Способ определения места обрыва провода на воздушной линии электропередачи

Изобретение относится к электроэнергетике и может быть использовано для определения места обрыва провода на воздушных линиях электропередачи на основе измерения параметров аварийного режима с двух концов линии. Технический результат: снижение трудоемкости и повышение точности при определении места обрыва за счет более полного учета параметров линий. Сущность: на предварительной стадии формируют полную модель линии в трехфазном виде с учетом взаимоиндуктивных и емкостных связей между проводами линий. При возникновении обрыва провода измеряют и регистрируют значения комплексных фазных напряжений на шинах и фазных токов в линии. Далее разбивают модель линии на равные участки, например, от опоры до опоры, формируют напряжения в конце каждого участка в каждой фазе, начиная от шин с одного и другого концов линии, формируют токи в конце каждого участка в каждой фазе, начиная от шин с одного и другого концов линии, регистрируют модули токов в каждом участке в каждой фазе, начиная от шин с одного и другого концов линии. По модулям токов строят графики с осями с двух сторон зависимости модулей токов от номера участка (от расстояния). Точка пересечения графиков с одного и другого концов линии соответствует точке обрыва.

 

Предлагаемое изобретение относится к электроэнергетике и может быть использовано для определения места обрыва провода на воздушных линиях электропередачи на основе измерения параметров аварийного режима с двух концов линии.

Изобретение относится к приоритетному направлению развития науки и технологий «Технологии создания энергосберегающих систем транспортировки, распределения и потребления тепла и электроэнергии» [Алфавитно-предметный указатель к Международной патентной классификации по приоритетным направлениям развития науки и технологий / Ю.Г. Смирнов, Е.В. Скиданова, С.А. Краснов. - М.: ПАТЕНТ, 2008. - С. 97], так как решает проблему уменьшения времени задержек при транспортировке электроэнергии потребителям в случае повреждения электрических сетей.

Известен способ определения места обрыва одной фазы воздушной линии электропередачи [Ластовкин В.Д. Диагностика ВЛ 110-220 кВ под рабочим напряжением. Определение мест обрыва фазы // Новости ЭлектроТехники: Информ. - справ. изд. - 2010. - №2(62). - С. 28-32], заключающийся в том, что сначала выявляют признаки обрыва одной фазы, приведшего к отключению воздушной линии, затем включают ненагруженную воздушную линию под напряжение и измеряют в фазах емкостные токи, используя приборы, например, РЕТОМЕТР, ПАРМА-ВАФ или ВАФ-85, подключая их во вторичные цепи (с одного конца линии). По результатам измерений определяют расстояние до места обрыва фазы - сравнивают измеренный емкостной ток с расчетным емкостным током линии.

Недостатками способа являются его многоэтапность, неучет распределенности параметров линии электропередачи и низкая точность определения места обрыва фазы воздушной линии, необходимость отключения линии.

Известен способ определения места обрыва одной фазы воздушной линии электропередачи [патент RU 2455654], заключающийся в том, что производят мониторинг электрической сети расположенным на питающей сеть подстанции ведущим устройством, осуществляющим сканированием сети предварительный сбор информации о целостности сегментов сети путем опроса ведомых устройств. Ведомые устройства, расположенные на границах сети на каждом конце линии разветвленной сети, подают высокочастотные напряжения прямой последовательности на все три фазных провода линии электропередачи, сдвинутые по фазе друг относительно друга на 120°, а ведущее устройство принимает и записывает трехфазное высокочастотное напряжение, получаемое ведущим устройством от каждого ведомого устройства в отдельности, при этом при совместной обработке всех записанных трехфазных высокочастотных сигналов со всех ведомых устройств определяют место обрыва фазы воздушной линии электропередачи.

Недостатком способа является то, что определяется не точное место обрыва одной фазы, а лишь сегмент сети, где произошел обрыв фазы, а также неучет распределенности параметров линии электропередачи.

Известен способ определения места обрыва одной фазы воздушной линии электропередачи [патент RU 2508555], выбранный в качестве прототипа, заключающийся в том, что производят мониторинг электрической сети. При этом измеряют массивы мгновенных значений сигналов напряжений и токов трех фаз в начале линии для одних и тех же моментов времени, передают сигналы с конца линии в ее начало по каналу связи, сохраняют пары цифровых отсчетов как текущие, осуществляют сдвиг одноименных сигналов фаз В и С соответственно на углы 120° и 240°, далее одновременно определяют массивы мгновенных значений симметричных составляющих напряжений и токов прямой и обратной последовательностей фазы А в начале и конце линии и соответствующие им векторные значения напряжений и токов, затем по результатам измерений рассчитывают расстояние до места обрыва фазы.

Предложенный способ является более точным за счет учета распределенности параметров воздушной линии электропередачи и использования в качестве исходных данных массивов мгновенных значений токов и напряжений, измеренных на обоих концах линии.

Недостатком способа является то, что не учитывается пофазное различие продольных и поперечных параметров линии, а также то, что для его реализации необходимо использовать специальное устройство, которое промышленно не производится.

Указанные недостатки могут приводить к погрешности в определении места повреждения из-за усреднения величин сопротивлений линии и значительным затратам при реализации.

Изобретение направлено на решение задачи по созданию технологий, позволяющих повысить эффективность электроснабжения.

Технический результат изобретения заключается в повышении точности определении места обрыва провода линии за счет учета величин полных фазных и междуфазных сопротивлений линии при использовании измеренных аварийных величин фазных токов и напряжений.

Технический результат достигается за счет того, что в способе определения места обрыва провода воздушной линии электропередачи по замерам с двух ее концов, имеющей комплексные сопротивления проводов фаз ZAA, ZBB, ZCC, междуфазные комплексные сопротивления ZAB, ZAC, ZBA, ZBC, ZCA, ZCB, емкостные проводимости проводов фаз линии на землю YAA, YBB, YCC, емкостные междуфазные проводимости линии YAB, YAC, YBA, YBC, YCA, YCB, соединяющей две питающие системы, в котором измеряют с двух концов линии (′ - один конец линии, ′′ - второй конец линии) несинхронизированные по углам комплексные фазные токи ( I ˙ ' A , I ˙ ' B , I ˙ ' C ) , ( I ˙ ' ' A , I ˙ ' ' B , I ˙ ' ' C ) и напряжения ( U ˙ ' A , U ˙ ' B , U ˙ ' C ) , ( U ˙ ' ' A , U ˙ ' ' B , U ˙ ' ' C ) основной частоты в момент обрыва, расчетным путем определяют значение расстояния до места обрыва, согласно изобретению предварительно формируют модель линии, как значения продольных и поперечных параметров N участков схемы замещения линии в трехфазном виде:

;

,

где ZAAij, ZBBij, ZCCij - значения собственных продольных сопротивлений фаз участка i-j линии (Ом);

ZABij, ZACij, ZBAij, ZBCij, ZCAij, ZCBij - значения взаимных продольных сопротивлений фаз участка i-j линии (Ом);

YAAij, YBBij, YCCij - значения собственных поперечных емкостных проводимостей фаз участка i-j линии (Ом);

YABij, YACij, YBAij, YBCij, YCAij, YCBij - значения взаимных поперечных емкостных проводимостей фаз участка i-j линии (Ом).

Значения собственных и взаимных сопротивлений определяются по общеизвестным выражениям (например, Ульянов С.А. Электромагнитные переходные процессы в энергетических системах. Изд-во «Энергия», 1970 г., с. 293, 294).

Значения емкостных проводимостей фаз на «землю» и взаимных емкостных проводимостей между фаз определяются по общеизвестным выражениям (например, Висящев А.Н. Приборы и методы определения места повреждения на линиях электропередачи. Учебное пособие. Иркутск: Изд-во ИрГТУ, 2001 г., с. 27-29).

Далее после получения значений измеренных фазных напряжений на шинах и токов с двух концов линии (′ - обозначение одного конца, ′′ - обозначение другого конца) задают поочередно точки j в конце каждого участка вдоль линии, формируют и сохраняют для двух концов линии значения комплексных фазных напряжений в каждой j-ой точке по выражениям:

;

,

где:

- значения комплексных фазных напряжений в каждой i-ой точке линии, для i=1 значения напряжений на шинах одного конца линии (В);

- значения комплексных фазных напряжений в каждой i-ой точке линии, для i=1 значения напряжений на шинах другого конца линии (В), где:

- значения комплексных фазных напряжений в каждой j-ой точке линии с одного конца линии (В);

- значения комплексных фазных напряжений в каждой j-ой точке линии с другого конца линии (В);

- значения комплексных фазных токов на участке i-j с одного конца линии, для i=1; значения комплексных фазных токов, измеренных с одного конца линии (А);

- значения комплексных фазных токов на участке i-j с другого конца линии, для i=1 значения комплексных фазных токов, измеренных с другого конца линии (А);

- значения продольных собственных и взаимных сопротивлений участков i-j схемы замещения линии с одного конца линии (Ом);

- значения продольных собственных и взаимных сопротивлений участков i-j схемы замещения линии с другого конца линии (Ом).

Далее формируют значения фазных токов в поперечных емкостных проводимостях в i-ой и j-ой точках участка линии по выражениям:

;

;

;

.

Если в j-ом узле включена отпайка, то формируют значения фазных токов в поперечных емкостных проводимостях и в отпайке в j-ой точке линии по выражениям:

;

.

Формируют и сохраняют значения фазных токов в продольных сопротивлениях в каждом (ij+1)-ом участке линии по выражениям:

;

,

где:

- значения поперечных собственных и взаимных емкостных проводимостей половины участка i-j схемы замещения линии с одного конца линии (Сим);

- значения поперечных собственных и взаимных емкостных проводимостей половины участка i-j схемы замещения линии с другого конца линии (Сим);

- значения сформированных фазных токов в поперечных емкостных проводимостях в начале каждого ij-ого участка линии с одного конца линии (А);

- значения сформированных фазных токов в поперечных емкостных проводимостях в начале каждого ij-ого участка линии с другого конца линии (А);

- значения сформированных фазных токов в поперечных емкостных проводимостях в конце каждого ij-ого участка линии с одного конца линии (А);

- значения сформированных фазных токов в поперечных емкостных проводимостях в конце каждого ij-ого участка линии с другого конца линии (А);

- значения фазных проводимостей отпайки, включающие в себя проводимости линии и трансформатора от отпайки до нагрузки и нагрузки отпайки (Сим).

Далее из сохраненных значений комплексных фазных токов и выделяются модули, по которым строятся графики с двумя осями зависимости модулей токов от номера участка (от расстояния). Точка пересечения графиков соответствует точке обрыва провода.

Таким образом, предлагаемое изобретение имеет следующие общие признаки с прототипом:

- Предварительно формируют расчетную модель линии.

- Измеряют фазные токи и напряжения в момент обрыва на линии на обоих концах линии.

- Передают информацию с одного конца линии на другой.

- Формируют промежуточные параметры.

- Определяют расчетным путем место обрыва провода.

Предлагаемое изобретение имеет следующие отличия от прототипа, что обуславливает соответствие технического решения критерию новизна:

- Схемы замещения линий составляют в трехфазном виде, что позволяет наиболее полно учесть физические параметры линии (взаимоиндукцию между проводами фаз линии, междуфазную емкость и емкость на землю).

- Схему замещения линий составляется из участков линии, что позволяет учесть различие в параметрах линий (транспозиция, различный тип опор, грозозащитный трос и т.п.) на каждом участке.

- По измеренным токам и напряжениям и параметрам схемы замещения линии рассчитывают контролируемый параметр - значения комплексных фазных токов и , из которых выделяются модули, по которым строятся графики с двумя осями зависимости модулей токов от расстояния. Точка пересечения графиков соответствует точке обрыва провода.

Из уровня техники неизвестны отличительные существенные признаки заявляемых способов, охарактеризованных в формуле изобретения, что подтверждает ее соответствие условию патентоспособности «изобретательский уровень».

Способ реализуют следующим образом.

На предварительной стадии формируют полную модель линии, в трехфазном виде с учетом взаимоиндуктивных и емкостных связей между проводами линии и землей.

При возникновении обрыва провода измеряют и регистрируют значения комплексных фазных напряжений на шинах и фазных токов в линии.

Далее разбивают модель линии на равные участки, например от опоры до опоры, формируют напряжения в конце каждого участка в каждой фазе, начиная от шин с одного и другого концов линии, формируют токи в конце каждого участка в каждой фазе, начиная от шин с одного и другого концов линии, сохраняют модули фазных токов в каждом участке в каждой фазе, начиная от шин с одного и другого концов линии. По модулям токов строят графики с осями с двух сторон зависимости модулей токов от номера участка (от расстояния). Точка пересечения графиков с одного и другого концов линии соответствует точке обрыва.

Предложенный способ также позволяет определять место обрыва двух проводов, позволяет при этом учесть транспозицию линии. При этом не нужно выполнять синхронизацию замеров по концам линии.

Определение места повреждения, выполненное по предложенной методике, показало также полное отсутствие методической погрешности при изменениях нагрузочного режима в широких диапазонах.

Таким образом, использование полной модели линий в трехфазном виде и измеренных значений фазных токов и напряжений позволяет получить более точную модель, чем достигается более точное определение расстояния до места повреждения.

Способ определения места обрыва на воздушной линии электропередачи по замерам с двух ее концов, имеющей комплексные сопротивления проводов фаз ZAA, ZBB, ZCC, междуфазные комплексные сопротивления ZAB, ZAC, ZBA, ZBC, ZCA, ZCB, емкостные проводимости проводов фаз линии на землю YAA, YBB, YCC, емкостные междуфазные проводимости линии YAB, YAC, YBA, YBC, YCA, YCB, соединяющей две питающие системы, в котором измеряют с двух концов линии (′ - один конец линии, ′′ - второй конец линии) несинхронизированные по углам комплексные фазные токи (, , ), (, , ) и напряжения (, , ), (, , ) основной частоты в момент обрыва, расчетным путем определяют значение расстояния до места обрыва, отличающийся тем, что предварительно формируют модель линии в виде значений продольных и поперечных параметров N участков схемы замещения линии в трехфазном виде:


где: ZAAij, ZBBij, ZCCij - значения собственных продольных сопротивлений фаз участка i-j линии (Ом);
ZABij, ZACij, ZBAij, ZBCij, ZCAij, ZCBij - значения взаимных продольных сопротивлений фаз участка i-j линии (Ом);
YAAij, YBBij, YCCij - значения собственных поперечных емкостных проводимостей фаз участка i-j линии (Ом);
YABij, YACij, YBAij, YBCij, YCAij, YCBij - значения взаимных поперечных емкостных проводимостей фаз участка i-j линии (Ом), после получения значений измеренных фазных напряжений на шинах и токов в проводах линии при обрыве провода линии с двух концов линии (′ и ′′) задают поочередно точки j в конце каждого участка вдоль линии, формируют и сохраняют для двух концов линии значения комплексных фазных напряжений в каждой j-ой точке по выражениям:
;
,
где:
- значения комплексных фазных напряжений в каждой i-ой точке линии, для i=1 значения напряжений на шинах одного конца линии (В);
- значения комплексных фазных напряжений в каждой i-ой точке линии, для i=1 значения напряжений на шинах другого конца линии (В); где:
- значения комплексных фазных напряжений в каждой j-ой точке линии с одного конца линии (В);
- значения комплексных фазных напряжений в каждой j-ой точке линии с другого конца линии (В);
- значения комплексных фазных токов на участке i-j с одного конца линии, для i=1 значения комплексных фазных токов, измеренных с одного конца линии (А);
- значения комплексных фазных токов на участке i-j с другого конца линии, для i=1 значения комплексных фазных токов, измеренных с другого конца линии (А);
- значения продольных собственных и взаимных сопротивлений участка i-j схемы замещения линии с одного конца линии (Ом);
- значения продольных собственных и взаимных сопротивлений участка i-j схемы замещения линии с другого конца линии (Ом),
формируют значения фазных токов в поперечных емкостных проводимостях в i-той точке участка линии по выражениям:
;
;
формируют значения фазных токов в поперечных емкостных проводимостях в j-той точке участка линии по выражениям:
;
,
или по выражениям:
;
,
если в j-том узле включена отпайка,
где:
- фазные значения проводимостей отпайки, включающие в себя проводимости линии и трансформатора от отпайки до нагрузки и нагрузки отпайки (Сим),
формируют и сохраняют значения комплексных фазных токов в продольных сопротивлениях в каждом (ij+1)-ом участке линии по выражениям:
;
,
которые используют при формировании напряжений на следующем участке линии,
где:
- значения поперечных собственных и взаимных емкостных проводимостей половины участка i-j схемы замещения линии с одного конца линии (Сим);
- значения поперечных собственных и взаимных емкостных проводимостей половины участка i-j схемы замещения линии с другого конца линии (Сим);
- значения сформированных фазных токов в поперечных емкостных проводимостях в начале каждого ij-ого участка линии с одного конца линии (А);
- значения сформированных фазных токов в поперечных емкостных проводимостях в начале каждого ij-ого участка линии с другого конца линии (А);
- значения сформированных фазных токов в поперечных емкостных проводимостях в конце каждого ij-ого участка линии с одного конца линии (А);
- значения сформированных фазных токов в поперечных емкостных проводимостях в конце каждого ij-ого участка линии с другого конца линии (А), далее из сохраненных значений комплексных фазных токов и всех N участков выделяют модули, по которым строят графики с двух сторон линии с двумя осями зависимости модулей токов от номера участка, характеризующего расстояние, на которых точка пересечения графиков соответствует точке обрыва провода.



 

Похожие патенты:

Группа изобретений относится к электроизмерительной технике и может быть использована для определения местоположения обрыва в многожильном кабеле, не имеющем экранной оболочки, в частности геофизическом.

Предлагаемое изобретение относится к электроэнергетике и может быть использовано для определения места короткого замыкания на линиях электропередачи по замерам мгновенных значений токов и напряжений при несинхронизированных замерах с двух ее концов.

Изобретение относится к электроэнергетике и может быть использовано для определения места короткого замыкания в длинных линиях электропередач. Технический результат: снижение трудоемкости и повышение точности при определении места короткого замыкания за счет более полного учета параметров линий.

Изобретение относится к контрольно-измерительной технике, в частности к устройствам, предназначенным для контроля качества электрической энергии. Сущность: передающие линейные полукомплекты снабжены блоком сравнения напряжений передающих линейных полукомплектов.

Изобретение относится к электроэнергетике, а именно к релейной защите и автоматике распределительных сетей, работающих в режиме с изолированной нейтралью. Сущность: используется модель контролируемого фидера.

Изобретение относится к электротехнике, а именно к релейной защите и автоматике линий электропередачи, и может быть использовано при создании устройств защиты и автоматики, требующих высокой степени адаптации характеристик срабатывания к режимам защищаемого объекта.

Изобретение относится к области электротехники и электроэнергетики и может быть использовано для определения места повреждения в трехфазной линии электропередачи (ЛЭП) высокого и сверхвысокого напряжения.

Изобретение относится к защите подземных сооружений от коррозии и может быть использовано при контроле работы устройств катодной защиты от коррозии. Сущность: поиск места повреждения протяженного анодного заземлителя (ПАЗ) индукционным способом осуществляют в три этапа с использованием различных схем подключения источников переменного тока к ПАЗ и с использованием переменного тока с частотой ниже 128 Гц, исключая частоты 100 и 50 Гц.

Изобретение относится к области электрохимической защиты подземных трубопроводов. Способ включает выявление поврежденной секции протяженного анодного заземлителя (ПАТ), а затем нахождение места повреждения на секции, при этом к концу секции подключают низкочастотный генератор тока, работающий на частотах менее 100 Гц, с помощью измерителя и датчика индуктивности определяют положение ПАТ в грунте, поиск места обрыва производят при помощи измерения поперечного градиента потенциала поверхности земли между измерительными электродами, при этом первый электрод расположен над ПАТ, а второй электрод - на расстоянии не менее 7 м со стороны, противоположной защищаемому трубопроводу, перпендикулярно ходу движения, причем измерения проводят с шагом 1 м, при определении измерителем максимального сигнала устанавливают контрольный знак, далее генератор переключают на другой конец поврежденной секции ПАТ и проводят измерения в обратном направлении, а за место повреждения ПАТ принимают среднюю точку между двумя контрольными знаками, установленными в местах обнаружения максимальных значений измеренных сигналов.

Изобретение относится к обнаружению замыканий на землю в электрической сети. Сущность: способ включает обнаружение короткого замыкания на землю на основе измеренных трехфазных токов iA, iB и iC и получение момента времени t, соответствующего моменту времени, когда было только что обнаружено короткое замыкание на землю; определение того, является ли это короткое замыкание на землю однофазным коротким замыканием на землю или двухфазным коротким замыканием на землю, на основе трех инкрементных фазных токов ΔiA, ΔiB и ΔiC в момент времени t; и когда определено однофазное короткое замыкание на землю, определение того, является ли это короткое замыкание на землю коротким замыканием выше по линии или коротким замыканием ниже по линии, на основе амплитуды инкрементного фазного тока замкнутой фазы.

Изобретение относится к электроэнергетике и может быть использовано для определения места короткого замыкания, совмещенного с обрывом. Технический результат: снижение трудоемкости и повышение точности за счет более полного учета параметров линий. Сущность: на предварительной стадии формируют полную модель линии, в трехфазном виде с учетом взаимоиндуктивных и емкостных связей между проводами линий. При возникновении обрыва провода, совмещенного с коротким замыканием, измеряют и регистрируют значения комплексных фазных напряжений на шинах и фазных токов в линии. Далее формируют модель линии из равных участков, например от опоры до опоры, формируют и сохраняют напряжения и токи в конце каждого участка в каждой фазе, начиная от шин с одного и другого концов линии. Выделяют модули токов и напряжений в каждом участке в каждой фазе, начиная от шин с одного и другого концов линии. Получают для трех фаз три графика токов с одного конца и три графика токов с другого конца линии, три графика напряжений с одного конца и три графика напряжений с другого конца линии. По графикам токов выбирают график той фазы и с той стороны, у которого кривая выглядит как ломаная линия, соприкасающаяся в точке излома с осью расстояний. Эта точка является точкой обрыва провода. По графикам напряжений выбирают график той фазы и с той стороны, у которого кривая выглядит как ломаная линия, близко подходящая в точке излома к оси расстояний. Эта точка является точкой короткого замыкания, совмещенного с обрывом провода в случае переходного сопротивления, равного нулю. Если переходное сопротивление отлично от нуля, то точка излома будет смещена от точки короткого замыкания. В этом случае точка короткого замыкания уточняется по графикам напряжений неповрежденных фаз, где точка пересечения графиков соответствует точке короткого замыкания, совмещенного с обрывом провода. 7 ил.

Изобретение относится к электроэнергетике и может быть использовано для определения места короткого замыкания на длинных воздушных линиях электропередач с отпайкой. Сущность: предварительно формируют модель линии, в трехфазном виде с учетом взаимоиндуктивных и емкостных связей между проводами линий и емкостных связей между проводом и землей. При возникновении короткого замыкания измеряют и регистрируют значения комплексных фазных напряжений на шинах и фазных токов в линии до и в момент короткого замыкания. Разбивают модель линии на равные участки. Формируют и сохраняют предаварийные напряжения и токи в конце каждого участка в каждой фазе. Выделяют модули фазных напряжений в конце каждого участка в каждой фазе. Из сохраненных напряжений и токов выделяют значения комплексных предаварийных фазных напряжений и токов в известной точке расположения отпайки. Находят фазные токи отпайки как разницу фазных токов участков, примыкающих к отпайке с одного и с другого концов линии, и определяют делением фазных комплексных токов отпайки на фазные комплексные напряжения в узле отпайки фазные значения проводимостей отпайки, включающие в себя проводимости линии и трансформатора от отпайки до нагрузки и проводимости нагрузки отпайки. Получают значения измеренных при КЗ фазных напряжений на шинах и токов с двух концов линии из осциллограмм цифрового регистратора аварийных процессов. Формируют и сохраняют напряжения при КЗ в конце каждого участка в каждой фазе, начиная от шин с одного и другого концов линии. Формируют и сохраняют токи при КЗ в конце каждого участка в каждой фазе, начиная от шин с одного и другого концов линии. Выделяют модули фазных напряжений в конце каждого участка в каждой фазе, начиная от шин с одного и другого концов линии. По модулям напряжений при КЗ строят графики с осями с двух сторон зависимости модулей напряжений от номера участка (от расстояния). Точка пересечения графиков с одного и другого концов линии, отличная от точки отпайки, соответствует точке короткого замыкания. Технический результат: повышение точности места повреждения. 1 з.п. ф-лы.

Изобретение относится к электроизмерительной технике и может быть использовано для бесконтактного дистанционного контроля рабочего состояния опорных высоковольтных изоляторов. Технический результат: обеспечение возможности определения момента возникновения преддефектного состояния за счет выявления областей с повышенной напряженностью электрического поля и измерения градиентов напряженности электрического поля в этих областях с последующим выделением дефектов. Сущность: локацию областей с повышенной напряженностью электрического поля и измерение градиентов напряженности поля осуществляют электрооптическим датчиком контроля напряженности электрического поля по значению коэффициента отражения лазерного пучка от указанного датчика, которое пропорционально напряженности электрического поля. Предварительно электрооптический датчик градуируют путем внесения его в калиброванное переменное электрическое поле. Затем для каждого типа изоляторов, которые подлежат диагностике, определяют в ходе стендовых измерений усредненные значения напряженности переменных электрических полей, соответствующие рабочему высокому напряжению и предельные границы градиентов напряженности электрических полей, не создающих электрический пробой или перекрытие изоляторов. Электрооптический датчик, размещенный на диэлектрической штанге и соединенный через поляризационный дискриминатор и волоконный световод, с лазерным излучателем, а также с фотоприемником, сканируют по поверхности опорного высоковольтного изолятора. При этом регистрируют пространственное положение электрооптического датчика на поверхности изолятора и соответствующую ему напряженность электрического поля, измеряют нормальные и тангенциальные компоненты градиентов напряженности электрического поля. Затем пространственное распределение повышенных нормальных и тангенциальных к поверхности градиентов напряженности электрического поля сравнивают с ранее записанным распределением значений напряженности для эталонного изолятора и выделяют области возможных внутренних пробоев и поверхностных перекрытий в изоляторе путем выделения градиентов напряженности электрического поля, превышающих уровень, безопасный для нормального функционирования. 1 з.п. ф-лы, 2 ил.

Изобретение относится к электротехнике и электроэнергетике и может быть использовано для определения места повреждения линии электропередачи. Технический результат: повышение точности определения места повреждения линии электропередачи. Сущность: фиксируют электромагнитные волны, возникающие в месте повреждения и распространяющиеся к концам линии. В моменты достижения фронтами волн концов линии измеряют и фиксируют разность времени прихода фронтов электромагнитных волн к концам линии. Место повреждения определяют путем суммирования половинной длинны линии, половинного произведения разности времени прихода фронтов электромагнитных волн на скорость распространения электромагнитных волн, а также корректирующего коэффициента. Корректирующий коэффициент определяют как произведение половинной разности времени прихода электромагнитных волн на приращение скорости распространения электромагнитных волн. При этом приращения скорости распространения электромагнитных волн формируют по результатам обходов линии электропередачи, соответствующих ранее произошедшим повреждениям. 3 табл., 3 ил.
Группа изобретений относится к области техники по определению местоположения электрических повреждений, преимущественно на железнодорожном транспорте. Технический результат: возможность определения конкретного пути, секции, номера пути (и, или группы путей), где произошло короткое замыкание и (или) повреждение как на станции, так и на перегоне, а также возможность определения участка с нарушением проектного положения элементов линии электроснабжения. Сущность: короткое замыкание (КЗ) локально фиксируется на основе порогового принципа определения тока КЗ на токоведущих частях контактной сети, на расстоянии от них, или на спусках заземления опор или мостов, тоннелей, путепроводов, или вблизи токоведущих частей в зоне магнитного (электромагнитного) влияния, или на электроподвижном составе. Фиксируется отклонение элементов линии электроснабжения от проектного положения. Информация передается в пункт приема через ретранслятор, расположенный в любом удобном месте, который обслуживает группу датчиков в зоне радиовидимости, и далее по каналам связи до ближайшей станции, трансформаторной подстанции, поста секционирования, диспетчерского пункта. 2 н. и 9 з.п. ф-лы.

Изобретение относится к электроэнергетике и может быть использовано для определения места короткого замыкания на линиях электропередачи по измерениям с двух ее концов без использования эквивалентных параметров питающих систем. Технический результат: повышение точности определении места короткого замыкания. Сущность: измеряют с двух концов линии несинхронизированные по углам комплексные фазные токи и напряжения основной частоты в момент короткого замыкания, измеряют угол между одноименными напряжениями по концам линии, доворачивают векторы напряжений и токов на втором конце на измеренный угол, расчетным путем определяют относительное значение расстояния до места короткого замыкания с использованием фазных величин токов и напряжений и продольных и поперечных фазных и междуфазных параметров линии. 1 з.п. ф-лы, 3 ил.

Изобретение относится к электроэнергетике и может быть использовано для определения места короткого замыкания на линиях электропередачи с грозозащитным тросом по измерениям с двух ее концов. Технический результат: повышение точности определения места короткого замыкания. Сущность: измеряют с двух концов линии не синхронизированные по углам комплексные фазные токи и напряжения основной частоты в момент короткого замыкания, измеряют угол между одноименными напряжениями по концам линии, например, доворачивают векторы напряжений и токов на втором конце на измеренный угол, расчетным путем определяют относительное значение расстояния до места короткого замыкания с использованием величин емкостных фазных и междуфазных проводимостей, величин полных фазных и междуфазных сопротивлений линии с учетом троса при использовании токов и напряжений троса. 2 з.п. ф-лы, 3 ил.

Изобретение относится к электроэнергетике и может быть использовано для определения мест повреждения (короткого замыкания, обрыва фаз) последовательно на всех поврежденных фазных проводах линии электропередачи по измерениям с двух ее концов значений наведенных токов или напряжений. Сущность: способ включает определение постоянной времени затухания убывающей апериодической составляющей наведенного тока или действующих значений наведенных токов или напряжений с дальнейшим определением расстояния до места короткого замыкания. Технический результат: повышение точности определения места повреждения, что обусловлено учетом действительных параметров линии электропередачи, т.е. ее распределенной емкости, индуктивности и текущего активного сопротивления. 3 н. и 1 з.п. ф-лы.

Изобретение относится к электрифицированному транспорту и может использоваться в системах электроснабжения тяги переменного тока при двухстороннем питании и числе электрифицированных путей два и более для определения удаленности места короткого замыкания. Сущность: в момент короткого замыкания измеряют токи на смежных тяговых подстанциях соответственно, питающих контактную сеть межподстанционной зоны с коротким замыканием, и значение тока присоединения на тяговой подстанции , питающего контактную сеть того пути, на котором произошло короткое замыкание. Дополнительно измеряют значение тока присоединения на тяговой подстанции, питающего в этой межподстанционной зоне неповрежденную контактную сеть любого другого пути. Определяют расстояние до места повреждения путем реализации вычислительного алгоритма в виде соответствующего математического выражения. 3 н.п. ф-лы, 1 ил.

Изобретение относится к электрическим измерениям и предназначено для выявления дефектной изолирующей конструкции, например гирлянды изоляторов высоковольтной линии электропередачи, при осуществлении дистанционного контроля. заявленный способ оптического контроля состояния изолирующей конструкции, находящейся под напряжением, включает подключение к участку изолирующей конструкции электрического светового излучателя, яркость свечения которого зависит от падения напряжения на его электродах, регистрацию светового излучения, определение дефекта по интенсивности свечения излучателя. При этом для повышения достоверности дополнительно регулируют чувствительность излучателя путем подбора размеров электродов, включения подстроечного токоограничивающего резистора и изменения положения электродов в пространстве. Для индикации наличия электрических разрядов дополнительно к электронам индикатора подключают катушку индуктивности. Технический результат - повышение надежности и достоверности контроля состояния изолирующих конструкций. 1 з.п. ф-лы, 4 ил.
Наверх