой завихритель 48, цилиндрический испарительный бассейн 27, решетку 34 коллектора теплонагревателя 31, сферическое дно 32, инвертор 36, электронный пульт управления (ЭПУ) 37, контроллер заряда-разряда (КРЗ) 38, теплоизоляцию, круглый лоток 29 для сбора рассола.

Наплавная микрогидросолнечная электростанция относится к возобновляемым источникам энергии и предназначена для снабжения электроэнергией малой мощности жилых и нежилых помещений, электрических и электронных приборов, устройств уличного освещения, а также объектов социально-бытового назначения и полевого базирования, расположенных вблизи равнинных текущих рек, ручьев, протоков, водосбросов.

Изобретение относится к способу извлечения углеводородов, содержащихся в нефтеносных песках. Способ включает подачу нефтеносных песков в устройство для нагревания и нагревание нефтеносных песков в устройстве для нагревания, где устройство для нагревания представляет собой экстракционную колонну, где нагревание обеспечивают посредством соответствующей текучей среды-переносчика, нагретой от солнечной энергии, собранной посредством оптических концентрирующих систем, образуя нагретую текучую среду-переносчик, которая действует как горячая экстрагирующая текучая среда.
Изобретение относится к строительной индустрии и может быть использовано для строительства зданий и сооружений промышленного и гражданского строительства в зонах, опасных по землетрясениям, ураганам, военным действиям.
Изобретение относится к строительной индустрии и может быть использовано для строительства зданий и сооружений. Способ состоит в том, что изготавливают мини-батареи наружных плиток, для чего из стеклобоя, получаемого при механической рассортировке бытовых отходов, выплавляют наружные плитки в виде коробов с двумя отверстиями для вывода упруго-растяжимых плюсового и минусового проводов солнечной мини-батареи плитки, на стенде собирают и электрически соединяют по габаритам наружной плитки фотоэлементы для создания солнечной мини-батареи наружной плитки, сборку фотоэлементов помещают в короб плитки наружного покрытия лицевой частью фотоэлементов наверх, герметизируют солнечную мини-батарею наружной плитки затвердевающим веществом, становящимся после затвердевания прозрачным, упруго-растяжимые электросоединители, после сборки каждого ряда, перед пенобетоном ряд за рядом соединяют между собой с образованием в конце концов солнечной батареи всего здания или сооружения, которую присоединяют к контроллеру и к аккумуляторной батарее всего здания или сооружения, при необходимости питания электроприемников напряжением 220 вольт систему электроснабжения присоединяют через инвертор.

Изобретение относится к области ветроэнергетики. Способ производства энергии, заключающийся в том, что выработку энергии производят за счет вращения рабочих лопаток ветром, ускоренным сооружением, выполненным в виде сопла Лаваля в верхней части, а в нижней - представляющей из себя плоскость, и за счет солнечных батарей, а также за счет солнечных лучей, которые попадают на батарею, за счет их отражения от внутренней плоскости сопла Лаваля.

Изобретение относится к получению спирта. Система аккумулирования возобновляемой энергии представляет собой блок источников возобновляемой энергии, подключенный к технологической схеме получения спирта.

Изобретение может быть использовано в химической промышленности, в системах производства топлива для транспорта и в стационарных энергоустановках. Способ преобразования солнечной энергии в химическую и аккумулирования ее в водородсодержащих продуктах включает производство биомассы с использованием солнечной энергии, которую подвергают реакции парокислородной каталитической конверсии с получением продуктов реакции, содержащих водород и диоксид углерода.

Группа изобретений относится к области теплообмена и может быть использована для охлаждения воздуха или оборудования, а также для утилизации сбросного тепла. Технический результат - повышение эффективности теплообмена, экономичности, экологичности, а также повышение надежности и долговечности, расширение области применения, расширение функциональных возможностей.

Изобретение относится к области солнечной энергетики, в частности к непрерывно следящим за Солнцем солнечным установкам как с концентраторами солнечного излучения, так и с плоскими кремниевыми модулями, предназначенным для питания потребителей, например, в районах ненадежного и децентрализованного электроснабжения.

Изобретение относится к способам совместного использования солнечной энергии для системы горячего водоснабжения, солнечной и петротермальной энергии с помощью абсорбционного теплового насоса и инверторного парокомпрессорного теплового насоса для систем кондиционирования воздуха в теплый период и отопления в холодный период. Способ комбинированного использования альтернативных источников энергии для отопления, кондиционирования воздуха и горячего водоснабжения помещений на основе гибридного солнечного коллектора, бивалентного водонагревателя, преобразователя электрической энергии, электрического аккумулятора, абсорбционного теплового насоса, инверторного парокомпрессорного теплового насоса с теплосъемными трубами и петротермальной скважины, при этом в петротермальной скважине на глубине ниже слоя годовых колебаний температуры методом гидравлического разрыва пласта создают трещины, в которые для создания аккумулятора тепла закачивают вещество с температурой фазового перехода 20-43°C; электрическая энергия, вырабатываемая гибридным солнечным коллектором, поступает в преобразователь электрической энергии и используется инверторным парокомпрессорным тепловым насосом для кондиционирования и отопления помещения, бивалентным водонагревателем для подогрева воды при недостаточной тепловой мощности гибридного теплового коллектора, избыточная электрическая энергия накапливается в электрическом аккумуляторе и используется для «дежурного» освещения; в теплое время теплохладоноситель инверторного парокомпрессорного теплового насоса подается в помещение для кондиционирования воздуха и обратно на инверторный парокомпрессорный тепловой насос, откуда полученное тепло посредством теплосъемных труб инверторного парокомпрессорного теплового насоса закачивается в аккумулятор тепла, в холодное время инверторный парокомпрессорный тепловой насос посредством теплохладоносителя теплосъемных труб подает тепло из аккумулятора тепла в помещение для отопления; тепло теплоносителя гибридного солнечного коллектора поступает в бивалентный водонагреватель для подогрева воды в системе горячего водоснабжения и в абсорбционный тепловой насос для выработки холода в системе кондиционирования воздуха в помещении, и после отдачи тепла теплоноситель из абсорбционного теплового насоса и бивалентного водонагревателя возвращается на нагрев в гибридный солнечный коллектор. Техническим результатом является высокая аккумулирующая способность системы и круглогодичное использование солнечной и петротермальной энергии: для системы горячего водоснабжения; для системы кондиционирования воздуха с помощью абсорбционного и инверторного парокомпрессорного тепловых насосов в теплый период; для системы отопления с помощью инверторного парокомпрессорного теплового насоса в холодный период; увеличение на 30-50% выработки электроэнергии за счет отвода тепла от коллектора. 1 ил., 1 табл.

Использование: в области электротехники и энергетики. Технический результат – обеспечение графика выработки электроэнергии, соответствующего графику нагрузки без слежения за перемещением солнца по небосклону. Способ размещения панелей солнечных батарей состоит из установки панелей рядами друг за другом таким образом, чтобы ряды были размещены параллельно друг другу длинными торцами, а плоскостями - перпендикулярно или с максимально большим углом к направлению солнечных лучей в данном районе, и с технологическим интервалом между рядами таким, чтобы тень от предыдущего ряда панелей солнечных батарей при оптимальной высоте солнца не накрывала последующего ряда, а технологический интервал внутри рядов между панелями устанавливают не более 0,1…0,15L, где L - длина панели солнечной батареи, причем по высоте панели располагают над поверхностью земли, равной среднему росту обслуживающего персонала 1,6…2 м. Ряды солнечных панелей устанавливаются в направлении с севера на юг для исключения взаимного затенения панелей, а плоскости панелей имеют различную пространственную ориентацию относительно направления солнечных лучей в данном районе, которая одновременно с выбором мощности и количества солнечных панелей выбирается с целью обеспечения заданного почасового графика генерации исходя из критериев максимального значения часовой суммы суммарного солнечного излучения в момент времени t и максимума вырабатываемой электрической энергии за сутки. 3 ил.

Изобретение относится к опреснению жидкости. Вакуумная опреснительная установка для воды с генерацией электроэнергии содержит герметичную камеру с водяной ванной (1), внутри которой ниже уровня жидкости размещен испаритель (2), подключенный к солнечному коллектору (3) через насос (13), систему насосов, содержащую, по меньшей мере, три вакуумных насоса (5), соединенных системой трубопроводов с установленными на них трехходовыми клапанами (6), (7), теплообменный аппарат (4), соединенный посредством трехходового клапана (8) с трубопроводом подачи исходной жидкости и со сборником дистиллята (9), который через обратный клапан (15) соединен с одним из вакуумных насосов, рекуперативный теплообменник (10), преобразователь тока (11) и электроаккумулятор (2), соединенные с системой насосов (5), насос (14) для подачи исходной воды. Изобретение обеспечивает снижение энергопотребления на опреснение воды за счет эффективности использования энергии Солнца, а также универсальность опреснительных установок. 1 ил.
Наверх