Свч-устройство для измерения электрофизических параметров и обнаружения неоднородностей в диэлектрических и магнитодиэлектрических покрытиях на металле

Изобретение относится к СВЧ-технике и может быть использовано для определения электрофизических параметров и неоднородностей диэлектрических покрытий на поверхности металла. Повышение быстродействия и надежности СВЧ-устройства для измерения электрофизических параметров, увеличение точности измерения и вероятности обнаружения неоднородностей покрытия является техническим результатом изобретения. СВЧ-устройство для измерения электромагнитных параметров диэлектрических и магнитодиэлектрических покрытий на металле состоит из последовательно соединенных генератора СВЧ, блока коммутации антенн, имеющего N-выходов, N-антенн возбуждения медленных поверхностных волн, размещенных в азимутальной плоскости по кругу, при этом n-выход блока коммутации, где , соединен с входом соответствующей антенны, приемной антенны Е-волн и приемной антенны Н-волн, а также из последовательно соединенных блока управления, блока синхронизации, механизма перемещения, взаимодействующих с приемными антеннами, а также блока обработки сигналов, при этом второй, третий и четвертый выходы блока управления соединены со входом СВЧ-генератора, вторым входом блока коммутации антенн, вторым входом механизма перемещения соответственно, а выходы приемных антенн соединены с первым и вторым входом блока обработки сигналов соответственно, при этом второй выход устройства синхронизации соединен с третьим входом блока обработки сигналов. 1 ил.

 

Предлагаемое изобретение может быть использовано для определения электрофизических параметров и неоднородностей диэлектрических и магнитодиэлектрических покрытий на поверхности металла при разработке неотражающих и поглощающих покрытий в авиации, а также в химической, лакокрасочной и других отраслях промышленности.

Наиболее близким по технической сущности к предлагаемому изобретению является СВЧ-устройство для измерения электромагнитных параметров диэлектрических и магнитодиэлектрических покрытий на металле [Патент RU №2273839, C2 МПК7 G01N 15/00, G01R 33/00, 10.04.06. Бюл. №10], содержащее генератор СВЧ, устройство коммутации рупорных излучателей на основе вентилей на pin-диодах, антенну возбуждения медленных поверхностных волн, представляющую из себя N рупорных металлических излучателей размещенных в азимутальной плоскости по кругу и систему приемных антенн Е- и Н-волн.

Недостатком данного устройства для измерения электромагнитных параметров диэлектрических и магнитодиэлектрических покрытий на металле является низкая точность измерения электрофизических параметров покрытия и низкая вероятность обнаружения в них неоднородностей, обусловленные ошибками установки приемных антенн в заданные точки сканирования и отсутствием синхронизации начала регистрации сигнала с приемной антенны и начала ее перемещения в нормальной плоскости над поверхностью покрытия. Кроме того, для сканирования заданной области покрытия требуется значительное время, так как последовательная ориентация приемных антенн Е- и Н-волн в пределах заданной области сканирования и измерение значений сигнала с них осуществляется оператором.

Техническим результатом предлагаемого изобретения является повышение быстродействия и надежности устройства, увеличение точности измерения электрофизических параметров покрытия, вероятности обнаружения неоднородностей покрытия, а также расширение его функциональных возможностей.

Технический результат достигается тем, что в устройство для измерения электромагнитных параметров диэлектрических и магнитодиэлектрических покрытий на металле, состоящее из последовательно соединенных генератора СВЧ, блока коммутации антенн, имеющего N-выходов, а также N-антенн возбуждения медленных поверхностных волн, размещенных в азимутальной плоскости по кругу, при этом n-выход блока коммутации, где , соединен с входом соответствующей антенны, приемной антенны Е-волн и приемной антенны Н-волн, дополнительно введены последовательно соединенные блок управления, блок синхронизации, механизм перемещения, взаимодействующий с приемными антеннами, а также блок обработки сигналов, при этом второй, третий и четвертый выходы блока управления соединены со входом СВЧ-генератора, вторым входом блока коммутации антенн, вторым входом механизма перемещения соответственно, выходы приемных антенн соединены с первым и вторым входом блока обработки сигналов соответственно, а второй выход устройства синхронизации соединен с третьим входом блока обработки сигналов.

Схема устройства для измерения электрофизических параметров и обнаружения неоднородностей в диэлектрических и магнитодиэлектрических покрытиях на металле показана на фиг. 1, где введены следующие обозначения: 1 - генератор СВЧ, 2 - блок коммутации антенн, 3 - N-антенн возбуждения медленных поверхностных волн, размещенных в азимутальной плоскости по кругу, 4 - приемная антенна Е-волн, 5 - приемная антенна Н-волн, 6 - блок управления, 7 - блок синхронизации, 8 - механизм перемещения, 9 - блок обработки сигналов.

Блок управления предназначен для:

- автоматического переключения выходов блока коммутации антенн 2;

- автоматической установки рабочей частоты генератора СВЧ 1;

- формирования цифрового кода для включения блока синхронизации 8;

- формирования сигналов для автоматического управления механизмом перемещения 9.

Перед началом проведения измерений в блок управления 6 загружаются исходные данные: частота генератора СВЧ, координаты перемещения приемных антенн Е- и Н-волн в пределах каждой из N-антенн поверхностных волн, а также управляющая программа. Управляющая программа предназначена для автоматического управления работой устройства.

Блок управления может быть реализован на основе микроконтроллерных систем, например на основе микроконтроллера типа ATmega2560 [Рюмик С.М. 1000 и одна микроконтроллерная схема. Выпуск 2. М.: Издательский дом «Додэка-XXI». 2011].

Установка частоты генератора СВЧ 1 может быть осуществлена, например, путем подачи цифрового кода соответствующего заданной частоте с микроконтроллера блока управления 6, на управляющие регистры генератора СВЧ 1 [Direct Modulation / Generating. 6,1 GHz Fractional-N Frequency Synthesizer. [Электронный ресурс] URL: http://www.analog.com/media/en/technical-documentation/data-sheets/ADF4158.pdf (Дата обращения: 14.04.2015)]. Генератор СВЧ может быть построен на основе микросхем типа HMC586LC4B и ADF4158.

Автоматическое переключение выходов блока коммутации антенн 2 может быть осуществлено, например, путем подачи цифрового кода, соответствующего заданному выходу, с блока управления 6.

При этом блок коммутации антенн может быть реализован на основе дешифратора с использованием микросхем типа SN74LS145N. Соединение микроконтроллера блока управления 6 с блоком коммутации антенн 2 может быть осуществлено, например, путем сопряжения микроконтроллера блока управления 6 с дешифратором блока коммутации антенн 2 по одному из вариантов схем, приведенных в [Рюмик С.М. 1000 и одна микроконтроллерная схема. Выпуск 2. М.: Издательский дом «Додэка-ХХ1». 2011. С. 210-212].

Механизм перемещения предназначен для перемещения приемных антенн Е- и Н - волн в трехмерной системе координат в заданной области сканирования. Измерение электрического поля антеннами Е- и Н-волн поверхностной волны может быть осуществлено по принципам измерения поля в дальней зоне передающей антенны [Цейтлин Н.М. Методы измерения характеристик антенн СВЧ. М.: Радио и связь, 1985. С. 71-90].

При этом механизм перемещения может быть реализован, например, на основе системы из трехшаговых двигателей. Каждый из них перемещает приемную антенну Е- и Н-волн по координатам X, Y, Z соответственно [Дж. Вильямс. Программируемые роботы. Создаем робота для своей домашней мастерской. М.: NT Press, 2006. С. 127-167]. Механизм перемещения приемных антенн может быть построен на основе шаговых электродвигателей типа High-Resolution Type РК246РВ фирмы Orientalmotor и микросхем L297, L298N и LMD18T245.

Управление шаговыми двигателями механизма перемещения 8 с блока управления 6 может быть реализовано путем подачи управляющих сигналов с портов ввода-вывода микроконтроллера блока управления 6 [Рюмик СМ. 1000 и одна микроконтроллерная схема. Выпуск 2. М.: Издательский дом «Додэка-ХХ1». 2011. С. 176-178].

Блок обработки сигналов 9 предназначен для измерения значений напряженности поля поверхностной волны с выходов приемных антенн Е и Н-волн в пределах заданных координат сканирования; сохранения полученных значений в массив напряженностей поля поверхностной волны, вычисления на основе полученного массива коэффициентов затухания αj поля поверхностной волны, дисперсии коэффициентов затухания Dα и определение на их основе по известным алгоритмам электрофизических параметров, обнаружение и оценка неоднородностей покрытия [Федюнин П.А., Казьмин А.И. Способы радиоволнового контроля параметров защитных покрытий авиационной техники. М: Физматлит, 2013; Свидетельство об официальной регистрации программ для ЭВМ №2009611261 Российская Федерация. Определение параметров диэлектрических и магнитодиэлектрических покрытий на основе многопараметрической обработки пространственно-временной структуры электромагнитного поля поверхностной медленной волны зарегистрировано в Реестре программ для ЭВМ 27.02.2009].

Блок обработки сигналов может быть реализован, например, на основе детекторных СВЧ-диодов, аналогово-цифрового преобразователя, микроконтроллера и персональной электронной вычислительной машины (ПЭВМ) [Branislav Korenko и Marek Cerny. Автономный цифровой вольтметр на многоканальном АЦП. Электронный журнал Радиолоцман, ноябрь 2012. С. 67-70. URL: http://www.rlocman.ru/book/book.html?di=144227. (Дата обращения: 14.04.2015)].

Блок синхронизации 7 предназначен для одновременного включения в работу аналогово-цифрового преобразователя блока обработки сигналов 9 и механизма перемещения приемных антенн 8. Блок синхронизации, например, может быть реализован на основе микроконтроллера. При этом синхронизация осуществляется путем одновременной подачей цифрового кода с портов ввода-вывода микроконтроллера блока управления 6 на механизм перемещения 8 и блок обработки сигналов 9. Одновременная подача сигналов на порты ввода-вывода микроконтроллера устройства синхронизации 7 осуществляется на основе собственного внутреннего тактового сигнал [Белов А.В. Самоучитель разработчика устройств на микроконтроллерах AVR. М.: Наука и техника, 2008. С. 358-363].

Предлагаемое устройство для измерения электрофизических параметров и обнаружения неоднородностей в диэлектрических и магнитодиэлектрических покрытиях на металле работает следующим образом.

Перед началом проведения измерений в блок управления 6 загружаются исходные данные: частота генератора СВЧ, координаты перемещения приемных антенн Е- и Н-волн в пределах каждой из N-антенн поверхностных волн, а также управляющая программа. Начинается последовательное выполнение управляющей программы блоком управления 6.

Производится установка рабочей частоты генератора СВЧ 1, путем подачи цифрового кода, соответствующего заданной частоте с блока управления 6 на управляющие регистры генератора СВЧ 1.

Производится активизация первого выхода блока коммутации антенн путем подачи цифрового кода, соответствующего первому выходу, с блока управления 6. При этом первая из N-антенн поверхностных волн включается в работу.

Первой из N-антенн поверхностных волн производится возбуждение Е-волны поверхностной электромагнитной волны в слое исследуемого покрытия на длине волны λ1. Блок синхронизации 8 формирует цифровой код для синхронизированного одновременного включения в работу блока обработки сигналов 6 и механизма перемещения 9. Это позволяет синхронизировать момент начала перемещения приемной антенны Е-волн и начала измерения ей информативного сигнала, пропорционального напряженности поля поверхностной медленной волны. Производится перемещение приемной антенны Е-волн с помощью управляющих сигналов с блока управления 6 механизмом перемещения 8, в пределах заданных координат сканирования первой из N-антенн поверхностных волн и измерение ей при этом напряженности поля поверхностной волны.

Сигнал, пропорциональный напряженности поля поверхностной волны, с приемной антенны Е-волн поступает на второй вход блока обработки сигналов, где производится детектирование СВЧ-сигнала, пропорционального напряженности поля поверхностной волны, преобразование его в цифровой код и сохранение полученных значений в массив напряженностей поля поверхностной Е-волны на длине волны λ1.

В блоке управления 6 проверяется, во всех ли заданных координатах в пределах первой из N-антенн поверхностных волн проведены измерения с помощью антенны Е-волн 4, путем сравнения координат перемещения антенны, загруженных в блок управления перед началом измерения, с текущими координатами антенны в процессе проведения измерений.

Если измерения в пределах первой из N-антенн поверхностных волн в заданных координатах завершены, то производится возбуждение поверхностной Е-волны на длине волны λ2 и повторяется алгоритм, рассмотренный выше, только для длины волны λ2.

После полного сканирования поверхности в пределах первой из N-антенн поверхностных волн в заданных координатах на длине волны λ2 производится возбуждение поверхностной Н-волны на длине волны λ3, и повторяется алгоритм, рассмотренный выше, только для длины волны λ3 и при этом измерения проводятся антенной Н-волн 5.

Далее производится активизация второго выхода блока коммутации антенн путем подачи цифрового кода, соответствующего второму выходу, с блока управления 6. При этом вторая из N-антенн поверхностных волн включается в работу, а первая отключается и повторяется алгоритм работы управляющей программы, рассмотренный выше, только для второй антенны возбуждения поверхностных волн.

Аналогично активизацией выходов блока коммутации антенн производится последовательное включение остальных N-антенн поверхностных волн.

Алгоритм работы устройства для каждой из N антенн поверхностных волн аналогичен рассмотренным выше.

После полного выполнения управляющей программы блоком управления 6 на основе массива, сохраненного в блоке обработки сигналов 9, вычисляются значения коэффициентов затухания αj поля поверхностной волны, дисперсии коэффициентов затухания Dα, и на их основе определяются электрофизические параметры, и производится обнаружение и оценка неоднородностей покрытия.

Таким образом, используется синхронизированное аппаратно-программное управление процессом измерения напряженности поля поверхностной волны, что позволяет повысить быстродействие и надежность устройства, расширить его функциональные возможности, а также увеличить точность измерения электрофизических параметров покрытия и вероятность обнаружения в нем неоднородностей.

СВЧ-устройство для измерения электрофизических параметров и обнаружения неоднородностей в диэлектрических и магнитодиэлектрических покрытиях на металле, состоящее из последовательно соединенных генератора СВЧ, блока коммутации антенн, имеющего N-выходов, а также N-антенн возбуждения медленных поверхностных волн, размещенных в азимутальной плоскости по кругу, при этом n-выход блока коммутации, где , соединен с входом соответствующей антенны, приемную антенну E-волн и приемную антенну H-волн, отличающееся тем, что дополнительно введены последовательно соединенные блок управления, блок синхронизации, механизм перемещения, взаимодействующий с приемными антеннами, а также блок обработки сигналов, при этом второй, третий и четвертый выходы блока управления соединены со входом СВЧ-генератора, вторым входом блока коммутации антенн, вторым входом механизма перемещения соответственно, выходы приемных антенн соединены с первым и вторым входом блока обработки сигналов соответственно, а второй выход устройства синхронизации соединен с третьим входом блока обработки сигналов.



 

Похожие патенты:

Изобретение относится к области измерительной техники и может быть использовано в различных областях промышленности, в частности, в приборостроении, с целью измерения постоянной времени саморазряда конденсаторов.

Устройство измерения остаточной емкости химического источника тока относится к области измерительной техники и может использоваться для перманентного контроля аккумуляторной батареи или химического источника тока (ХИТ) которые используются в автомобилях, электромобилях, складских электрокарах и в других бытовых и промышленных приборах, для которых источником энергии служит ХИТ, что позволит предотвратить непредвиденный выход ХИТ из строя. Новым в устройстве измерения остаточной емкости ХИТ является разделение устройства на два блока и упрощение конструкции, таким образом, что в первом блоке содержится конденсатор с ключом заряда который жестко крепиться как можно ближе к клеммам ХИТ для наименьшей длинны подводящих проводов, во втором блоке располагаются остальные компоненты устройства с индикатором, на который будет выводиться информация об остаточной емкости ХИТ. Устройство измерения остаточной емкости ХИТ состоит из конденсатора известной емкости, электронных управляемых ключей заряда и разряда, устройства выборки-хранения, делителя напряжения, микроконтроллера, пульта управления, фильтра нижних частот, индикатора на который выводиться остаточная емкость ХИТ.

Изобретение относится к области измерения электрических величин, а именно к измерению электрической емкости. Способ измерения электрической емкости заключается в измерении отношения напряжений на последовательно соединенных эталонной и измеряемой емкостях, заряжаемых от источника постоянного напряжения.

Использование: для оценки свойств исследуемых областей, с использованием «мягкого поля». Сущность изобретения заключается в том, что способ включает: получение информации о приложенных входных сигналах и измеренных выходных сигналах для возбуждаемого объекта с использованием множества преобразователей; формирование матрицы полной проводимости на основе упомянутой информации о приложенных входных сигналах и измеренных выходных сигналах; определение множества моментов с использованием упомянутой матрицы полной проводимости и вычисление распределения свойств возбуждаемого объекта с использованием упомянутого множества моментов.

Изобретение относится к измерительной технике и может быть использовано для построения средств измерения физических величин с помощью емкостных датчиков. Измерительный преобразователь емкость-напряжение содержит емкостный датчик, переходной конденсатор, источник опорного напряжения, генератор импульсов, масштабный преобразователь, первый двухпозиционный переключатель, первый операционный усилитель с конденсатором в цепи обратной связи, опорный конденсатор, второй операционный усилитель с накопительным конденсатором в цепи обратной связи, второй двухпозиционный переключатель.

Изобретение относится к электроизмерительной техник, в частности к устройствам для контроля качества изоляции, характеризуемого ее пробивным напряжением, и может быть использовано в средствах для диагностики состояния изоляции асинхронного электродвигателя с короткозамкнутым ротором.

Изобретение относится к измерительной технике и предназначено для измерения диэлектрической проницаемости и влажности материалов при помощи устройства влагомер-диэлькометр, которое содержит электронный блок, измерительную ячейку и первичный преобразователь, представляющий собой отрезок длинной линии, образованный металлическим прутком и металлическим основанием, при этом измерительная ячейка конструктивно совмещена с первичным преобразователем и содержит детектор, подключенный непосредственно к входу первичного преобразователя.

Изобретение относится к измерению потенциала земли. Способ измерения электрического потенциала земли, включающий этапы: размещения измерительной пластины в непосредственной близости от земли, но с обеспечением электрохимического разделения указанной пластины и земли при помощи барьера, причем измерительная пластина имеет оперативную емкостную связь с землей; измерения электрического потенциала земли при помощи измерительной пластины; подачи первого сигнала, представляющего потенциал, измеренный измерительной пластиной, на усилитель, содержащий по меньшей мере один каскад; и сравнения потенциала, измеренного измерительной пластиной, с опорным напряжением.

Изобретение относится к измерительной технике, в частности к измерениям погонной емкости одножильного электрического провода в процессе его производства. Способ заключается в создании гармонического электрического поля между участком поверхности изоляции провода и заземленной электропроводящей жилой посредством помещенного в воду трубчатого измерительного преобразователя, через который перемещают контролируемый провод, с измерительным и двумя обеспечивающими однородность электрического поля на его краях дополнительными защитными электродами, измерении при известных амплитуде и частоте приложенного к электродам гармонического напряжения силы тока, протекающего через измерительный электрод, и суммарной силы тока, протекающего через все электроды измерительного преобразователя, и определении значения погонной емкости по формуле: где Ix - сила тока, протекающего через измерительный электрод; I1 - суммарная сила тока, протекающего через все электроды измерительного преобразователя; С0(I1) и k(I1) - экспериментально определенные функции тока I1.

Изобретение относится к измерительной технике и метрологии, а именно к технике измерения электрической емкости на постоянном электрическом токе, измеряемой путем счета электронов.

Предлагаемое устройство относится к области подповерхностной радиолокации с использованием сверхширокополосных сигналов, а именно к устройствам определения расположения и формы неоднородностей и включений в строительных конструкциях и сооружениях и может найти применение в следующих областях: контрразведывательной деятельности по выявлению подслушивающих устройств; оперативно-розыскной деятельности правоохранительных органов; зондировании строительных конструкций с целью определения положения арматуры, пустот и других неоднородностей; зондировании особо важных строительных конструкций (взлетно-посадочных полос, аэродромов, стартовых площадок для запуска ракет, мостов, переходов, тоннелей метрополитена, вокзалов, стадионов, бассейнов и т.д.) с целью определения скрытых дефектов в них; зондировании завалов и разрушений после землетрясений, террористических взрывов и взрывов газа в процессе поисково-спасательных работ с целью обнаружения живых людей под завалами и оперативного оказания им помощи.

Устройство (1) конвейерной транспортировки содержит конвейер (3, 3.5, 5) с конвейерным элементом (3.1, 3.51, 5.1). Датчик (10) предусмотрен для регистрации поверхности конвейера.

Предложена сенсорная система для анализа свойств диэлектрического материала с помощью радиочастотного сигнала, содержащая материал (30), который сформирован из матрицы и множества частиц (40), не обладающих свойствами изолятора и, по существу, равномерно распределенных внутри матрицы таким образом, что материал по меньшей мере в одном направлении обладает когерентной электрической периодичностью.

Изобретение относится к области дефектоскопии с использованием сверхвысоких частот, а именно к способам определения дефектов теплозащитных и теплоизоляционных покрытий изделий ракетно-космической техники.

Изобретение относится к измерительной технике, а именно к способу определения электропроводности и толщины слоя полупроводника на поверхности диэлектрика, и может найти применение в различных отраслях промышленности при контроле свойств полупроводниковых слоев.

Изобретение относится к способам определения неоднородностей электрофизических и геометрических параметров диэлектрических и магнитодиэлектрических покрытий на поверхности металла и может быть использовано при контроле состава и свойств твердых покрытий на металле, при разработке неотражающих и поглощающих покрытий.

Изобретение относится к области неразрушающего контроля материалов и изделий. .

Изобретение относится к области неразрушающего контроля изделий и может быть использовано для дефектоскопии магистральных трубопроводов, заполненных газом, нефтью, нефтепродуктами под давлением.

Изобретение относится к области обнаружения локальных дефектов в проводниках с использованием акустической эмиссии и может найти применение для выявления скрытых локальных дефектов в различных металлических конструктивных элементах, находящихся в статическом состоянии или в процессе движения.

Изобретение относится к способу определения неоднородностей электрофизических и геометрических параметров диэлектрических и немагнитных покрытий на поверхности металла и может быть использовано при контроле качества твердых покрытий на металле в процессе разработки и эксплуатации неотражающих и поглощающих покрытий, а также в химической, лакокрасочной и других отраслях промышленности. Техническим результатом изобретения является повышение вероятности обнаружения неоднородностей за счет определения порогового значения коэффициента затухания напряженности поля медленной поверхностной E-волны применительно к индивидуальным характеристикам исследуемого покрытия. Указанный технический результат достигается тем, что в известном СВЧ способе обнаружения неоднородностей в диэлектрических покрытиях на металлической подложке, заключающемся в создании электромагнитного поля медленной поверхностной E-волны над диэлектрическим покрытием на электропроводящей подложке и последующей регистрации изменения параметров, характеризующих высокочастотное поле, при расчете коэффициента затухания α напряженности поля медленной поверхностной E-волны в нормальной плоскости относительно ее направления распространения в разнесенных точках и определении границ неоднородностей, предварительно измеряют действительную часть диэлектрической проницаемости ε′ и толщину b эталонного образца покрытия, по которым определяют пороговое значение коэффициента затухания напряженности поля медленной поверхностной Е-волны α0, при этом сравнивают в каждой точке измерений сканируемой поверхности покрытия текущее значение коэффициента затухания напряженности поля поверхностной медленной волны α с пороговым значением коэффициента затухания α0, и если α<α0, то принимают решение о наличии отслоения покрытия d в данной точке. 1 ил.
Наверх