Способ и устройство измерения электрической емкости



Способ и устройство измерения электрической емкости
Способ и устройство измерения электрической емкости

 


Владельцы патента RU 2593818:

Акционерное общество "Зеленоградский нанотехнологический центр" (RU)

Изобретение относится к области измерения электрических величин, а именно к измерению электрической емкости. Способ измерения электрической емкости заключается в измерении отношения напряжений на последовательно соединенных эталонной и измеряемой емкостях, заряжаемых от источника постоянного напряжения. Устройство для осуществления предлагаемого способа содержит измеряемую и эталонную емкости, АЦП и микропроцессор, обеспечивающий заряд и разряд емкостей, при этом дифференциальный измерительный вход АЦП соединен с выводами эталонной емкости, а дифференциальный вход опорного напряжения АЦП соединен с выводами измеряемой емкости. Технический результат заключается в повышении точности, быстродействия, улучшении линейности характеристик, а также увеличении температурной стабильности, при одновременном упрощении. 2 н.п. ф-лы, 2 ил.

 

Изобретение относится к области измерения электрических величин, а именно к измерению электрической емкости емкостных датчиков - давления, влажности, положения и других датчиков, у которых электрическая емкость является выходной характеристикой измеряемого физического параметра.

Известно устройство измерения электрической емкости [1], которое содержит два одновибратора, включенные по схеме кольцевого автогенератора, содержащие времязадающие RC-цепи с измеряемым и эталонным конденсатором, блок индикации с интегрирующим звеном на входе, сумматор, источник опорного напряжения и два перекидных ключа, входы которых соединены с выходами одновибраторов, а выходы - с входами интегрирующего звена. Устройство преобразует соотношение емкостей эталонного и измеряемого конденсаторов в выходное напряжение. Данное устройство не обеспечивает высокую точность измерения емкости.

Известно устройство и способ для измерения импеданса конденсатора [2]. Устройство содержит генератор синусоидального сигнала и два канала измерения импеданса эталонного резистора и измеряемого конденсатора. Каждый канал измерения импеданса содержит усилитель и АЦП. Выборки АЦП каждого канала фильтруются и подаются на ВУ, который вычисляет величину измеряемой емкости путем вычисления разности фазы между напряжением на эталонном резисторе и измеряемом конденсаторе на основании полученных цифровых выборок от АЦП. Недостатками устройства и способа являются сложная электрическая схема, которая состоит из многих компонент, а также сложный алгоритм вычисления емкости, требующий ВУ высокой производительности и разрядности.

Известно устройство измерения давления с емкостным датчиком в цепи обратной связи усилителя [3]. В устройстве использован вариант измерения электрической емкости на основе зарядового усилителя, в котором соотношение измеряемой емкости сенсора и опорной емкости преобразуется в сигнал напряжения. Недостатками устройства являются аналоговый способ формирования выходного сигнала, что усложняет линеаризацию, температурную компенсацию и калибровку датчика.

Известен способ и устройство измерения емкости на основе сигма-дельта модулятора [4]. Данный способ пригоден для измерения только малых емкостей, а устройство для его осуществления требует использования специализированных микросхем.

Известен способ измерения емкости [5], когда заряд конденсатора осуществляют от источника постоянного тока до определенного напряжения. Тогда время заряда определяет измеряемую емкость. Недостатками аналога являются необходимость использования прецизионного источника малого тока и большое время измерения, необходимое для заряда измеряемого конденсатора до заданного напряжения.

Из известных технических решений наиболее близким по назначению и технической сущности к заявленному техническому решению является способ и устройство измерения емкости [6], выбранный в качестве прототипа.

В выбранном прототипе способ измерения емкости включает в себя предварительный разряд измеряемой емкости, ее заряд от источника постоянного тока, обеспечивающий линейное изменение напряжения на измеряемой емкости, измерение разности напряжений и времени между двумя измерениями напряжения на линейном участке изменения напряжения на измеряемой емкости, вычисление значения емкости как произведения заданного тока заряда на разницу времени между двумя измерениями напряжения, деленного на разность измеренных напряжений.

Способ имеет следующие недостатки:

а) нелинейную зависимость выходного напряжения от измеряемой емкости;

б) большое время измерения, которое определяется суммой времен заряда емкости, измерения напряжения на емкости и ее разряда.

В выбранном прототипе устройство измерения емкости содержит входы подключения измеряемой емкости с цепями заряда и разряда в виде ключей, соединяющих измеряемую емкость с источником тока и землей, АЦП, соединенный со входом измеряемой емкости, микропроцессор, соединенный с АЦП, источник тока, соединенный со входами измеряемой емкости через цепь заряда, источник опорного напряжения АЦП. АЦП соединен со входом измеряемой емкости по входу измеряемого напряжения, а по входу опорного напряжения соединен с источником опорного напряжения. Управляющие выходы микропроцессора соединены с ключами цепей заряда и разряда измеряемой емкости.

Помимо вышеуказанных недостатков, устройство имеет следующие недостатки:

а) необходимость использования прецизионных источников тока и опорного напряжения;

б) наличие погрешности измерения емкости от изменения температуры и напряжения питания.

Задачей изобретения является измерение электрической емкости в широком диапазоне значений емкости с линейной шкалой, низкой погрешностью во всем диапазоне рабочих температур и напряжений питания, высоким быстродействием, а также упрощение электрической схемы устройства.

Поставленная задача решается благодаря тому, что в способе измерения электрической емкости, заключающемся в том, что измеряемую емкость разряжают через цепь разряда, заряжают через цепь заряда и проводят измерение напряжения заряда емкости, согласно изобретению дополнительно проводят измерение напряжения заряда на эталонной емкости, включенной последовательно с измеряемой емкостью, эталонную и измеряемую емкости разряжают путем их коммутации на землю, а заряжают постоянным напряжением, емкость измеряют по отношению напряжений заряда на эталонной и измеряемой емкостях с помощью АЦП, на дифференциальный измерительный вход которого подают напряжение с эталонной емкости, а на вход опорного напряжения подают напряжение с измеряемой емкости.

В устройстве для осуществления предложенного способа измерения электрической емкости, содержащем входы подключения измеряемой емкости, цепи заряда и разряда емкости, АЦП, соединенный со входом измеряемой емкости, микропроцессор, соединенный с выходом АЦП и цепями заряда и разряда емкости, согласно изобретению последовательно со входами измеряемой емкости дополнительно установлена эталонная емкость, соединенная цепью заряда с выводом выходного порта микропроцессора, точка соединения эталонной и входа измеряемой емкости соединена цепью разряда с выводом порта входа-выхода микропроцессора, дифференциальный измерительный вход АЦП соединен с эталонной емкостью, а вход опорного напряжения АЦП - с измеряемой емкостью.

Между совокупностью существенных признаков изобретения и достигаемым техническим результатом существует причинно-следственная связь, а именно линейность измерения емкости обеспечиваются за счет измерения отношения напряжений на эталонной и измеряемой емкостях, низкая погрешность измерения емкости в широком диапазоне значений рабочих температур и питающих напряжений обеспечиваются за счет того, что температурная погрешность измерений определяется только ТКС эталонной емкости и характеристиками АЦП, а от колебаний питающего напряжения измерения вообще не зависят, время измерения определяется только быстродействием АЦП, точность измерения определяется разрядностью АЦП, простая схемотехническая реализация устройства обеспечивается за счет того, что схема построена без использования прецизионных источников тока и опорного напряжения.

Техническая сущность предложенного решения поясняется чертежами. На фиг. 1 представлена схема способа измерения емкости, на фиг. 2 - схема устройства.

Предлагаемый способ измерения емкости поясняется схемой на фиг. 1, которая содержит входы подключения измеряемой емкости 1.1 и 1.2 и последовательно соединенную эталонную емкость 2. Имеются также цепь заряда с ключом 3, подающим напряжение заряда на емкости, и цепь разряда с ключами 4, 5, коммутирующие выводы емкостей на землю схемы. На схеме Uэт, Ux, U - напряжения соответственно на эталонной емкости, измеряемой емкости и напряжение заряда емкостей.

Измерение емкости выполняют в следующей последовательности:

а) разряжают емкости, подготавливая цикл измерения, при этом ключ 3 разомкнут, ключи 4, 5 - замкнуты на землю;

б) заряжают емкости напряжением U, при этом ключ 3 замкнут, ключи 4, 5 - разомкнуты;

в) измеряют соотношение напряжений Uэт и Ux на эталонной и измеряемой емкостях.

При заряде последовательно соединенных емкостей от приложенного напряжения U в соответствии с законом электростатической индукции заряды q на их обкладках будут равны. Распределение заряда произойдет таким образом, что отрицательная обкладка первой емкости получит заряд -q, а положительная обкладка второй получит заряд +q.

Из формулы для емкости

следует, что напряжение на каждой из емкостей, включенных последовательно, зависит от их емкости и полученного заряда:

Тогда соотношение напряжений на эталонной и измеряемой емкости позволяет вычислить значение измеряемой емкости по формуле

Соотношение напряжений на эталонной и измеряемой емкостях измеряется с помощью АЦП (на фиг. 1 не показан), дифференциальный измерительный вход которого соединен с эталонной емкостью, вход опорного напряжения - с измеряемой емкостью. При этом эталонная емкость Сэт выбирается больше измеряемой емкости Сх.

В этом случае код АЦП будет равен

где N - разрядность АЦП.

Значение измеряемой емкости определяется по формуле

Схема устройства для осуществления предлагаемого способа приведена на фиг. 2, которая содержит входы подключения измеряемой емкости 1.1 и 1.2, эталонную емкость 2, АЦП 6 и микропроцессор 7, соединенный по входу с АЦП 6, вывод выходного порта заряда микропроцессора 7 соединен с цепью заряда емкостей, вывод порта входа-выхода разряда микропроцессора 7 соединен с цепью разряда измеряемой емкости Сх и эталонной емкости. Выводы эталонной емкости 2 соединены с дифференциальным измерительным входом АЦП 6, вывод входа измеряемой емкости 1.1 - со входом опорного напряжения (Uоп) АЦП 6.

Работает устройство следующим образом. При разряде измеряемой емкости Сх и эталонной емкости 2 на выходах портов цепей заряда и разряда микропроцессора 7 устанавливают низкий уровень напряжения. При измерении выход порта цепи разряда микропроцессора 7 устанавливают в состояние входа, а на выходе цепи заряда устанавливают высокий уровень напряжения U, при котором измеряют отношение напряжений Uэт, Ux на измеряемой емкости Сх и эталонной емкости Сэт 2 с помощью АЦП 6, после чего микропроцессор 4 считывает данные с АЦП 3.

Техническо-экономической эффективностью изобретения является измерение емкости датчиков в широком диапазоне значений емкостей с высокой точностью, быстродействием, линейностью и стабильностью, а также простая схемотехническая реализация устройства.

Источники информации

1. Патент РФ 2308727.

2. Патент США 8452557.

3. Патент РФ 2319124.

4. Патент США 7683641.

5. Авторское свидетельство СССР №112262.

6. Патент США 6275047 - прототип.

1. Способ измерения электрической емкости, заключающийся в том, что измеряемую емкость разряжают через цепь разряда, заряжают через цепь заряда и проводят измерение напряжения заряда емкости, отличающийся тем, что дополнительно проводят измерение напряжения заряда на эталонной емкости, включенной последовательно с измеряемой емкостью, эталонную и измеряемую емкости разряжают путем их коммутации на землю, а заряжают постоянным напряжением, емкость измеряют по отношению напряжений заряда на эталонной и измеряемой емкостях с помощью АЦП, на дифференциальный измерительный вход которого подают напряжение с эталонной емкости, а на вход опорного напряжения подают напряжение с измеряемой емкости.

2. Устройство измерения электрической емкости, содержащее входы подключения измеряемой емкости, цепи заряда и разряда емкостей, АЦП, соединенный со входом измеряемой емкости, микропроцессор, соединенный с выходом АЦП и цепями заряда и разряда емкости, отличающееся тем, что последовательно со входом измеряемой емкости дополнительно установлена эталонная емкость, соединенная цепью заряда с выводом выходного порта микропроцессора, точка соединения эталонной и входа измеряемой емкостей соединена цепью разряда с выводом порта входа-выхода микропроцессора, дифференциальный измерительный вход АЦП соединен с эталонной емкостью, а вход опорного напряжения АЦП - со входом измеряемой емкости.



 

Похожие патенты:

Использование: для оценки свойств исследуемых областей, с использованием «мягкого поля». Сущность изобретения заключается в том, что способ включает: получение информации о приложенных входных сигналах и измеренных выходных сигналах для возбуждаемого объекта с использованием множества преобразователей; формирование матрицы полной проводимости на основе упомянутой информации о приложенных входных сигналах и измеренных выходных сигналах; определение множества моментов с использованием упомянутой матрицы полной проводимости и вычисление распределения свойств возбуждаемого объекта с использованием упомянутого множества моментов.

Изобретение относится к измерительной технике и может быть использовано для построения средств измерения физических величин с помощью емкостных датчиков. Измерительный преобразователь емкость-напряжение содержит емкостный датчик, переходной конденсатор, источник опорного напряжения, генератор импульсов, масштабный преобразователь, первый двухпозиционный переключатель, первый операционный усилитель с конденсатором в цепи обратной связи, опорный конденсатор, второй операционный усилитель с накопительным конденсатором в цепи обратной связи, второй двухпозиционный переключатель.

Изобретение относится к электроизмерительной техник, в частности к устройствам для контроля качества изоляции, характеризуемого ее пробивным напряжением, и может быть использовано в средствах для диагностики состояния изоляции асинхронного электродвигателя с короткозамкнутым ротором.

Изобретение относится к измерительной технике и предназначено для измерения диэлектрической проницаемости и влажности материалов при помощи устройства влагомер-диэлькометр, которое содержит электронный блок, измерительную ячейку и первичный преобразователь, представляющий собой отрезок длинной линии, образованный металлическим прутком и металлическим основанием, при этом измерительная ячейка конструктивно совмещена с первичным преобразователем и содержит детектор, подключенный непосредственно к входу первичного преобразователя.

Изобретение относится к измерению потенциала земли. Способ измерения электрического потенциала земли, включающий этапы: размещения измерительной пластины в непосредственной близости от земли, но с обеспечением электрохимического разделения указанной пластины и земли при помощи барьера, причем измерительная пластина имеет оперативную емкостную связь с землей; измерения электрического потенциала земли при помощи измерительной пластины; подачи первого сигнала, представляющего потенциал, измеренный измерительной пластиной, на усилитель, содержащий по меньшей мере один каскад; и сравнения потенциала, измеренного измерительной пластиной, с опорным напряжением.

Изобретение относится к измерительной технике, в частности к измерениям погонной емкости одножильного электрического провода в процессе его производства. Способ заключается в создании гармонического электрического поля между участком поверхности изоляции провода и заземленной электропроводящей жилой посредством помещенного в воду трубчатого измерительного преобразователя, через который перемещают контролируемый провод, с измерительным и двумя обеспечивающими однородность электрического поля на его краях дополнительными защитными электродами, измерении при известных амплитуде и частоте приложенного к электродам гармонического напряжения силы тока, протекающего через измерительный электрод, и суммарной силы тока, протекающего через все электроды измерительного преобразователя, и определении значения погонной емкости по формуле: где Ix - сила тока, протекающего через измерительный электрод; I1 - суммарная сила тока, протекающего через все электроды измерительного преобразователя; С0(I1) и k(I1) - экспериментально определенные функции тока I1.

Изобретение относится к измерительной технике и метрологии, а именно к технике измерения электрической емкости на постоянном электрическом токе, измеряемой путем счета электронов.

Изобретение относится к измерительной технике и предназначено для измерения физических параметров материала, в том числе и при экстремальных температурах. Способ включает в себя измерение напряжения зондирующего сигнала во входной цепи первичного преобразователя, заполняемого контролируемым материалом, причем первичный преобразователь выполнен в виде отрезка длинной линии.

Использование: для определения комплексной диэлектрической проницаемости материалов с помощью электромагнитных волн. Сущность изобретения заключается в том, что устройство содержит отрезок металлической волноводной линии передачи, плоскопараллельную пластину и дополнительно введены второй отрезок металлической волноводной линии передачи, снабженный фланцами с обоих концов, одинакового внутреннего поперечного сечения с первым отрезком металлической волноводной линии передачи, варакторный диод, внутренняя часть второго отрезка металлической волноводной линии передачи заполнена диэлектриком, плоскопараллельная пластина выполнена из металла и снабжена окном с размерами, равными размерам внутреннего поперечного сечения отрезка металлической волноводной линии передачи, металлические выводы варакторного диода и плоскопараллельная пластина разделены изолятором, плоскопараллельная пластина и фланец одного конца второго отрезка металлической волноводной линии передачи соединены между собой механически, длина второго отрезка металлической волноводной линии передачи кратна половине длины электромагнитной волны во втором отрезке металлической волноводной линии передачи с диэлектриком.

Техническое решение относится к измерительной технике и предназначено для измерения диэлектрической проницаемости и влажности материала. Способ включает в себя измерение напряжения зондирующего сигнала во входной цепи первичного преобразователя, заполняемого контролируемым материалом, причем первичный преобразователь выполнен в виде короткозамкнутого на конце отрезка длинной линии.

Устройство измерения остаточной емкости химического источника тока относится к области измерительной техники и может использоваться для перманентного контроля аккумуляторной батареи или химического источника тока (ХИТ) которые используются в автомобилях, электромобилях, складских электрокарах и в других бытовых и промышленных приборах, для которых источником энергии служит ХИТ, что позволит предотвратить непредвиденный выход ХИТ из строя. Новым в устройстве измерения остаточной емкости ХИТ является разделение устройства на два блока и упрощение конструкции, таким образом, что в первом блоке содержится конденсатор с ключом заряда который жестко крепиться как можно ближе к клеммам ХИТ для наименьшей длинны подводящих проводов, во втором блоке располагаются остальные компоненты устройства с индикатором, на который будет выводиться информация об остаточной емкости ХИТ. Устройство измерения остаточной емкости ХИТ состоит из конденсатора известной емкости, электронных управляемых ключей заряда и разряда, устройства выборки-хранения, делителя напряжения, микроконтроллера, пульта управления, фильтра нижних частот, индикатора на который выводиться остаточная емкость ХИТ. Запуск устройства производиться вручную или автоматически. При поступлении команды с пульта управления, микроконтроллер подает управляющий импульс на устройство выборки-хранения и запоминает значение электродвижущей силы ХИТ. С выхода устройства выборки-хранения величина напряжения поступает на вход модуля АЦП микроконтроллера и на делитель напряжения (с коэффициентом деления 0,9) с выхода которого напряжение поступает на вход микроконтроллера соответствующего входу первого компаратора. С выхода микроконтроллера поступает сигнал управления на электронный ключ заряда, после чего начинает заряжаться конденсатор и таймер начинает отсчет времени заряда конденсатора. На вход микроконтроллера соответствующего входу второго компаратора поступает напряжение с заряжаемого конденсатора. Второй компаратор срабатывает при достижении на его входе 0,9 уровня напряжения ХИТ и таймер фиксирует время заряда конденсатора. Далее микроконтроллер вносит поправку во время заряда конденсатора из-за влияния сопротивления ключа. Откорректированное значение времени заряда вводится в модуль ШИМ который формирует последовательность импульсов, длительность которых обратно пропорциональна времени заряда конденсатора. Импульсы, проходящие через фильтр нижних частот, формируют опорное напряжение для АЦП. Содержащаяся программа в микроконтроллере с алгоритмом обработки данных по завершению вычислений выводит информацию на индикатор, и микроконтроллер подает сигнал управления на электронный ключ разряда, и конденсатор разряжается, на этом завершается цикл измерения и устройство готово к новому измерительному циклу.

Изобретение относится к области измерительной техники и может быть использовано в различных областях промышленности, в частности, в приборостроении, с целью измерения постоянной времени саморазряда конденсаторов. Способ заключается в том, что к одному электроду исследуемого конденсатора подключают металлическую пластину 2, второй электрод конденсатора соединяют с землей. Параллельно металлической пластине помещают измеритель электростатического потенциала или измеритель напряженности электростатического поля с чувствительным элементом 4. Расстояние между пластиной и чувствительным элементом выбирается в зависимости от прилагаемого напряжения источника питания и диапазона измерений прибора. К конденсатору подключают источник питания с ключом. Кратковременно замкнув ключ, происходит заряд исследуемого конденсатора. Фиксируют показания измерителя, после чего размыкают ключ и проводят повторные измерения через некоторый промежуток времени, который задается оператором. Вычисляют постоянную времени саморазряда конденсаторов по формуле: где: τ - постоянная времени саморазряда конденсатора; t - временной интервал; A1 - начальное показание измерителя; A2 - конечное показание измерителя. Технический результат заключается в повышении точности измерения. 1 ил.

Изобретение относится к СВЧ-технике и может быть использовано для определения электрофизических параметров и неоднородностей диэлектрических покрытий на поверхности металла. Повышение быстродействия и надежности СВЧ-устройства для измерения электрофизических параметров, увеличение точности измерения и вероятности обнаружения неоднородностей покрытия является техническим результатом изобретения. СВЧ-устройство для измерения электромагнитных параметров диэлектрических и магнитодиэлектрических покрытий на металле состоит из последовательно соединенных генератора СВЧ, блока коммутации антенн, имеющего N-выходов, N-антенн возбуждения медленных поверхностных волн, размещенных в азимутальной плоскости по кругу, при этом n-выход блока коммутации, где , соединен с входом соответствующей антенны, приемной антенны Е-волн и приемной антенны Н-волн, а также из последовательно соединенных блока управления, блока синхронизации, механизма перемещения, взаимодействующих с приемными антеннами, а также блока обработки сигналов, при этом второй, третий и четвертый выходы блока управления соединены со входом СВЧ-генератора, вторым входом блока коммутации антенн, вторым входом механизма перемещения соответственно, а выходы приемных антенн соединены с первым и вторым входом блока обработки сигналов соответственно, при этом второй выход устройства синхронизации соединен с третьим входом блока обработки сигналов. 1 ил.
Наверх