Способ измерения массового расхода жидких сред

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения расхода жидких сред в трубопроводах. Радиоволну направляют через радиопрозрачное окно в трубопроводе под углом α к направлению движения потока. Отраженную волну смешивают с частью падающей волны и выделяют доплеровский сигнал их разности со средней частотой. При этом радиоволну подают с выхода умножителя частоты, на вход которого поступает радиоволна с частотой ƒk, которую образуют путем перестройки частоты задающего генератора до обеспечения нуля разности фаз между введенной в трубопровод радиоволной и выведенной из нее на расстоянии L. В то же время под углом α к направлению движения потока возбуждают акустическую волну с частотой . Принимают отраженную волну и выделяют акустическую доплеровскую частоту путем смешивания с частью падающей волны, а массовый расход определяют по радиоволновой доплеровской частоте и отношению между радиоволновой и акустической доплеровскими частотами. Технический результат заключается в повышении точности измерения. 1 ил.

 

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения скорости потока и расхода жидкостей в трубопроводах. В частности, при трубопроводной транспортировке нефтепродуктов, сжиженных газов и др.

В настоящее время известны и применяется много типов анеометров и расходомеров, основанных на разных физических принципах действия, среди которых актуальны доплеровские радиоволновые способы измерения скорости потока из-за своей способности работать в сложных эксплуатационных условиях (Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Энергоатомиздат, 1989, 133-144 с.). Эти способы не предполагают применение элементов внутри труб, контактирующих со средой, создающих препятствия и неоднородности в потоке, устойчивы к температурным характеристикам эксплуатации. Обычно функциональная схема доплеровского измерителя скорости потока в простейшем случае содержит генератор электромагнитных колебаний, которые поступают на передающую антенну. Излучаемые антенной волны через радиопрозрачное окно в стенке трубопровода поступают внутрь и рассеиваются на неоднородностях движущейся жидкости и поступают на приемную антенну с частотой f отличной от частоты f0 зондирующей волны на частоту fд. Неоднородностями в измеряемой жидкой среде при этом могут быть газовые и твердые включения, а также другие жидкости, обладающие электрофизическими параметрами ε, отличными от таковых для контролируемого вещества, в том числе вода. Направления движения неоднородностей образуют различные углы с направлением этой волны. Произвольная ориентация неоднородностей, случайные значения фазы отраженных каждой неоднородностью сигналов приводят к образованию доплеровского сигнала сложной формы. Тем не менее средняя доплеровская частота связана со средней скоростью потока по формуле:

где α - угол между направлением излучения и потоком в трубе, - длина волны в среде измерения, а ε - ее диэлектрическая проницаемость, с - скорость света в вакууме. Зная объемную плотность ρ вещества и скорость ν потока, можно определить массовый расход:

где S - площадь поперечного сечения потока на измерительном участке. Подставив значение из выражения (1) в (2), получим выражение для среднего массового расхода

Известно техническое решение, принятое в качестве прототипа (Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Энергоатомиздат, 1989, 136-137 с.), - способ измерения расхода жидкости, заключающийся в том, что радиоволна с частотой f0 направляется через радиопрозрачное окно в трубопроводе под углом α к направлению движения потока, отраженная волна с частотой f смешивается с частью падающей волны и выделяется доплеровский сигнал их разности со средней частотой , а по этой частоте в соответствии с формулой (2) определяется расход. Доплеровский сигнал в данном устройстве выделялся на выходе смесителя, на один вход которого поступал опорный сигнал от задающего генератора через направленный ответвитель, а на второй - сигнал, отраженный от потока вещества после облучения его через приемо-передающую антенну под углом α к потоку в трубе через герметичное радиопрозрачное окно. При этом для связи между генератором, антенной и смесителем использовался циркулятор. После фильтрации и записи доплеровского сигнала, по максимуму спектральной плотности которого определялась средняя доплеровская частота, по которой оценивался расход в соответствии с формулой (3).

Данный способ имеет существенные недостатки. Из формулы (1) следует, что скорость потока

зависит от диэлектрической проницаемости среды, которая в реальных условиях может постоянно меняться из-за изменений химического состава и температуры. Это приводит к погрешности в измерении скорости потока и, следовательно, расхода. С другой стороны из-за постоянных флуктуаций плотности среды ρ при изменениях температуры и состава примесей, погрешность измерения имеет накопительный эффект и приводит к существенным потерям в точности измерения массового расхода (см. фор-лу 3).

Техническим результатом настоящего изобретения является повышение точности измерения.

Технический результат достигается тем, что в способе измерения массового расхода жидких сред радиоволна с частотой f0 направляется через радиопрозрачное окно в трубопроводе под углом α к направлению движения потока, отраженная волна с частотой f смешивается с частью падающей волны и выделяется доплеровский сигнал их разности со средней частотой . В дополнении к этому, радиоволны с частотой f0 подаются с выхода умножителя частоты на k, на вход которого поступают радиоволны с частотой fk, которые образуются путем перестройки частоты задающего генератора до обеспечения нуля разности фаз между введенными в трубопровод радиоволнами и выведенными из нее на расстоянии L, в то же время, под углом α к направлению движения потока возбуждается акустическая волна с частотой , принимается отраженная волна, выделяется акустическая доплеровская частота путем смешивания с частью падающей волны, а массовый расход определяется по радиоволновой доплеровской частоте и отношению между радиоволновой и акустической доплеровскими частотами.

Предлагаемый способ поясняется чертежом, где представлена структурная схема устройства, его реализующее.

Устройство содержит генератор СВЧ 1, направленные ответвители 2, 3 и 8, устройство ввода электромагнитной волны в трубопровод 4 и вывода из него 5, фазовый детектор 6, умножитель частоты 7, циркулятор 9, приемо-передающую антенну 10, смеситель 11, вычислительный блок 12, задающий генератор акустических колебаний 15, излучающий 16 и принимающий 17 акустические датчики, смеситель 18.

Устройство работает следующим образом.

Электромагнитные волны, поступающие от генератора СВЧ 1 с частотой fk через направленные ответвители 2 и 3 поступают через устройство ввода 4 в трубопровод с жидкостью, затем принимаются устройством вывода электромагнитных волн 5, расположенного на расстоянии L от ввода и подаются на вход фазового детектора 6. Поскольку на второй вход фазового детектора поступают электромагнитные колебания от дополнительного выхода направленного ответвителя 3, на его выходе формируется напряжение пропорциональное разности фаз, которое поступает на вход управления генератора СВЧ, перестраивая его частоту fk до момента равенства нулю сигнала на выходе фазового детектора. Диапазон перестройки генератора СВЧ выбран таким образом, что длина волны в среде λ0, равная , много больше размеров неоднородностей, присутствующих в потоке. В результате этого, фаза принимаемого сигнала будет зависеть только от расстояния L, частоты fk и усредненного значения ε. Электромагнитные колебания с частотой fk поступают на вход умножителя частоты на k, с выхода которого они уже с частотой f0=kfk поступают через направленный ответвитель 8 и циркулятор 9 на приемо-передающую антенну 10, затем излучаются через герметичное радиопрозрачное окно 13 в трубопроводе 14 под углом α к направлению потока. Часть сигнала с частотой f0 через дополнительный выход направленного ответвителя 8 приходит на первый вход смесителя 11. На второй вход смесителя через циркулятор поступают электромагнитные волны, отраженные от неоднородностей в потоке, которые в этом случае соизмеримы с длиной волны излучения, и принятые антенной 10. В результате, на выходе смесителя формируется доплеровский сигнал, который обрабатывается в вычислительном блоке 12, где по максимуму спектральной плотности определяется средняя доплеровская частота (см. формулу (1)), которая зависит как от частоты СВЧ излучения f0, так и от диэлектрической проницаемости среды распространения ε. Поскольку с увеличением или уменьшением ε, соответственно уменьшается или увеличивается f0=kfk, произведение остается постоянным. Таким образом, доплеровская частота и скорость потока остается неизменной, несмотря на изменение ε внутри возможного диапазона ее изменения: ε-Δε≤ε≤ε+Δε.

Выражение можно записать исходя из условия равенства нулю сигнала на выходе фазового детектора L=nλ0/2, или , где n - целое число полуволн электромагнитных колебаний в среде, в данном случае это постоянная величина в пределах изменения ε , отсюда следует:

Подставив выражение (5) в формулу (4) с учетом того, что f0=kfk, получим выражение для скорости потока, не зависящее от ε:

отсюда

Одновременно излучаются акустические колебания с частотой от генератора 15 через излучатель 16 под углом α к потоку и поступают, после отражения от неоднородностей, в приемник 17, диаграмма направленности которого также расположена под углом α к направлению потока. Для упрощения выбран тот же угол α, что и для радиоволнового доплеровского датчика. В результате смешивания этой принятой волны с частью падающей, на выходе смесителя 18 выделяется доплеровский акустический сигнал с частотой

где с′ - скорость звука в среде. Отношение доплеровских частот (7) и (8) будет прямо пропорционально скорости звука в протекающей по трубе жидкости независимо от скорости потока:

Поскольку известно, что скорость звука в жидких диэлектрических средах, подобных нефти, нефтепродуктам и сжиженным газам пропорциональна ее плотности ρ согласно формуле с′=Аρ+В, где А и В константы, то

зависит только от отношения доплеровских радиоволновой и акустической частот. Таким образом, при неизменной скорости потока, изменение этого отношения будет связано только с изменением в плотности жидкой среды.

Окончательно формула для расчета массового расхода жидкой среды (2) с учетом (6) и (9) будет выглядеть следующим образом:

В этой формуле все величины, кроме радиоволновой доплеровской частоты и ее отношения к акустической доплеровской частоте являются константами для конкретной диэлектрической жидкости типа нефти, нефтепродуктов и сжиженных газов.

Способ измерения массового расхода жидких сред, состоящий в том, что радиоволну с частотой ƒ0 направляют через радиопрозрачное окно в трубопроводе под углом α к направлению движения потока, отраженную волну с частотой ƒ смешивают с частью падающей волны и выделяют доплеровский сигнал их разности со средней частотой , отличающийся тем, что радиоволну с частотой ƒ0 подают с выхода умножителя частоты на k, на вход которого поступает радиоволна с частотой ƒk, которую образуют путем перестройки частоты задающего генератора до обеспечения нуля разности фаз между введенной в трубопровод радиоволной и выведенной из нее на расстоянии L, в то же время под углом α к направлению движения потока возбуждают акустическую волну с частотой , принимают отраженную волну, выделяют акустическую доплеровскую частоту путем смешивания с частью падающей волны, а массовый расход определяют по радиоволновой доплеровской частоте и отношению между радиоволновой и акустической доплеровскими частотами.



 

Похожие патенты:

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения скорости потока и расхода жидких сред в трубопроводах. Устройство содержит генератор СВЧ, циркулятор, приемо-передающую антенну, направленную через радиопрозрачное окно в трубопроводе под углом к направлению движения потока, смеситель, вычислительный блок, соединенный с выходом смесителя, и первый направленный ответвитель, основной выход которого соединен с первым входом циркулятора, а дополнительный выход соединен с первым входом смесителя.

Изобретение относится к системам водоотведения. В системе, включающей модуль перекачки воды, содержащий насосы, приемный резервуар с подводящим трубопроводом, модуль анализа диагностируемых параметров, модуль контрольно-измерительных приборов, блок ввода объемов приемного резервуара, блок анализа водопритока, модуль анализа диагностируемых параметров, снабженный блоками ввода геометрических характеристик приемного резервуара, ввода гидравлических характеристик подводящего трубопровода, анализа откачки воды из приемного резервуара, модуль контрольно-измерительных приборов снабжен датчиками уровня воды, установленными на подводящем трубопроводе и в приемном резервуаре, модуль перекачки воды снабжен запорно-регулирующим устройством с исполнительным органом, установленным на подводящем трубопроводе, устройством управления, при этом выходы блоков ввода геометрических характеристик приемного резервуара, ввода гидравлических характеристик подводящего трубопровода и блока анализа откачки воды из приемного резервуара подключены к входу блока анализа водопритока.

Изобретение относится к системе и способу ультразвукового измерения расхода. В одном варианте реализации измерительная система для ультразвукового измерения расхода содержит множество ультразвуковых расходомеров.

Изобретение относится к ультразвуковым расходомерам-счетчикам для безнапорного потока сточных вод и может быть использовано в других безнапорных потоках. Ультразвуковой расходомер-счетчик включает коллектор, датчики скорости и глубины потока, установленные на вершине перекатной вставки, закрепленной на дне коллектора.

Изобретение относится к измерительной технике, а именно к способам измерения расхода жидкостей и газов в трубопроводах без контакта с контролируемой средой. Система определения расхода жидкости и газа при помощи ультразвука содержит источник и приемник ультразвука, устройство управления и блок измерения.

Устройство и способы для проверки измерений температуры в ультразвуковом расходомере. В одном варианте реализации измерительная система для ультразвукового измерения расхода содержит канал для потока текучей среды, датчик температуры и ультразвуковой расходомер.

Изобретение в целом относится к расходомерам для измерения расхода жидкости и газа. Более конкретно, оно относится к устройству и к системе для защиты кабелей, отходящих от ультразвуковых расходомеров.

Изобретение относится к акустическим расходомерам для неинвазивного определения потока или интенсивности расхода в проточных для сред электропроводящих объектах, прежде всего в трубах или трубопроводах.

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения скорости потока и расхода жидких и сыпучих сред в трубопроводах.

Изобретение относится к области измерительной техники и может быть использовано для измерения прохождения сигналов через контролируемую среду в трубопроводе. Способ прохождения сигналов через контролируемую среду заключается в том, что формируют исходный сигнал, обеспечивают его передачу в прямом направлении через контролируемую среду, как минимум, по одной передающей электрической цепи, принимают сигнал, прошедший в прямом направлении через контролируемую среду, как минимум, по одной приемной электрической цепи, обеспечивают передачу сформированного исходного сигнала в обратном направлении через контролируемую среду, как минимум, по одной приемной электрической цепи, принимают сигнал, прошедший в обратном направлении через контролируемую среду, как минимум, по одной передающей электрической цепи и обеспечивают, таким образом, прохождение сигналов через контролируемую среду.

Группа изобретений относится к способу и устройству для контроля и/или оптимизации процессов течения, в частности процессов литья под давлением. В способе контроля и/или оптимизации процессов течения колебания, возникающие вследствие течения материала, регистрируются и оцениваются, причем спектр колебаний регистрируется и подвергается многомерному анализу в различные моменты времени или (квази) непрерывно. Оценку колебаний осуществляют на основе распознавания образов, являющихся характерными для соответствующего процесса литья под давлением. Устройство для контроля и/или оптимизации процессов литья включает акустические датчики, размещенные на узлах экструдера, для осуществления процесса литья под давлением. Технический результат, достигаемый при использовании способа и устройства по изобретениям, заключается в обеспечении точности контроля и оценки процесса литья под давлением. 2 н. и 15 з.п. ф-лы, 1 ил.

Предложенный способ модернизации диафрагменного расходомера включает обеспечение тела диафрагменного фитинга, имеющего канал и выполненный с возможностью размещения в нем диафрагмы, множество выпускных отверстий и множество датчиков давления, установленных в указанном множестве выпускных отверстий. Способ дополнительно включает удаление диафрагмы и множества датчиков давления из тела диафрагменного фитинга и установку множества преобразователей в указанное множество выпускных отверстий. По меньшей мере два из множества преобразователей выполнены с возможностью генерирования сигнала, и по меньшей мере два из множества преобразователей выполнены с возможностью приема сигнала. Кроме того, способ включает измерение расхода текучей среды, протекающей через канал, на основании выходного сигнала каждого из множества преобразователей. Технический результат - обеспечение возможности усовершенствования существующих диафрагменных расходомеров для использования более новых технологий. 3 н. и 15 з.п. ф-лы, 7 ил.

Настоящее изобретение относится к способам и устройствам изучения смешанного потока газа, жидкости и твердых частиц. Газ и жидкость могут быть представлены водой, паром и различными фракциями углеводородов. Область применения предлагаемого технического решения - нефтегазовая промышленность. Способ определения параметров скважинного многофазного многокомпонентного потока включает пропускание через поток оптического сигнала в диапазоне длин волн от 850 до 2000 нм, регистрацию сигнала после его взаимодействия с потоком и компьютерную обработку получаемых результатов. Сигнал подают на не менее чем двух различных длинах волн, предварительно разделив его на оптическом делителе на две части, одна из которых является эталонной, производят параллельную регистрацию эталонного сигнала, а обработку получаемых результатов проводят на основе сравнения обоих сигналов по интенсивности и фазе. В заявляемом способе обработку получаемых результатов возможно проводить на основе расчета скорости компонентов потока, получая голографическую картину потока. Устройство для определения параметров скважинного многофазного многокомпонентного потока содержит измерительную камеру в форме трубы, а также дополнительно содержит как минимум один источник оптического сигнала, как минимум один детектор оптического сигнала, расположенный с его источником на одной оси, оптический делитель, оптическую систему доставки эталонного сигнала на детектор в обход измерительной камеры и блок обработки, при этом источник и детектор отделены стенками измерительной камеры, выполненными из материала, прозрачного для оптического сигнала. Техническими результатами изобретения являются возможность определения концентрации различных фаз многофазного потока в исследуемой области, построение пространственного распределения флюидов в исследуемой области, оценка динамики движения и получение данных об объемных долях компонент потока. 2 н. и 2 з.п. ф-лы, 2 ил.

Изобретение относится к ультразвуковым расходомерам, которые могут быть использованы для измерения объемного расхода жидкостей, газов, газожидкостных смесей и жидкостей, содержащих нерастворенные твердые частицы. Ультразвуковой расходомер содержит измерительную камеру, установленную в потоке текучей среды, N пар входных и выходных датчиков, установленных на измерительной камере, возбудитель, первое коммутирующее устройство, соединенное с датчиками и возбудителем и установленное между датчиками и возбудителем с возможностью выборочного соединения датчиков с возбудителем, причем возбудитель поочередно возбуждает каждый входной и выходной датчик, приемник, соединенный с первым коммутирующим устройством, первое коммутирующее устройство, установленное с возможностью соединения каждого датчика с приемником, и второе коммутирующее устройство, соединенное с возбудителем и приемником. Коммутирующие устройства выполнены в виде ключей Т- или Г-образной структуры, непосредственно с выходом возбудителя соединено согласующее сопротивление (Z1), непосредственно к входу приемника включено согласующее сопротивление (Z2), приблизительно равное (Z1), сопротивление любого ключа (Rкл) много меньше согласующих сопротивлений (Z1, Z2), причем согласующие сопротивления по величине не превышают утроенное сопротивление датчиков согласно соотношению Rкл<<Z1≈Z2<3|Zдатчика|, первое коммутирующее устройство выполнено в виде 2N ключей, количество которых равно количеству датчиков и каждый ключ соединен последовательно с одним датчиком, все последовательно соединенные с датчиками ключи включены (соединены) в одну точку, которая является точкой соединения еще по меньшей мере двух ключей второго коммутирующего устройства, первый из которых подключен к выходу возбудителя с согласующим сопротивлением (Z1), а второй - к входу приемника с согласующим сопротивлением (Z2). Согласующее сопротивление (Z1) соединено последовательно с выходом возбудителя и первым ключом второго коммутирующего устройства. 2 з.п. ф-лы, 5 ил.

Предложены устройство и способы проверки результатов измерения температуры в ультразвуковом расходомере. Ультразвуковая система измерения расхода содержит канал для протекания текучей среды, датчик температуры, ультразвуковой расходомер и устройство обработки данных о расходе. Датчик температуры размещен для выдачи значения измеренной температуры текучей среды, протекающей в канале. Ультразвуковой расходомер выполнен с возможностью измерения времени прохождения ультразвукового сигнала через текучую среду. Устройство обработки данных о расходе выполнено с возможностью: 1) вычисления скорости звука через текучую среду на основании времени прохождения, 2) расчета вычисляемой температуры текучей среды на основании скорости звука, 3) применения поправки, на основании предыдущей разницы между вычисленной температурой и измеренной температурой, к параметру проверки температуры и 4) определения, на основании параметра проверки температуры, находится ли текущая разница между измеренной температурой и вычисленной температурой в пределах предварительно определенного диапазона. Технический результат - обеспечение проверки приборов для измерения температуры в ультразвуковой системе измерения расхода без необходимости в использовании дополнительных приборов и/или без простоя системы для осуществления испытания. 4 н. и 21 з.п. ф-лы, 8 ил.

Устройство и способ мониторинга работы расходомерной системы. В одном варианте реализации расходомерная система содержит расходомер, первый и второй датчики давления, стабилизатор потока и устройство для мониторинга состояния. Расходомер выполнен с возможностью измерения объема текучей среды, протекающей через расходомер. Первый датчик давления расположен вблизи расходомера для измерения давления текучей среды вблизи расходомера. Стабилизатор потока расположен выше по потоку от расходомера. Второй датчик давления расположен выше по потоку от стабилизатора потока для измерения давления текучей среды выше по потоку от стабилизатора потока. Устройство для мониторинга состояния соединено с расходомером и датчиками давления и выполнено с возможностью установления возможного отклонения в работе расходомерной системы на основании разности между измерениями давления первого и второго датчиков давления. Технический результат - повышение точности измерений за счет использования для мониторинга работы датчика давления вблизи расходомера и для установления возможных изменений в работе стабилизатора потока. 3 н. и 17 з.п. ф-лы, 6 ил.

Предлагаемое изобретение относится к области измерительной техники и может быть использовано в системах управления технологическими процессами. Техническим результатом заявляемого технического решения является упрощение процедуры измерения концентрации и повышение точности измерения. Устройство для измерения концентрации сыпучего материала, перемещаемого по трубопроводу, содержит измерительную вставку в виде плоского конденсатора с первой и второй обкладками и первый блок питания. Технический результат достигается тем, что в устройство введены микроволновой генератор с перестройкой частоты, снабженный варактором и цепью питания, второй блок питания и частотомер с коаксиально-волноводным переходом. При этом плоский конденсатор соединен с первым блоком питания и варактором генератора, выход второго блока питания соединен с цепью питания микроволнового генератора, частотомер с коаксиально-волноводным переходом подключен к выходу микроволнового генератора с перестройкой частоты. 1 ил.

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения скорости потока и расхода жидкостей в трубопроводах, в частности, при трубопроводной транспортировке нефтепродуктов и сжиженных газов. Устройство для измерения расхода жидких сред содержит первый генератор СВЧ, циркулятор, приемо-передающую антенну, направленную через радиопрозрачное окно в трубопроводе под углом к направлению движения потока, смеситель, вычислительный блок, соединенный с выходом смесителя. Дополнительно устройство содержит делитель мощности на 4, входом соединенный с выходом первого генератора СВЧ, первым выходом соединенный с входом первого смесителя, вторым выходом соединенный с входом циркулятора, передающую и приемную антенны, направленные через радиопрозрачные окна в трубопроводе навстречу друг другу и перпендикулярно направлению потока, второй, третий и четвертый смеситель, второй генератор СВЧ и соединенный с его выходом делитель мощности на 2, выходы которого соединены с первыми входами второго и третьего смесителей, управляющий блок, при этом вторые входы второго и третьего смесителей соединены соответственно с четвертым выходом делителя мощности на 4 и с приемной антенной, а их выходы - с входами четвертого смесителя, выход которого соединен с управляющим входом первого генератора СВЧ через управляющий блок. Технический результат - повышение точности измерения. 1 ил.

Данное изобретение относится к скважинному инструменту для определения скорости потока текучей среды во внутреннем объеме ствола скважины или обсадной колонны ствола скважины. Скважинный инструмент содержит корпус инструмента, вытянутый вдоль продольной оси и имеющий окружность, перпендикулярную продольной оси, причем указанный корпус инструмента адаптирован для опускания во внутренний объем ствола скважины или обсадной колонны ствола скважины, продольный преобразователь, передающий зондирующий сигнал по существу в продольном направлении от концевой части корпуса инструмента в текучую среду, протекающую в указанном стволе скважины или обсадной колонне скважины, так, что передаваемый зондирующий сигнал подвергается воздействию отражающих вовлеченных поверхностей в протекающей текучей среде, причем продольный преобразователь принимает отраженный сигнал, отраженный по существу от отражающих вовлеченных поверхностей в текучей среде, протекающей в указанной скважине вдоль продольного направления к концевой части корпуса инструмента, при этом из последовательно принимаемых отраженных сигналов может быть получена скорость потока текучей среды, множество электродов, расположенных на расстоянии друг от друга вокруг продольной оси по периферии инструмента так, что текучая среда протекает между электродами и стенкой ствола скважины или стенкой обсадной колонны ствола скважины, и измерительное средство для измерения емкости между двумя электродами во всех комбинациях, дающих для n электродов n⋅(n-1)/2 измерений емкости, причем скважинный инструмент между каждыми двумя электродами имеет пространство, при этом указанное пространство по существу заполнено непроводящим средством для того, чтобы определять свойства текучей среды. Технический результат – создание улучшенного скважинного инструмента, выполненного с возможностью определения скоростей потока текучих сред при более сложных режимах потока и в смешанных текучих средах во внутреннем объеме ствола скважины или обсадной колонны ствола скважины. 3 н. и 14 з.п. ф-лы, 8 ил.

Изобретение относится к способу сварки корпуса измерительного преобразователя с корпусом измерительного устройства для установки и герметизации измерительных преобразователей в ультразвуковых расходомерах. Способ включает введение свариваемого объекта, по меньшей мере, частично в сквозное отверстие, выполненное в трубчатом корпусе. Трубчатый корпус имеет внутренний проточный канал и наружную поверхность, а сквозное отверстие имеет стенку расточенного отверстия. Осуществляют подачу инертного газа между свариваемым объектом и стенкой расточенного отверстия. Газ подают через сквозное отверстие. Осуществляют сваривание свариваемого объекта с трубчатым корпусом во время подачи инертного газа. Технический результат состоит в предотвращении утечки углеводорода без использования резьбовых соединений и съемного материала уплотнения. 2 н. и 29 з.п. ф-лы, 15 ил.

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения расхода жидких сред в трубопроводах. Радиоволну направляют через радиопрозрачное окно в трубопроводе под углом α к направлению движения потока. Отраженную волну смешивают с частью падающей волны и выделяют доплеровский сигнал их разности со средней частотой. При этом радиоволну подают с выхода умножителя частоты, на вход которого поступает радиоволна с частотой ƒk, которую образуют путем перестройки частоты задающего генератора до обеспечения нуля разности фаз между введенной в трубопровод радиоволной и выведенной из нее на расстоянии L. В то же время под углом α к направлению движения потока возбуждают акустическую волну с частотой. Принимают отраженную волну и выделяют акустическую доплеровскую частоту путем смешивания с частью падающей волны, а массовый расход определяют по радиоволновой доплеровской частоте и отношению между радиоволновой и акустической доплеровскими частотами. Технический результат заключается в повышении точности измерения. 1 ил.

Наверх