Антенная решетка с частотным сканированием

Изобретение относится к сверхвысокочастотной радиотехнике. Особенностью заявленной антенной решетки с частотным сканированием является то, что антенная решетка выполнена в виде трех механически сочленяемых плит, в первой и с одной стороны второй плитах методом фрезерования на глубину в полширины волноводного канала выполнены каналы змейкового волновода, а с другой стороны второй и третьей плитах - каналы волноводно-щелевых линеек, электрическая связь змейкового волновода с волноводно-щелевыми линейками осуществляется через элементы связи волноводных каналов направленных ответвителей в общей узкой стенке двух волноводов, причем элементы связи в направленных ответвителях выполнены в виде наклонных щелей, а щелевые излучатели в линейках выполнены в виде прямых щелей, возбуждаемых U-образными проводниками полуволновой длины. Техническим результатом является применение антенной решетки в широком диапазоне длин волн. 6 ил.

 

Изобретение относится к сверхвысокочастотной (СВЧ) радиотехнике, а именно к конструкции антенной решетки с частотным сканированием, которая может быть использована в радиолокации, радионавигации и других радиотехнических системах.

Известные и широко используемые на практике конструкции антенных решеток с частотным сканированием («Сканирующие антенные системы СВЧ» т. III, стр. 156-242, перевод с английского, изд. «Сов. радио», 1967 г.; Д.Н. Воскресенский «Устройства СВЧ и антенны», стр. 313-355, изд. «Радиотехника», 2006 г.), как правило, состоят из двух основных узлов: многоканального делителя мощности последовательного типа, к выходам которого подключены линейки волноводно-щелевых излучателей. Делитель мощности формирует диаграмму направленности антенны и обеспечивает ее сканирование в вертикальной плоскости за счет изменения рабочей частоты. Волноводно-щелевые линейки формируют диаграмму направленности антенны в горизонтальной плоскости. При этом обзор пространства в горизонтальной (азимутальной) плоскости обеспечивается за счет механического вращения антенны вокруг вертикальной оси.

Конструктивно делитель мощности часто выполняется в виде синусоидального (змейкового) волновода, свернутого в Е-плоскости, с периодической системой волноводных или коаксиальных выходов. Применительно к дециметровому диапазону длин волн наилучшими характеристиками обладают делители мощности, в которых в качестве элементов связи используются направленные ответвители, например волноводно-полосковые с коаксиальными выходами (Патент РФ №2249889, патент РФ №2250540).

Однако практическая реализация делителя мощности с использованием волноводно-коаксиальных направленных ответвителей в сантиметровом диапазоне длин волн оказывается весьма затруднительной из-за малости сечения волноводного канала.

Волноводно-щелевые линейки обычно выполняются с использованием готового волновода стандартного сечения, в одной из узких стенок которого с шагом в половину длины волны в волноводе прорезаны переменно-наклонные щели.

Однако использование в волноводно-щелевых линейках переменно-наклонных щелевых излучателей обуславливает образование в диаграмме направленности антенны так называемых кроссполяризационных лепестков, уровень которых достигает до минус 13 дБ (-13 дБ) относительно основного максимума. Поэтому антенны с частотным сканированием с использованием наклонно-щелевых излучателей имеют низкий коэффициент полезного действия (КПД) и не обладают требуемой помехозащищенностью.

Основной целью данного изобретения является создание конструкции антенной решетки с частотным сканированием, удовлетворяющей современным требованиям по электрическим параметрам и пригодной для практической реализации в широком диапазоне длин волн, и прежде всего в сантиметровом диапазоне.

Для достижения поставленных целей предлагается конструкция антенной решетки с частотным сканированием, содержащей N-канальный делитель мощности с периодической системой направленных ответвителей и N-oe число волноводно-щелевых линеек, выполнена в виде трех механически сочленяемых плит, в первой и с одной стороны второй плитах методом фрезерования на глубину в полширины волноводного канала выполнены каналы змейкового волновода, а с другой стороны второй и третьей плитах - каналы волноводно-щелевых линеек, электрическая связь змейкового волновода с волноводно-щелевыми линейками осуществляется через элементы связи волноводных каналов направленных ответвителей в общей узкой стенке двух волноводов, причем элементы связи в направленных ответвителях выполнены в виде наклонных щелей, а щелевые излучатели в линейках выполнены в виде прямых щелей, возбуждаемых U-образными проводниками полуволновой длины.

Предлагаемая антенная решетка с частотным сканированием подробно иллюстрируется на фиг. 1-6.

На фиг. 1 и 2 показана конструкция предлагаемой антенной решетки в двух проекциях.

На фиг. 3 и 4 приведены электродинамическая модель волноводно-щелевого направленного ответвителя и зависимость коэффициента связи Кс от переменного параметра - угла наклона щели α относительно вертикальной оси.

На фиг. 5 и 6 представлены электродинамическая модель волноводно-щелевого излучателя, возбуждаемого петлеобразым проводником, и зависимость коэффициента излучения Ки от угла наклона плоскости проводника к оси волновода β.

Конструктивно предлагаемая антенная решетка с частотным сканированием (см. фиг. 1) состоит (см. фиг. 2) из трех механически сочленяемых плит 1, 2 и 3. В плитах 1 и 2 методом фрезерования на глубину в полширины волновода выполнены каналы 4 и 5 змейкового волновода 6, свернутого в Е-плоскости волновода, а в плитах 2 и 3 - каналы 7 и 8, образующие волноводно-щелевые линейки 9. Волноводный вход 10 делителя мощности, имеющий стандартное сечение а×в, согласуется со змейковым волноводом 6 сечением а′×в′ посредством ступенчатого перехода 11.

Высота волноводного канала делителя в′, ширина а′ и длина одного полного витка змейкового волновода lв определяются расчетами электродинамической модели на компьютере с учетом предъявляемых требований к электрическим параметрам антенны с частотным сканированием: диапазону рабочих частот, допустимую КСВН на входе, сектору сканирования в вертикальной плоскости и уровню боковых лепестков. Электрическая связь змейкового волновода 6 с волноводно-щелевыми линейками 9 осуществляется через щели 12, прорезанные в общей узкой стенке 13 двух волноводов. Для обеспечения направленной связи щели 12 разнесены на расстояние d1=0,25λв (где λв - средняя длина волны в змейковом волноводе). Для взаимной компенсации отражений от четных и нечетных направленных ответвителей, они также смещены на расстояние d2=0,25λв. Для компенсации отражений от изгибов змейкового волновода длина одного полного витка Lв выбрана равной нечетному числу полуволн

Lв=0,5λв(2к+1),

где к - любое целое число, определяемое с учетом требуемого сектора сканирования антенны в вертикальной плоскости.

Деление мощности, поступающей на вход 10 антенны, между волноводно-щелевыми линейками 9 определяется требуемой диаграммой направленности антенны в вертикальной плоскости (точнее, допустимым уровнем боковых лепестков) и обеспечивается размерами щелей 12, их количеством и углом наклона αп, где п - порядковый номер канала делителя и линейки,

Требуемые углы наклона αп щелей могут быть определены по графику, приведенному на фиг. 4, полученному расчетами на компьютере матрицы рассеяния электродинамической модели волноводно-щелевого ответвителя.

Диаграмма направленности антенной решетки в горизонтальной плоскости определяется амплитудно-фазовым распределением излучения из щелей 14 линеек. Для устранения в диаграмме направленности антенны нежелательных кроссполяризационных лепестков щелевые излучатели 14 в волноводно-щелевых линейках 9 ориентированы перпендикулярно продольной оси волновода, а их возбуждение осуществляется U-образными проводниками 15 примерно полуволновой длины.

Конструкция и размеры волноводно-щелевых линеек 9 (сечение волноводного канала, число и размеры излучающих щелей 14, размеры и ориентация U-образных проводников 15) определяются требуемой диаграммой направленности антенны в горизонтальной плоскости. Ширину волноводного канала а″ линейки целесообразно выбрать равной ширине волноводного канала делителя мощности (а″=а′), а высоту b″ - с учетом оптимальной длины щели, которая, примерно, равна половине средней длины волны λ0. Для устранения резонанса отражений в пределах рабочего диапазона частот расстояния между щелями d3 целесообразно выбрать из условия d3вн, где λвн - длина волны в волноводе, соответствующая нижней частоте рабочего диапазона частот.

Коэффициент излучения Кизл прямой щели 14 определяется углом наклона β плоскости проводника 15 к продольной оси волновода. Оптимальная длина l проводника 15 примерно равна половине средней длине волны свободного пространства λ0. При постоянных размерах ширины S щелей 14, диаметра d проводников 15 коэффициент излучения из щели Кизл=10lg Р31 будет определяться только углом наклона β.

Для обеспечения синфазности излучений четными и нечетными линейками (с учетом противофазности выходов делителя) плоскости проводников 15, определяемые углами βп в четных и нечетных линейках, ориентированы в противоположные стороны.

На фиг. 6 приведена примерная зависимость коэффициента излучения Кизл из щели (см. фиг. 5) в зависимости от угла наклона β плоскости проводника к продольной оси волновода.

Антенная решетка с частотным сканированием также включает в себя поглощающие нагрузки (16 и 17): 16 - устанавливаемые в развязанных плечах делителя и на конце волноводно-щелевых линеек и 17 - на конце делителя, а также диэлектрические пластины 18, закрывающие щелевые излучатели 14. В качестве поглощающих нагрузок 16 и 17 могут быть использованы клинообразные нагрузки из СВЧ поглотителя типа ферроэпоксид или кремний-керамит, а диэлектрические пластины 18 - из радиопрозрачного материала (фторопласт-4 или стеклотекстолит).

Антенная решетка с частотным сканированием, содержащая N-канальный делитель мощности с периодической системой направленных ответвителей и N-oe число волноводно-щелевых линеек, отличающаяся тем, что антенная решетка выполнена в виде трех механически сочленяемых плит, в первой и с одной стороны второй плитах методом фрезерования на глубину в полширины волноводного канала выполнены каналы змейкового волновода, а с другой стороны второй и третьей плитах - каналы волноводно-щелевых линеек, электрическая связь змейкового волновода с волноводно-щелевыми линейками осуществляется через элементы связи волноводных каналов направленных ответвителей в общей узкой стенке двух волноводов, причем элементы связи в направленных ответвителях выполнены в виде наклонных щелей, а щелевые излучатели в линейках выполнены в виде прямых щелей, возбуждаемых U-образными проводниками полуволновой длины.



 

Похожие патенты:

Изобретение относится к радиотехнике и может использоваться для приёма широкополосных сигналов, например, в системе сбора телеметрической информации от бортовой аппаратуры космических аппаратов.

Изобретение относится к вибраторным фазированным антенным решеткам. Особенностью заявленной антенной системы является то, что вторая линейка вибраторов, расположенных под первой линейкой на расстоянии d=λср/2 от нее, состоит из n отдельных симметричных направленных антенн, выполненных в виде полотен, параллельных поверхности земли, из комбинации плоскостных вибраторов, равнобедренной треугольной рамки с протяженностью периметра, равной λср/n, с размещением основания треугольника под первой линейкой, параллельно оси первой линейки, с проводниками боковых сторон, направленными в обратную сторону от направления приемопередачи, и размещенного под первым пассивным рефлектором шлейф-вибратора длиной λср/2n, повернутого точками питания в направлении основания треугольника, на расстоянии λср/4 от него и подключенного к нему перекрещенными при коммутации проводниками боковых сторон рамки.

Изобретение относится к области радиотехники и может быть использовано в приемопередающих АФАР. Техническим результатом предлагаемого изобретения является снижение массы и увеличение вибропрочности антенной решетки.

Изобретение относится к области радиотехники и может быть использовано в приемо-передающих АФАР. Техническим результатом предлагаемого изобретения является снижение массы и увеличение вибропрочности антенной решетки.

Изобретение относится к технике сверхвысокой частоты (СВЧ) и предназначено для использования в фазированной антенной решетке (ФАР) проходного типа с круговой поляризацией К-диапазона в качестве управляющего элемента.

Изобретение относится к области антенной техники, в частности к антенным решеткам и системам. Целью настоящего изобретения является улучшение параметров ДН двухдиапазонной антенной решетки с одновременным достижением большей простоты и компактности конструкции.

Изобретение относится преимущественно к спутниковым информационным системам. Способ включает формирование межспутниковой линии радиосвязи (МЛР) между космическими аппаратами (КА), расположенными в одной орбитальной плоскости.

Изобретение относится к микрополосковым антеннам, в частности к антенным системам. Заявлена антенная система, содержащая: антенную решетку, которая содержит диэлектрическую подложку прямоугольной формы; множество излучающих панелей, расположенных с определенным интервалом по длине диэлектрической подложки на ее верхней поверхности; и множество соединительных панелей на верхней поверхности диэлектрической подложки, расположенных в соответствии с множеством излучающих панелей, каждая из которых отходит от края диэлектрической подложки и заканчивается на заданном расстоянии от соответствующей излучающей панели; и решетку волноводно-рупорных излучателей, которая содержит металлическую пластину прямоугольной формы, обработанную таким образом, что в поперечном сечении она содержит множество прямоугольных отверстий, расположенных по длине прямоугольной металлической пластины; при этом нижняя часть каждого отверстия выполнена в виде прямоугольного волновода, а верхняя часть - в виде рупора; и желобок заданной глубины с двух сторон отверстий на верхней поверхности прямоугольной металлической пластины, который тянется в направлении расположения множества отверстий, при этом каждый прямоугольный волновод решетки волноводно-рупорных излучателей характеризуется такими же размерами, что и соответствующая ему излучающая панель, и каждый прямоугольный волновод соединен с соответствующей ему излучающей панелью.

Изобретение относится к электронной технике, к антенным системам и может быть использовано в аэрологических радиозондах для приема навигационных сигналов спутниковых навигационных систем типа GPS/ГЛОННАС и др.

Изобретение относится к области радиотехники. Заявленная приемо-передающая активная фазированная антенная решетка содержит m излучателей, подрешетки, делители, устройство управления, суммарный и разностный входы приемо-передающей активной фазированной антенной решетки, а также m/4 модулей приемо-передающих усилительных, делитель тестового сигнала и диаграммообразующий сумматор, при этом излучатели объединены попарно в линейки излучателей, две линейки излучателей и модуль приемо-передающий усилительный образуют подрешетку, каждый модуль приемо-передающий усилительный включает четыре приемо-передающих канала, два делителя, устройство управления и контроля, делитель тестового сигнала выполнен с возможностью осуществления равномерного распределения на каждый канал сигнала СВЧ в режиме калибровки, причем диаграммообразующий сумматор включает направленный ответвитель, устройство управления, m/4 фазовращателей с дискретом установки фазы СВЧ-сигнала 180°.

Изобретение относится к электронным средствам связи и радиолокационным системам. Заявлены фазированная антенная решетка и система связи, содержащая данную антенную решетку; причем особенностью указанной антенной решетки является то, что антенная подрешетка в горизонтальной проекции имеет треугольную форму, а излучающие элементы расположены в треугольной решетке на указанной основе из пеноматериала, причем антенная решетка содержит множество целых шестиугольных панелей, каждая из которых собрана из шести треугольных блоков подрешетки, и множество половинок шестиугольных панелей, причем целые шестиугольные панели и половинки шестиугольных панелей расположены так, что образуют плотно упакованный антенный блок. Техническим результатом является обеспечение более эффективной диаграммы направленности антенных элементов. 2 н. и 10 з.п. ф-лы, 6 ил.

Изобретение относится к области антенной техники. Особенностью заявленной волноводно-щелевой антенной решетки резонансного типа является то, что распределительная система в подрешетке выполнена на развязанных неравновесных делителях мощности, представляющих собой модифицированные двойные Т-мосты с повернутыми носиками Г-образных элементов, а связь распределительной системы с излучающими волноводами осуществляется через гантельные щели в общей широкой стенке. Техническим результатом является улучшение параметров диаграммы направленности и характеристик отражения в рабочем диапазоне частот. 4 ил.

Изобретение относится к области радиотехники и может быть применено при одновременном измерении двух угловых координат (УК) цели в системах моноимпульсной радиолокации и радиопеленгации. Достигаемый технический результат - сокращение вычислений и времени одновременного измерения двух УК цели при высокой точности измерения, с ошибкой не более 1% ширины диаграммы направленности (ДН). Для достижения технического результата до приема сигналов осуществляют моделирование процесса приема и обработки с учетом использования антенной решетки с раскрывом прямоугольной формы, при котором осуществляют факторизацию двумерной весовой функции (ВФ) W(x,y)=Wx(x)Wy(y), исключающую при такой форме раскрыва влияние значения одной измеряемой координаты на процесс измерения другой координаты в азимутальной и угломестной плоскостях и обеспечивающую факторизацию двумерных ДН каналов Fm(ϑ,ϕ)=Fmθ(ϑ)Fmϕ(ϕ), где - номер парциального канала приема, и зависимость двумерной пеленгационной характеристики (ПХ) только от измеряемой координаты Sϑ(ϑ,ϕ,ϑ0)=Sϑ(ϑ,ϑ0), Sϕ(ϑ,ϕ,ϕ0)=Sϕ(ϕ,ϕ0), причем одномерными ВФ являются функции Хэмминга Wx(x)=0,08+0,92cos2(πх/2), -1≤х≤1 и Wy(y)=0,08+0,92cos2(πy/2), -1≤y≤1, обеспечивающие уровень боковых лепестков не выше минус 40 дБ и ширину рабочей зоны по каждой УК не менее двукратной ширины ДН парциального канала по уровню половинной мощности, или другие ВФ, обеспечивающие не больший, чем функции Хэмминга, уровень боковых лепестков и не меньший размер рабочей зоны, в процессе моделирования с учетом весовых функций, параметров АР и упомянутой факторизации определяют конкретный вид функций F1ϑ(ϑ), F2ϑ(ϑ), F3ϕ(ϕ), F4ϕ(ϕ) и Sϑ(ϑ,ϑ0), Sϕ(ϕ,ϕ0), параметрически зависящих от углов смещения ϑ0 и ϕ0, разлагают нечетные функции Sϑ(ϑ,ϑ0) и Sϕ(ϕ,ϕ0), описывающие полученные в результате факторизации одномерные ПХ, по нечетным степеням углов ϑ и ϕ в ряды Маклорена. 4 ил.

Изобретение относится к области радиолокационной техники. Для охлаждения активной фазированной антенной решетки (АФАР) в промежутке между боковой стенкой корпуса каждого из приемо-передающих модулей, входящих в состав каждого ряда АФАР, и элементом несущей конструкции полотна АФАР с суммарным зазором, составляющим от 0,1 до 0,5 мм, в зонах, соответствующих расположению тепловыделяющих элементов каждого из приемо-передающих модулей, размещено две трубы, по существу, эллиптического поперечного сечения. В трубы в противоположных направлениях подводится охлажденная жидкая среда. Каждая из труб выполнена из материала, имеющего возможность упругой деформации под давлением жидкой среды, обеспечивающей прижатие каждой из труб к внешней поверхности боковой стенки корпуса каждого из приемо-передающих модулей, с толщиной стенки, по меньшей мере, в зоне прижатия составляющей от 0,2 до 0,35 мм. Циркуляция жидкой среды осуществляется со скоростью, обеспечивающей разность температур между внутренней поверхностью стенки каждой из труб и средней температурой охлажденной жидкой среды от 3 до 5°C. Технический результат состоит в обеспечении интенсивного равномерного отведения тепла с поверхностей корпусов приемо-передающих модулей, входящих в состав АФАР, и, следовательно, в интенсивном охлаждении АФАР в целом при ее эксплуатации. 2 ил.

Изобретение относится к области приемопередающих антенных решеток наклонной поляризации для ретрансляторов связи. Особенностью заявленной приемопередающей антенной решетки модуля позиционирования и дальней связи мобильного многофункционального аппаратно-программного комплекса длительного кардиомониторирования и эргометрии является то, что все антенные излучатели выполнены в виде V-образных вибраторов, каждый антенный излучатель N пары дополнительно содержит второй V-образный вибратор, соединенный противофазно с первым V-образным вибратором, когда первое левое плечо первого V-образного вибратора отрицательного потенциала первого излучателя N пары соединено со вторым правым плечом второго V-образного вибратора отрицательного потенциала первого излучателя N пары, а второе правое плечо первого V-образного вибратора положительного потенциала первого излучателя N пары соединено с первым левым плечом второго вибратора положительного потенциала первого излучателя N пары. Техническим результатом является расширение рабочего сектора углов в плоскости антенной решетки и обеспечение работы ретранслятора на наклонной и круговой поляризации электромагнитных волн. 3 з.п. ф-лы, 1 ил.

Изобретение относится к области приемопередающих антенных решеток наклонной поляризации для ретрансляторов связи. Особенностью заявленной антенной решетки наклонной поляризации модуля позиционирования и дальней связи мобильного многофункционального аппаратно-программного комплекса длительного кардиомониторирования и эргометрии является то, что все антенные излучатели выполнены в виде V-образных вибраторов, каждый антенный излучатель N пары дополнительно содержит второй V-образный вибратор, соединенный противофазно с первым V-образным вибратором, когда первое левое плечо первого V-образного вибратора отрицательного потенциала первого излучателя N пары соединено со вторым правым плечом второго V-образного вибратора отрицательного потенциала первого излучателя N пары, а второе правое плечо первого V-образного вибратора положительного потенциала первого излучателя N пары соединено с первым левым плечом второго вибратора положительного потенциала первого излучателя N пары. Техническим результатом является расширение рабочего сектора углов в плоскости антенной решетки. 3 з.п. ф-лы, 2 ил.

Изобретение относится к радиотехнике, в частности к антенной технике, и может быть использовано в составе радиолокационных станций. Способ формирования круговой зоны электронного сканирования цилиндрической фазированной антенной решетки, основан на размещении на ее поверхности излучателей, объединенных по образующей цилиндра в эквидистантно расположенные линейки излучателей, формирующие одинаковые диаграммы направленности, определении размеров углового сектора расположения линеек излучателей, излучении плоского поля путем электронного управления фазовым сдвигом сигналов, проходящих через излучатели. Для достижения возможности формирования круговой зоны электронного сканирования цилиндрической ФАР в азимутальной плоскости с возможностью управления относительным (к максимуму ДН) уровнем максимальных боковых лепестков при любом направлении луча, выделяют внутри углового сектора активные линейки излучателей, подводя к ним сигнал посредством электронного включения, а для синфазного сложения излученных полей в направлении луча антенны изменяют фазы сигналов, подводимых к активным линейкам излучателей, на величины где i - номера активных линеек излучателей (i>0); λ - длина волны в среде распространения излученного поля; R - радиус цилиндра; ϕ0 - направление луча антенны в азимутальной плоскости; ϕi - угловое положение i-ой активной линейки излучателей в азимутальной плоскости; ψi - начальная фаза сигнала, подводимого к i-ой активной линейке излучателей. 3 ил.

Изобретение относится к радиоэлектронной аппаратуре и может применяться в антенной технике в качестве полотна антенного фазированной антенной решетки (ФАР). Техническим результатом, на достижение которого направлено предлагаемое техническое решение, является расширение функциональных возможностей, упрощение конструкции, точность позиционирования и надежность крепления большого количества элементов ФАР. Полотно антенное содержит основание и элементы фазированной антенной решетки, соединенные с основанием. Новым является выполнение основания в виде несущей рамы 1 с закрепленной на ней крышкой, выполненной в виде совокупности плоских пластин 2 прямоугольного сечения, причем попарно сопряженных между собой боковыми стенками и оси которых параллельны, причем на боковых стенках пластин 2 выполнены пазы, перпендикулярные оси пластин, образующие после объединения пластин установочные отверстия, расположение которых соответствует расположению установочных отверстий, выполненных в несущей раме 1, причем в установочных отверстиях несущей рамы 1 и пластин 2 закреплены элементы 4 ФАР. 6 з.п. ф-лы, 2 ил.

Изобретение относится к антенной технике. Устройство для беспроводной связи, содержащее: антенный модуль миллиметрового диапазона, содержащий по меньшей мере два антенных элемента, корпус, включающий в себя проводящие структуры с апертурой для согласования антенного модуля с внешним пространством. Причем антенный модуль миллиметрового диапазона изолирован от свободного пространства корпусом, электромагнитное поле излучается в свободное пространство через проводящие структуры корпуса. Технический результат заключается в повышении производительности и устойчивости антенн миллиметрового диапазона для мобильных устройств с металлической рамкой посредством точного формирования решетки волноводных возбудителей в PCB и гибкого соединения этих волноводных возбудителей с нерезонансными излучающими апертурами мобильного устройства. 13 з.п. ф-лы, 19 ил., 3 табл.

Изобретение относится к области радиотехники и может быть использовано при разработке устройств для излучения радиоволн преимущественно дециметрового и более длинноволнового диапазона электромагнитных волн. Способ возбуждения электромагнитных волн заключается в том, что каждый период гармонического колебания разбивается на N импульсов прямоугольной формы одинаковой амплитуды, сумма которых воспроизводит гармонический сигнал. При этом каждый импульс формируется одним из N активных элементов, работающих в ключевом режиме, а каждый активный элемент нагружен на один из N пассивных излучающих элементов. Техническим результатом является снижение габаритов излучающего устройства по сравнению с габаритами существующих антенн. 3 ил.
Наверх