Способ виброакустических испытаний образцов и моделей

Изобретение относится к испытательному оборудованию и может быть использовано для виброакустических испытаний различных систем, имеющих упругие связи с корпусными деталями объекта. Способ заключается в том, что на основании посредством, по крайней мере, трех виброизоляторов закрепляют переборку, представляющую собой одномассовую колебательную систему массой и жесткостью соответственно m2 и c2, а в качестве генератора гармонических колебаний используют эксцентриковый вибратор, расположенный на переборке. На переборке устанавливают стойку для испытания собственных частот упругих элементов рессорных и тарельчатых виброизоляторов разной длины, геометрических параметров, а также разной величины масс, закрепленных на концах этих испытываемых элементов. При этом колебания массы, закрепленной на каждом упругом элементе, фиксируют индикатором перемещений, по показаниям которого определяют резонансную частоту, соответствующую параметрам каждого упругого элемента. На основании и переборке закрепляют датчики виброускорений, сигналы от которых направляют на усилитель, затем осциллограф, магнитограф и компьютер для обработки полученной информации, при этом для настройки работы стенда используют частотомер и фазометр. Технический результат заключается в расширении технологических возможностей испытаний объектов. 3 з.п. ф-лы, 7 ил.

 

Изобретение относится к испытательному оборудованию.

Наиболее близким техническим решением по технической сущности и достигаемому результату является вибростенд по патенту РФ №91540, В06В 1/00 от 07.12.2009 г., содержащий основания, защищаемый объект, измерительную аппаратуру и генераторы вибрационных и ударных воздействий (прототип).

Недостатком прототипа является сравнительно невысокие возможности испытаний многомассовых систем, и сравнительно невысокая точность для исследования систем, имеющих несколько упругих связей с корпусными деталями объекта.

Технически достижимый результат - расширение технологических возможностей испытаний объектов, имеющих несколько упругих связей с корпусными деталями объекта.

Это достигается тем, что в способе виброакустических испытаний образцов и моделей, заключающимся в том, что на основании, посредством, по крайней мере, трех виброизоляторов закрепляют переборку, представляющую собой одномассовую колебательную систему массой и жесткостью соответственно m2 и c2, а в качестве генератора гармонических колебаний используют эксцентриковый вибратор, расположенный на переборке, а на переборке устанавливают стойку для испытания собственных частот упругих элементов рессорных и тарельчатых виброизоляторов разной длины, геометрических параметров, а также разной величины масс, закрепленных на концах этих испытываемых элементов, при этом колебания массы, закрепленной на каждом упругом элементе, фиксируют индикатором перемещений, по показаниям которого определяют резонансную частоту, соответствующую параметрам каждого упругого элемента, причем на основании и переборке закрепляют датчики виброускорений, сигналы от которых направляют на усилитель, затем осциллограф, магнитограф и компьютер для обработки полученной информации, при этом для настройки работы стенда используют частотомер и фазометр.

На фиг. 1 представлена схема устройства (стенда) для реализации предлагаемого способа, на фиг. 2 - математическая модель двухмассовой системы виброизоляции, на фиг. 3 - характеристики логарифмического декремента затухания свободных колебаний двухмассовой системы виброизоляции в зависимости от входного ударного импульса, на фиг. 4 - схема стенда для испытаний шумопоглощающих элементов, на фиг. 5 - схема шумопоглощающей облицовки; на фиг. 6 - характеристики звукопоглощающих облицовок: 1 - плита «Акмигран»; 2 - то же, с воздушным промежутком 200 мм; 3 - маты супертонкого базальтового волокна толщиной 50 мм; на фиг. 7 - общий вид стенда для виброакустических испытаний.

Устройство для виброакустических испытаний образцов и моделей содержит основание (каркас) 11, на котором посредством, по крайней мере, трех виброизоляторов 2 закреплена переборка 1, представляющая собой одномассовую колебательную систему массой и жесткостью соответственно m2 и c2. В качестве генератора гармонических колебаний использован эксцентриковый вибратор 3, расположенный на переборке 1. На переборке 1 установлена стойка 6 для испытания собственных частот упругих элементов 7, 8, 9 рессорных и тарельчатых виброизоляторов разной длины, геометрических параметров, а также разной величины масс, закрепленных на концах этих испытываемых элементов. При этом колебания массы, закрепленной на каждом упругом элементе, фиксируется индикатором 10 перемещений, по показаниям которого определяется резонансная частота, соответствующая параметрам каждого упругого элемента 7, 8, 9.

Возможен вариант цифрового датчика перемещений с передачей данных на компьютер (на чертеже не показано).

На переборке 1 закреплен датчик виброускорений 4, а на основании 11 - датчик виброускорений 5, сигналы от которых поступают на усилитель 12, затем осциллограф 13, магнитограф 16 и компьютер 17 для обработки полученной информации. Для настройки работы стенда используется частотомер 14 и фазометр 15.

Способ виброакустических испытаний образцов и моделей осуществляют следующим образом.

Сначала включают эксцентриковый вибратор 3, который установлен на переборке 1, которая расположена на виброизоляторах 2, и снимают амплитудно-частотные характеристики (АЧХ) системы «переборка судна на его корпусе» с помощью датчиков виброускорений 4 и 5. Сигналы с датчиков виброускорений 4 и 5, поступают на усилитель 12, затем осциллограф 13, магнитограф 16 и компьютер 17 для обработки полученной информации. Для настройки работы стенда используется частотомер 14 и фазометр 15.

Для того, чтобы определить собственные частоты каждой из исследуемых систем виброизоляции производят имитацию ударных импульсных нагрузок на каждую из систем и записывают осциллограммы свободных колебаний (на чертеже не показано), при расшифровке которых судят о собственных частотах систем по формуле (см. фиг. 3 и формулу).

где c1 и m1 - соответственно жесткость упругих элементов виброизоляторов и масса основания,

c2 и m2 - соответственно жесткость и масса переборки, h1 - абсолютная величина вязкого демпфирования в системе, которая связана с логарифмическим коэффициентом затухания δ1 колебательной системы.

На фиг. 4 представлена схема стенда для испытаний шумопоглощающих элементов; 18 - исследуемый объект; 19 - точка измерения; 20 - подвесной пол; 21 - звукопоглощающее клиновидное покрытие.

На фиг. 5 представлена схема шумопоглощающей облицовки типа плита «Акмигран с воздушным промежутком 200 мм. На фиг. 6 изображены характеристики звукопоглощающих облицовок: кривая 1 - плита «Акмигран»; кривая 2 - то же, с воздушным промежутком 200 мм; кривая 3 - маты супертонкого базальтового волокна толщиной 50 мм; на фиг. 7 - общий вид стенда для виброакустических испытаний.

Уровень звуковой мощности Lp определяют по результатам измерений среднего уровня звукового давления Lcp на измерительной поверхности S, м2, за которую обычно принимают площадь полусферы (фиг. 4), т.е.:

где S=2πr2;

r - расстояние от центра источника до точек измерений;

S0=1 м2.

Таким же образом определяется корректированный уровень звуковой мощности LpA:

где LAср - средний уровень звука на измерительной поверхности.

Величины снижения уровней звукового давления могут быть определены только в зоне отраженного звукового поля (когда rmin≥rпр)

где В - постоянная каюты судна до его акустической обработки, м2;

В1 - постоянная помещения после его акустической обработки, м2, которая определяется по формуле:

где А1=α(Sобщ-Sобл) - эквивалентная площадь звукопоглощения поверхностями, не занятыми звукопоглощающей облицовкой; α=B/(B+Sобщ) - средний коэффициент звукопоглощения в помещении до его акустической обработки; α1 - средний коэффициент звукопоглощения акустически обработанного помещения, определяемый соотношением

ΔА - величина суммарного добавочного поглощения, вносимого конструкцией звукопоглощающей облицовки или штучными звукопоглотителями, определяемого по формуле

где αобл - реверберационный коэффициент звукопоглощения конструкции облицовки;

Sобл - площадь этой конструкции, м2;

Ашт - эквивалентная площадь звукопоглощения одного штучного поглотителя, м2;

n - количество штучных звукопоглотителей в помещении.

2. Величина снижения уровня звукового давления ΔL зависит от соотношения между прямым звуком, приходящим непосредственно от источника шума, и звуком отраженным и рассчитывается по формуле:

где L - уровень звукового давления в расчетной точке до акустической обработки помещения, дБ;

Lобл - уровень звукового давления в расчетной точке после акустической обработки помещения, дБ.

1. Способ виброакустических испытаний образцов и моделей, заключающийся в том, что на основании посредством, по крайней мере, трех виброизоляторов закрепляют переборку, представляющую собой одномассовую колебательную систему массой и жесткостью соответственно m2 и c2, а в качестве генератора гармонических колебаний используют эксцентриковый вибратор, расположенный на переборке, отличающийся тем, что на переборке устанавливают стойку для испытания собственных частот упругих элементов рессорных и тарельчатых виброизоляторов разной длины, геометрических параметров, а также разной величины масс, закрепленных на концах этих испытываемых элементов, при этом колебания массы, закрепленной на каждом упругом элементе, фиксируют индикатором перемещений, по показаниям которого определяют резонансную частоту, соответствующую параметрам каждого упругого элемента, причем на основании и переборке закрепляют датчики виброускорений, сигналы от которых направляют на усилитель, затем осциллограф, магнитограф и компьютер для обработки полученной информации, при этом для настройки работы стенда используют частотомер и фазометр.

2. Способ виброакустических испытаний образцов и моделей по п. 1, отличающийся тем, что для определения собственных частот каждой из исследуемых систем виброизоляции производят имитацию ударных импульсных нагрузок на каждую из систем и записывают осциллограммы свободных колебаний, при расшифровке которых определяют собственные частоты систем виброизоляции и логарифмический декремент затухания колебаний по формуле:
;
где c1 и m1 - соответственно жесткость упругих элементов виброизоляторов и масса основания,
h1 - абсолютная величина вязкого демпфирования в системе, которая связана с логарифмическим коэффициентом затухания δ1 колебательной системы.

3. Способ виброакустических испытаний образцов и моделей по п. 1, отличающийся тем, что уровень звуковой мощности Lp определяют по результатам измерений среднего уровня звукового давления Lcp на измерительной поверхности S, м2, за которую принята площадь полусферы: , где S=2 πr2; r - расстояние от центра источника до точек измерений; S0=1 м2, а корректированный уровень звуковой мощности LpA: , где LAcp - средний уровень звука на измерительной поверхности.

4. Способ виброакустических испытаний образцов и моделей по п. 1, отличающийся тем, что величину снижения уровня звукового давления ΔL в отраженном звуковом поле образца рассчитывают по формуле:
,
где L - уровень звукового давления в расчетной точке до акустической обработки помещения, дБ;
Lобл - уровень звукового давления в расчетной точке после акустической обработки помещения, дБ;
где B - постоянная каюты судна до его акустической обработки, м2;
B1 - постоянная помещения после его акустической обработки, м2, которая определяется по формуле:
,
где A1=α(Sобщ-Sобл) - эквивалентная площадь звукопоглощения поверхностями, не занятыми звукопоглощающей облицовкой; α=B/(B+Sобщ) - средний коэффициент звукопоглощения в помещении до его акустической обработки; α1 - средний коэффициент звукопоглощения акустически обработанного помещения, определяемый соотношением
,
ΔA - величина суммарного добавочного поглощения, вносимого конструкцией звукопоглощающей облицовки или штучными звукопоглотителями, определяемого по формуле
ΔA=αоблSобл+Aштn,
где αобл - реверберационный коэффициент звукопоглощения конструкции облицовки; Sобл - площадь этой конструкции, м2; Aшт - эквивалентная площадь звукопоглощения одного штучного поглотителя, м2; n - количество штучных звукопоглотителей в помещении.



 

Похожие патенты:

Изобретение относится к испытательной технике, в частности оборудованию для испытаний приборов на вибрационные и ударные воздействия. Стенд содержит основание, на котором закреплена жесткая переборка с датчиком уровня вибрации, на которую устанавливают два одинаковых исследуемых объекта на различных системах их виброизоляции, и проводят измерения их амплитудно-частотных характеристик.

Вибровозбудитель колебаний механических конструкций состоит из корпуса, силового привода, упругих шарниров, штока, соединенного с упругой тягой. При этом шток силового привода соединен упругой тягой с подвижной платформой со сменным грузом, которая установлена на упругом шарнире, состоящем из двух пересекающихся под углом 90° упругих пластин, соединяющих подвижную платформу с корпусом.

Заявленные изобретения относятся к контрольно-измерительной технике, а именно к автоматическим средствам непрерывного мониторинга состояния конструкции стартового сооружения в процессе его эксплуатации.

Заявленное изобретение относится к испытательной технике и может быть использовано при экспериментальной обработке изделий в лабораторных условиях. Сущность способа заключается в воспроизведении виброударных процессов на электрически управляемых вибростендах, характеризующихся формированием управляющего сигнала в виде временного отрезка импульсной переходной функции, получаемого путем управления начальной фазой и длительностью, причем указанное управление по сути представляет стробирование указанного управляющего сигнала, кроме того формирование указанного управляющего сигнала осуществляют с регулировкой уровня постоянной составляющей задаваемого сигнала.

Изобретение относится к области металлообработки и может быть использовано для прогнозирования параметров качества обрабатываемой поверхности. Способ включает формирование полигармонического возбуждающего воздействия на входе металлообрабатывающего станка путем взаимодействия инструмента станка в виде шлифовального круга или дисковой фрезы с поверхностью заготовки в виде пластины с пазами прямоугольного профиля в процессе ее обработки с заданными параметрами.

Изобретение относится к испытательной технике, в частности к испытаниям объектов путем воздействия на них внешним гидростатическим давлением. Способ включает размещение объекта испытаний (ОИ) на опоре, герметичное закрепление на ОИ камеры в виде трубы, заполнение камеры рабочей жидкостью большой вязкости, создание испытательной нагрузки на поверхность ОИ при помощи груза, падающего на плунжер, размещенный в камере над рабочей жидкостью.

Изобретение относится к области испытательного оборудования, предназначенного для испытаний на работоспособность СИ и ВУ при задействовании их импульсами тока различной формы и амплитуды в момент действия ударных нагрузок.

Изобретение относится к области строительства и может быть использовано при испытании конструкций и отдельных элементов зданий и сооружений, работающих на изгиб с кручением при статическом и кратковременном динамическом воздействии с определением точной деформационной модели конструкции, например балок или плит.

Изобретения относятся к приборостроению, в частности к контрольно-измерительной технике, а именно к автоматическим средствам непрерывного отслеживания состояния конструкций.

Изобретение относится к области обеспечения надежности и безопасности технических устройств производственных объектов повышенной опасности. Способ заключается в осуществлении системы контроля, включающей оценку состояния технических устройств технологических установок, усиленный входной контроль технического состояния технических устройств технологических установок на основе анализа технической документации с учетом условий эксплуатации, вероятности отказов в период эксплуатации, а также комплексный сопровождающий контроль фактического их технического состояния в условиях увеличенного интервала между капитальными ремонтами.

Изобретение относится к области измерительной техники, в частности к методам испытаний пролетных строений, и может быть использовано при испытании автодорожных и городских мостов. Способ заключается в создании возмущающих динамических сил в виде периодически повторяющихся импульсов, приложенных к пролетному строению (ПС). Для генерации импульсов с частотой собственных колебаний (ПС) пропускают по ПС автомобиль, причем предварительно укладывают поперек проезда пороги, а расстояния между ними выбирают с учетом периода собственных колебаний ПС и скорости автомобиля. Автомобиль при движении по ПС совершает прыжки с порогов, воздействуя на ПС всеми колесами, и создает тем самым возмущающие динамические силы в виде импульсов. Массу автомобиля выбирают возможно большей, а число порогов при необходимости увеличивают до достижения амплитудой колебаний величины, достаточной для точного измерения декремента колебаний ПС. 2 ил., 1 табл.

Изобретение относится к испытательной технике и может быть использовано для динамических испытаний объектов на воздействие ударных перегрузок. Стенд содержит узел формирования внешнего ударного воздействия, контейнер в виде полого поршня и стол, предназначенный для закрепления объекта испытаний, размещенный в контейнере с возможностью перемещения вдоль его продольной оси и связанный с контейнером посредством упругой связи. Упругая связь выполнена в виде набора упругих колец, расположенных последовательно и соосно с продольной осью контейнера, с возможностью деформации в радиальном направлении и контактирующих друг с другом по плоской поверхности, и вставки в виде жесткого кольца, вложенного в крайнее кольцо набора упругих колец. Технический результат заключается в обеспечении моделирования требуемых параметров ударного импульса (например, снижение параметров ударного импульса), преобразовании колебаний ударного импульса в знакоположительное одиночное ударное воздействие и уменьшении габаритов устройства. 2 н. и 1 з.п. ф-лы, 3 ил.

Изобретение относится к метрологии, в частности, к методам контроля пошипников ГТД. Способ предполагает использование спектроанализатора для контроля сигнала с выхода микрофона. Определение технического состояния подшипниковых опор производят путем анализа полученного спектра частот в интервале от 4 до 30 кГц, диагностику работающего двигателя производят в течение отрезка времени не менее 1 минуты, дополнительно определяют значения частот, соответствующих аппаратному шуму, связанному с процессами измерения и нелинейными колебательными процессами, происходящими на корпусе двигателя, и выявляют наличие диагностических частот, отклоняющихся не менее чем на 5% от частот, соответствующих аппаратному шуму. При этом выявляют диагностические частоты с одинаковыми интервалами между ними. При наличии не менее 10 диагностических частот останавливают эксплуатацию двигателя для последующего ремонта. Технический результат – повышение точности диагностики отказов подшиников. 3 з.п. ф-лы, 4 ил., 1 табл.

Изобретение относится к способу определения эффективности взрывозащиты. Способ заключается в том, что используют систему мониторинга с обработкой полученной информации об опасной зоне в испытательном боксе, где устанавливают макет взрывоопасного объекта. По внутреннему и внешнему периметрам макета устанавливают видеокамеры для видеонаблюдения за процессом развития чрезвычайной ситуации. Регистрируют посредством системы анализаторов записанных осциллограмм протекающих процессов изменения технологических параметров в макете взрывоопасного объекта, а в потолочной части макета выполняют проем. Между взрывным осколочным элементом и проемом устанавливают трехкоординатный датчик давления во взрывозащитном исполнении. По обе стороны от датчика давления располагают датчики температуры и влажности. Внутренние и внешние поверхности ограждений макета обклеивают тензодатчиками. Формируют информационную базу данных о развитии чрезвычайной ситуации и составляют математическую модель, прогнозирующую предотвращение чрезвычайной ситуации при аварии. Достигается повышение эффективности защиты технологического оборудования от взрывов путем увеличения быстродействия и надежности срабатывания разрывных элементов. 2 з.п. ф-лы, 3 ил.

Изобретение относится к средствам и методам диагностики инженерных сооружений и может быть использовано для контроля и оценки ресурса надежности и безопасной эксплуатации сооружений, работающих в условиях динамического нагружения. Способ включает создание динамической нагрузки в выбранных точках сооружения, регистрацию динамических показателей и оценку технического состояния сооружения. После возбуждения колебаний в определенных местах сооружения оценивают техническое состояние по сопоставлению коэффициентов жесткости с предыдущими замерами, причем коэффициент динамической жесткости представляет собой отношение максимальной динамической силы в выбранной точке замера к максимальному упругому смещению рассматриваемой точки. Технический результат заключается в повышении точности измерений.

Сейсмоплатформа относится к испытательной технике и воспроизводит сейсмические нагрузки в виде трехмерных затухающих колебаний. Сейсмоплатформа содержит плиту для размещения испытуемого элемента сооружения или здания, установленную на опоры, которые установлены на дополнительную прокладную плиту, которая в свою очередь опирается на фундамент через податливые в горизонтальном направлении опоры и соединена со стеной и с фундаментом через гидравлические приводы. Технический результат - обеспечение возможности генерирования трехмерных затухающих колебаний. 5 з.п. ф-лы, 6 ил.

Изобретение относится к измерительной технике и может быть использовано для автоматизированного контроля состояния конструкции здания или инженерно-строительного сооружения в процессе его эксплуатации. Согласно способу в местах диагностирования контролируемой конструкции размещают датчики, осуществляют опрос датчиков, преобразуют полученную от датчиков информацию и передают ее на пункт контроля, выполненного в виде компьютера с программным обеспечением, где осуществляют регистрацию и сравнение полученной информации с заранее введенными в память компьютера фиксированными величинами. Датчики выполняют с возможностью получения от них информации об их пространственном положении. В пункте контроля формируют условное изображение контролируемой конструкции и фиксируют изменения пространственного положения датчиков, по которым определяют и регистрируют отклонения пространственного положения контролируемой конструкции или ее частей. По результатам сравнения этих отклонений с заранее введенными в память компьютера фиксированными величинами, соответствующими их допустимым значениям, судят о состоянии контролируемой конструкции. Условное изображение контролируемой конструкции выполняют в виде расчетной схемы контролируемой конструкции. Фиксацию изменений пространственного положения датчиков, по которым определяют и регистрируют отклонения пространственного положения контролируемой конструкции или ее частей, производят при различных нагружениях контролируемой конструкции. Технический результат заключается в повышении точности контроля. 2 ил.

Изобретение относится к вибрационной технике и может быть использовано для измерения, контроля и управления динамическими характеристиками вибрационных технологических машин. Способ включает установку на поверхности рабочего стола датчиков, фиксацию параметров вибрационного движения рабочего органа. При этом производят одновременную фиксацию сигналов с датчиков, расположенных на рабочем органе, с обязательной фиксацией измеряемого движения одной направленности, изменяя массоинерционные свойства рабочего органа путем перемещения вдоль перпендикулярных направляющих пригрузов, осуществляют управление характеристиками вибрационного поля. Устройство для реализации способа включает рабочий орган, жестко соединенный с вибратором, датчики. Вдоль краев рабочего стола установлены пригрузы с возможностью передвижения по команде с блока управления при поступлении информации от датчиков о необходимости изменения характеристики вибрационного поля. 2 н.п. ф-лы, 10 ил.

Изобретение относится к области автоматизированных систем мониторинга технического состояния объектов повышенной опасности и может быть использовано для текущей оценки и прогноза безопасной эксплуатации объектов, эксплуатируемых в условиях динамических воздействий. Предложенный способ заключается в использовании для мониторинга технического состояния результатов синхронной регистрации контрольных параметров объекта мониторинга в ряде дискретных точек. Их использование на основе предложенной процедуры идентификации позволяет достоверно вычислить распределенные параметры напряженно-деформированного состояния объекта с последующей оценкой степени опасности их изменения в текущий момент времени, а также в прогнозном периоде путем их соотнесения с прочностными характеристиками материалов объекта контроля, а также с функциональными параметрами эксплуатации. Технический результат заключается в повышении точности оценок технического состояния объекта мониторинга, при одновременном снижении объемов контроля и исключения процедуры метрологической аттестации. 2 з.п. ф-лы, 2 ил.

Изобретение относится к испытательной технике, в частности к устройствам для испытаний на ударные воздействия, и может быть использовано при испытаниях на ударные воздействия различных приборов и оборудования, требования к которым задаются в виде спектра удара. Устройство состоит из молота, подвески молота, поворотной траверсы, станины, фиксирующего устройства, наковальни для монтажа оборудования, регистрирующих датчиков. При этом наковальня выполнена в виде прямоугольной сменной металлической панели, жестко закрепленной к станине стенда с помощью стержней с резьбой, при этом сменная металлическая панель выполнена с вырезами прямоугольной формы и ребрами между вырезами. Причем все ребра одинаковые, а расстояние от кромки металлической панели, к которой прикладывается ударное воздействие, до вырезов не менее чем в 2 раза больше продольного размера выреза, но не менее чем в 2 раза меньше расстояния до противоположного относительно точки приложения ударного воздействия торца металлической панели. При этом собственные частоты поперечных колебаний ребер не совпадают с частотами продольных колебаний плиты до и после вырезов, а оси стержней, обеспечивающих крепление сменной металлической панели к станине, проходят через вырезы и не совпадают с осями ребер, причем между сменной металлической панелью и станиной устанавливают виброизолирующую прокладку. Технический результат заключается в повышении точности и стабильности воспроизведения ударного воздействия, заданного спектром ускорений. 11 ил., 2 табл.
Наверх