Способ изготовления высокостабильного тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы



Способ изготовления высокостабильного тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы
Способ изготовления высокостабильного тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы
G01L9/00 - Измерение постоянного или медленно меняющегося давления газообразных и жидких веществ или сыпучих материалов с помощью электрических или магнитных элементов, чувствительных к механическому давлению; передача и индикация перемещений элементов, чувствительных к механическому воздействию, используемых для измерения давления с помощью электрических или магнитных средств (измерение разности двух или более величин давления G01L 13/00; одновременное измерение двух и более величин давления G01L 15/00; вакуумметры G01L 21/00)

Владельцы патента RU 2601204:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Пензенский государственный университет" (ФГБОУ ВО "Пензенский государственный университет") (RU)

Изобретение относится к измерительной технике, в частности к тензорезисторным датчикам давления на основе тонкопленочных нано- и микроэлектромеханических систем (НиМЭМС) с мостовой измерительной цепью, предназначенных для использования в системах управления, контроля и диагностики объектов длительного функционирования. Технический результат: повышение временной и температурной стабильности, ресурса, срока службы, а также уменьшение времени готовности и погрешности в условиях воздействия нестационарных температур и повышенных виброускорений, а также возможность использования диагонали питания в качестве датчика температуры тензорезисторов интеллектуальных датчиков давления на основе НиМЭМС. Способ изготовления высокостабильного тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы (НиМЭМС) заключается в полировании поверхности мембраны, формировании на ней диэлектрической пленки и тензоэлементов с низкоомными перемычками и контактными площадками между ними с использованием шаблона тензочувствительного слоя. При этом производятся измерения сопротивлений тензорезисторов при воздействующих тестовых температурах, определяются температурные коэффициенты сопротивлений тензорезисторов в диапазоне воздействующих температур. Далее производится вычисление по ним критерия стабильности и сравнение его с тестовыми значениями. Определяют соответственно первый и вторые критерии стабильности по соотношениям ψτ01j=|(α2j4j)-(α1j3j)|, ψij02(α)=αij, где α1j, α2j, α3j, α4j, - температурный коэффициент сопротивления 1, 2, 3, 4-ого тензорезистора НиМЭМС в j-ом температурном диапазоне; αij - температурный коэффициент сопротивления i-ого тензорезистора НиМЭМС в j-ом температурном диапазоне. Кроме того, тензоэлементы, перемычки, контактные площадки и выводные проводники соединяют в мостовую измерительную цепь и определяют третьи критерии стабильности по соотношениям ψkj03(α)=αkj, где αkj - температурный коэффициент сопротивления k-ой диагонали мостовой измерительной цепи НиМЭМС в j-ом температурном диапазоне. В случае если значения первого, второго, а также третьего критерия находятся в заданных диапазонах, которые определяются экспериментальным путем по статистическим данным для конкретного типоразмера датчика, то данную сборку передают на последующие операции. 1 з.п. ф-лы, 2 ил.

 

Предлагаемое изобретение относится к измерительной технике, в частности к тензорезисторным датчикам давления на основе тонкопленочных нано- и микроэлектромеханических систем (НиМЭМС) с мостовой измерительной цепью, предназначенных для использования в системах управления, контроля и диагностики технически сложных объектов длительного функционирования.

Известен способ изготовления тензорезисторного датчика давления на основе тонкопленочной НиМЭМС, предназначенного для использования в системах управления, контроля и диагностики технически сложных объектов длительного функционирования, заключающийся в полировании поверхности мембраны, формировании на ней диэлектрической пленки и тензоэлементов с низкоомными перемычками и контактными площадками между ними с использованием шаблона тензочувствительного слоя, имеющего конфигурацию тензоэлементов в зонах, совмещаемых с низкоомными перемычками и контактными площадками, в виде полос, включающих изображения тензоэлементов и их продолжения в два противоположных направления, а в зонах, совмещаемых с контактными площадками, - частично совпадающую с конфигурацией контактных площадок и удаленных от полос участков, присоединении выводных проводников к контактным площадкам в областях, удаленных от полос участков [1].

Недостатком известного способа изготовления является сравнительно низкая временная стабильность вследствие отсутствия выявления на ранних стадиях изготовления потенциально нестабильных НиМЭМС. Отсутствие такого выявления при эксплуатации приводит к разному временному и температурному изменению сопротивлений тензорезисторов НиМЭМС, в том числе вследствие различной скорости деградационных и релаксационных процессов в тензорезисторах, включенных в противолежащие плечи мостовой измерительной схемы. Недостаточная временная и температурная стабильность приводит к увеличению временной и температурной погрешности и уменьшению ресурса и срока службы датчика.

Известен способ изготовления тензорезисторного датчика давления на основе тонкопленочной НиМЭМС, предназначенного для использования в системах управления, контроля и диагностики технически сложных объектов длительного функционирования, выбранный в качестве прототипа, заключающийся в полировании поверхности мембраны, формировании на ней диэлектрической пленки и тензоэлементов с низкоомными перемычками и контактными площадками между ними с использованием шаблона тензочувствительного слоя, имеющего конфигурацию тензоэлементов в зонах, совмещаемых с низкоомными перемычками и контактными площадками, в виде полос, включающих изображения тензоэлементов и их продолжения в два противоположных направления, а в зонах, совмещаемых с контактными площадками, - частично совпадающую с конфигурацией контактных площадок и удаленных от полос участков, присоединении выводных проводников к контактным площадкам в областях, удаленных от полос участков, воздействии тестовых пониженных и повышенных температур, измерении сопротивлений тензорезисторов при воздействующих температурах, определении температурных коэффициентов сопротивлений тензорезисторов в диапазоне воздействующих температур, вычислении по ним критерия стабильности и сравнении его с тестовыми значениями [2].

Недостатком известного способа изготовления является сравнительно низкая временная и температурная стабильность тензорезисторов вследствие отсутствия выявления на ранних стадиях изготовления потенциально нестабильных НиМЭМС с несовершенной внутренней структурой. Отсутствие такого выявления приводит к разному временному и температурному изменению сопротивлений тензорезисторов НиМЭМС в процессе эксплуатации, а следовательно, к увеличению временной и температурной погрешности и уменьшению ресурса и срока службы датчика. Кроме того, низкая временная и температурная стабильность тензорезисторов НиМЭМС является причиной сравнительно высоких значений времени готовности и погрешности при воздействии нестационарных температур и повышенных виброускорений.

Целью предлагаемого изобретения является повышение временной и температурной стабильности, ресурса, срока службы, а также уменьшение времени готовности и погрешности в условиях воздействия нестационарных температур и повышенных виброускорений за счет более точного выявления на ранних стадиях изготовления потенциально нестабильных НиМЭМС, обеспечивающего пропуск на дальнейшую сборку тензорезисторов и мостовой измерительной цепи НиМЭМС с необходимой внутренней структурой (в пределах выбранных критериев) при помощи жесткой регламентации величин и знака температурных коэффициентов сопротивления тензорезисторов и мостовой измерительной цепи.

Поставленная цель достигается тем, что в способе изготовления высокостабильного тензорезисторного датчика давления на основе тонкопленочной НиМЭМС, заключающемся в полировании поверхности мембраны, формировании на ней диэлектрической пленки и тензоэлементов с низкоомными перемычками и контактными площадками между ними с использованием шаблона тензочувствительного слоя, имеющего конфигурацию тензоэлементов в зонах, совмещаемых с низкоомными перемычками и контактными площадками, в виде полос, включающих изображения тензоэлементов и их продолжения в два противоположных направления, а в зонах, совмещаемых с контактными площадками, - частично совпадающую с конфигурацией контактных площадок и удаленных от полос участков, присоединении выводных проводников к контактным площадкам в областях, удаленных от полос участков, воздействии тестовых пониженных и повышенных температур, измерении сопротивлений тензорезисторов при воздействующих температурах, определении температурных коэффициентов сопротивлений тензорезисторов в диапазоне воздействующих температур, вычислении по ним критерия стабильности и сравнении его с тестовыми значениями, в соответствии с заявляемым изобретением определение температурных коэффициентов сопротивлений тензорезисторов проводят в поддиапазонах воздействующих температур, охватывающих в совокупности весь диапазон температур при эксплуатации, и определяют соответственно первый и вторые критерии стабильности по соотношениям ψτ01j=|(α2j4j)-(α1j3j)|, ψij02(α)=αij, где α1j, α2j, α3j, α4j, - температурный коэффициент сопротивления 1, 2, 3, 4-ого тензорезистора НиМЭМС в j-ом температурном диапазоне; αij, - температурный коэффициент сопротивления i-ого тензорезистора НиМЭМС в j-ом температурном диапазоне, и, если |ψτ01j|<|ψτ01jmax|, ψij02minij02(α)<ψij02max, где ψτ01jmax, ψij02min, ψij02max - соответственно предельно допустимое максимальное значение первого критерия стабильности, предельно допустимое минимальное и максимальное значение вторых критериев стабильности i-ого тензорезистора НиМЭМС в j-ом температурном диапазоне, которые определяются экспериментальным путем по статистическим данным для конкретного типоразмера датчика, то данную сборку передают на последующие операции.

Кроме того, в соответствии с предлагаемым изобретением тензоэлементы, перемычки, контактные площадки и выводные проводники соединяют в мостовую измерительную цепь и подвергают ее воздействию тестовых пониженных и повышенных температур, определяют температурные коэффициенты сопротивлений диагоналей мостовой измерительной цепи в поддиапазонах воздействующих температур, охватывающих в совокупности весь диапазон температур при эксплуатации, и определяют третьи критерии стабильности по соотношениям ψkj03(α)=αkj, где αkj - температурный коэффициент сопротивления k-ой диагонали мостовой измерительной цепи НиМЭМС в j-ом температурном диапазоне, и, если ψkj03minkj03kj03max, где ψkj03min, ψkj03max - соответственно предельно допустимое минимальное и максимальное значение третьих критериев стабильности k-ой диагонали мостовой измерительной цепи НиМЭМС в j-ом температурном диапазоне, которые определяется экспериментальным путем по статистическим данным для конкретного типоразмера датчика, то данную сборку передают на последующие операции.

Заявляемый способ реализуется следующим образом. Изготавливают (например, из сплава 36НКВХБТЮ) мембрану с периферийным основанием в виде оболочки вращения методами лезвийной обработки с применением на последних стадиях электроэрозионной обработки. Полируют поверхность мембраны с использованием электрохимикомеханической доводки и полировки или алмазной доводки и полировки. Методами тонкопленочной технологии на планарной поверхности мембраны последовательно наносят сплошными слоями диэлектрическую пленку в виде структуры SiO-SiO2 с подслоем хрома (поз. 1, Фиг. 1), тензочувствительную пленку из сплава Х20Н75Ю (поз. 2, Фиг. 1). При формировании перемычек и контактных площадок методом фотолитографии низкомную пленку V-Au, (золото с подслоем ванадия) (поз. 3, 4, Фиг. 1) наносят сплошным слоем на тензочувствительную пленку (из сплава Х20Н75Ю). Формируют перемычки и контактные площадки методом фотолитографии с использованием шаблона перемычек и контактных площадок. Формирование тензоэлементов проводят методом фотолитографии с использованием ионно-химического травления в среде аргона и шаблона тензочувствительного слоя, имеющего конфигурацию тензоэлементов в зонах, совмещаемых с низкоомными перемычками и контактными площадками, в виде полос, включающих изображения тензоэлементов и их продолжения в два противоположных направления, а в зонах, совмещаемых с контактными площадками - частично совпадающую с конфигурацией контактных площадок и удаленных от полос участков. После присоединения выводных проводников к контактным площадкам до герметизации тензоэлементов с перемычками и контактными площадками помещают упругие элементы со сформированными на них тензорезисторами в специальное технологическое приспособление, обеспечивающее защиту от воздействия окружающей среды и электрическое контактирование с использованием микросварки выводных проводников с измерительной цепью. Воздействуют на НиМЭМС тестовыми пониженными и повышенными температурами. Измеряют сопротивления тензорезисторов при воздействующих температурах. Определение температурных коэффициентов сопротивлений тензорезисторов проводят в поддиапазонах воздействующих температур, охватывающих в совокупности весь диапазон температур при эксплуатации. Например, если весь диапазон температур при эксплуатации датчика находится в пределах от минус 196°С до 100°С, то определение температурных коэффициентов сопротивлений тензорезисторов проводят в поддиапазонах температур минус 196°С… минус 150°С, минус 150°С… минус 100°С, минус 100°С… минус 50°С, минус 50°С…0°С, 0°С…50°С, 50°С…100°С. При этом, вследствие характерной особенности тонкопленочных тензорезисторов их сопротивления зависят не только от их температуры, но и от деформационного состояния. Определяют соответственно первый и вторые критерии стабильности по соотношениям ψτ01j=|(α2j4j)-(α1j3j)|, ψij02(α)=αij, где α1j, α2j, α3j, α4j, - температурный коэффициент сопротивления 1, 2, 3, 4-ого тензорезистора НиМЭМС в j-ом температурном диапазоне; αij, - температурный коэффициент сопротивления i-ого тензорезистора НиМЭМС в j-ом температурном диапазоне. Если |ψτ01j|<|ψτ01jmax|, ψij02minij02(α)<ψij02max, где ψτ01jmax, ψij02min, ψij02max - соответственно предельно допустимое максимальное значение первого критерия стабильности, предельно допустимое минимальное и максимальное значение вторых критериев стабильности, i-ого тензорезистора НиМЭМС в j-ом температурном диапазоне, которые определяются экспериментальным путем по статистическим данным для конкретного типоразмера датчика, то данную сборку передают на последующие операции.

Кроме того, в соответствии с предлагаемым изобретением тензоэлементы, перемычки, контактные площадки и выводные проводники соединяют в мостовую измерительную цепь (Фиг. 2) и подвергают ее воздействию тестовых пониженных и повышенных температур. Определяют температурные коэффициенты сопротивлений диагоналей мостовой измерительной цепи в поддиапазонах воздействующих температур, охватывающих в совокупности весь диапазон температур при эксплуатации. Определяют третьи критерии стабильности по соотношениям ψkj03(α)=αkj, где αkj - температурный коэффициент сопротивления k-ой диагонали мостовой измерительной цепи НиМЭМС в j-ом температурном диапазоне, и, если ψkj03minkj03kj03max, где ψkj03min, ψkj03max - соответственно предельно допустимое минимальное и максимальное значение третьих критериев стабильности k-ой диагонали мостовой измерительной цепи НиМЭМС в j-ом температурном диапазоне, которые определяются экспериментальным путем по статистическим данным для конкретного типоразмера датчика, то данную сборку передают на последующие операции. Типичные реальные значения ψτ01jmax=1×10-6 °C-1, ψij02min=1×10-5 °C-1, ψij02max=5×10-5 °C-1.

В соответствии с п. 2 формулы изобретения тензоэлементы, перемычки, контактные площадки и выводные проводники соединяют в мостовую измерительную цепь и подвергают ее воздействию тестовых пониженных и повышенных температур. Определяют температурные коэффициенты сопротивлений диагоналей мостовой измерительной цепи в поддиапазонах воздействующих температур, охватывающих в совокупности весь диапазон температур при эксплуатации. Определяют критерии стабильности по соотношениям ψkj(α)=αkj, где αkj - температурный коэффициент сопротивления k-ой диагонали мостовой измерительной цепи НиМЭМС в j-ом температурном диапазоне, и, если ψkjminkj(α)<ψkjmax, где ψkjmin, ψkjmax - соответственно предельно допустимое минимальное и максимальное значение критерия временной стабильности k-ой диагонали мостовой измерительной цепи НиМЭМС в j-ом температурном диапазоне, которое определяется экспериментальным путем по статистическим данным для конкретного типоразмера датчика, то данную сборку передают на последующие операции. Типичные реальные значения ψkjmin=1×10-5 °C-1, ψkjmax=5×10-5.

Установление причинно-следственной связи заявляемых признаков и достигаемого технического эффекта проведем исходя из установленных в результате теоретических и экспериментальных исследований зависимости величины и знака ТКС тензорезисторов НиМЭМС из X20H75Ю-V-Au от их внутренней структуры (наличие примесей, дефектов, окислов и т.п.). Характерным примером является спонтанное изменение температурных коэффициентов сопротивлений, наблюдаемых на тензорезисторах НиМЭМС в некоторых температурных диапазонах. При этом часто анализ тонкопленочных структур не позволяет даже при значительном увеличении выявить видимые дефекты, которые могли бы привести к таким изменениям. Одной из причин случайных изменений температурных коэффициентов сопротивлений тензорезисторов является влияние наноструктур оксидов переходных металлов. Переходные металлы хром, ванадий используются в тензорезисторах НиМЭМС как в качестве компонента тензорезистивного сплава (хром в сплаве Х20Н75Ю), так и в качестве пленки, обеспечивающей адгезию контактных площадок и тензорезисторов (ванадий). Исследования показали, что при использовании термического метода напыления тонкопленочных тензорезисторов они структурированы в виде более тонких слоев хрома, никеля и т.д. В результате различных причин - нарушение режимов технологического процесса, отсутствие единого вакуумного цикла при формировании тензорезисторов и контактных площадок происходит образование широкой гаммы окислов хрома и ванадия. Степень окисления хрома зависит от скорости напыления, концентрации остаточного газа и температуры подложки, от количества хрома на поверхности пленки. При этом температурный коэффициент сопротивления становится отрицательным для пленок с высоким содержанием хрома. Что особенно важно для тензорезисторов НиМЭМС, по типу проводимости окислы переходных металлов могут быть диэлектриками, полупроводниками или металлами. Например, ванадий с кислородом образует большое количество оксидных фаз, в кристаллической решетке атомы ванадия могут иметь различную степень окисления: VO, V2O3, фазы гомологического ряда VnO2n-1, VO2, V6O13 и V2O5. Субоксиды VOx(x<l), монооксид VO, а также V7O13 проявляют металлические свойства. Пятиокись ванадия - диэлектрик с широкой запрещенной зоной. Остальные оксиды в основном состоянии являются полупроводниками с относительно невысоким удельным сопротивлением. Благодаря существованию незаполненных электронных d-оболочек, в соединениях с кислородом элементы переходных групп образуют сложные системы с переменной валентностью, обладающие различными свойствами. Таким образом, отличительным свойством оксидов переходных металлов является то, что в них наблюдается переходы "металл-изолятор", "металл-полупроводник" при некоторой критической температуре. Изменение температурного коэффициента сопротивления и величина критической температуры перехода зависят от типа окисла. При этом, например, для оксидов ванадия критическая температура принимает значения в пределах от 70 до 450 К. Указанный диапазон температур для современных тонкопленочных НиМЭМС является рабочим. Поэтому вероятность изменения температурного коэффициента сопротивления окислов переходных металлов высока. Наличие примесей и дефектов, также приводит к образованию двухфазных систем типа «металл-диэлектрик» и «металл-полупроводник». Отклонения состава от необходимых концентраций для двухфазных систем типа «металл-диэлектрик» ведут к высоким температурным коэффициентам сопротивления и плохой стабильности пленки. Наличие двухфазных систем типа «металл-полупроводник» приводит к отрицательному значению температурного коэффициента сопротивления и низкой стабильности. Пористые пленки по соотношению общей толщины к толщине проводящего слоя подобны двухфазным системам. Отрицательной чертой таких пленок является их повышенная окисляемость вследствие того, что они имеют большую поверхность, а, следовательно, низкую временную и температурную стабильность. В частности установлено, что наличие примесей, дефектов, окислов в количестве, превышающем условия термодинамического равновесия, приводит к заниженному значению температурного коэффициента сопротивления. В то же время значительные отклонения от равновесия обязательно приведут к последующему равновесию и изменению температурного коэффициента сопротивления тензорезистора (в течение ресурса работы НиМЭМС). В соответствии с изложенным, определение температурных коэффициентов сопротивлений тензорезисторов в поддиапазонах воздействующих температур, охватывающих в совокупности весь диапазон температур при эксплуатации, и первого дополнительного критерия стабильности, вычисляемого по заявляемому соотношению, и сравнение его с предельно допустимым максимальным значением |ψτ01j|<|ψτ01jmax| обеспечивает выявление на ранней стадии изготовления НиМЭМС с минимальной разностью температурных коэффициентов сопротивления тензорезисторов противолежащих плеч НиМЭМС во всех поддиапазонах воздействующих температур, охватывающих в совокупности весь диапазон температур при эксплуатации. При этом исключаются из производства НиМЭМС, имеющие аномально большие значения разностей температурных коэффициентов сопротивления противолежащих плеч НиМЭМС, а, следовательно, имеющих различные внутренние структуры. Выполнение неравенства ψij02minij02(α)<ψij02max, для вторых критериев стабильности ψij02(α)=αij обеспечивает исключение попадания на последующую сборку НиМЭМС с тензорезисторами, имеющими хотя бы в одном поддиапазоне воздействующих температур отклонение температурного коэффициента сопротивления от заданных границ, а, следовательно, уменьшает вероятность пропуска НиМЭМС с тензорезисторами, имеющими концентрацию примесей, дефектов и окислов переходных металлов выше предельно допустимой. Аналогично выполнение неравенства ψkjminkj(α)<ψkjmax, обеспечивает исключение попадания на последующую сборку НиМЭМС с мостовыми измерительными цепями, имеющими хотя бы в одном поддиапазоне воздействующих температур отклонение температурного коэффициента сопротивления от заданных границ, а, следовательно, уменьшает вероятность пропуска НиМЭМС с мостовыми измерительными цепями, имеющими концентрацию примесей, дефектов и окислов переходных металлов выше предельно допустимой. Кроме того, выполнение неравенства ψkjminkj(α)<ψkjmax, обеспечивает поступление на дальнейшую сборку только НиМЭМС с монотонным изменением сопротивлений диагоналей от температуры, что делает возможным использование диагонали питания мостовой измерительной цепи в качестве датчика температуры тензорезисторов интеллектуальных датчиков давления на основе НиМЭМС.

Внедрение заявляемого способа в производство тензорезисторных датчиков давления на основе тонкопленочных НиМЭМС обеспечивает повышение временной и температурной стабильности при воздействии влияющих факторов при сравнительно небольших затратах, что позволяет соответственно увеличить ресурс и срок службы датчиков. Кроме того, жесткая регламентация величин и знака температурных коэффициентов сопротивления тензорезисторов и мостовой измерительной цепи в целом обеспечивает уменьшение времени готовности, погрешности в условиях воздействия нестационарных температур и повышенных виброускорений, а также использование диагонали питания в качестве датчика температуры тензорезисторов интеллектуальных датчиков давления на основе НиМЭМС.

Таким образом, техническим результатом предлагаемого изобретения является повышение временной и температурной стабильности, ресурса, срока службы, а также уменьшение времени готовности и погрешности в условиях воздействия нестационарных температур и повышенных виброускорений, а также возможность использования диагонали питания в качестве датчика температуры тензорезисторов интеллектуальных датчиков давления на основе НиМЭМС за счет более точного выявления на ранних стадиях изготовления потенциально нестабильных НиМЭМС, обеспечивающего пропуск на дальнейшую сборку тензорезисторов и мостовой измерительной цепи НиМЭМС с необходимой внутренней структурой (в пределах выбранных критериев) при помощи жесткой регламентации величин и знака температурных коэффициентов сопротивления тензорезисторов и мостовой измерительной цепи.

Источники информации

1 RU. Белозубов Е.М., Белозубова Н.Е. Способ изготовления тонкопленочного тензорезисторного датчика давления. Патент РФ №2442115. Бюл. №4 от 10.02.12.

2 RU. Белозубов Е.М., Белозубова Н.Е., Козлова Н.А. Способ изготовления тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы. Патент РФ №2498249. Бюл. №31 от 10.11.13.

1. Способ изготовления высокостабильного тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы (НиМЭМС), заключающийся в полировании поверхности мембраны, формировании на ней диэлектрической пленки и тензоэлементов с низкоомными перемычками и контактными площадками между ними с использованием шаблона тензочувствительного слоя, имеющего конфигурацию тензоэлементов в зонах, совмещаемых с низкоомными перемычками и контактными площадками, в виде полос, включающих изображения тензоэлементов и их продолжения в два противоположных направления, а в зонах, совмещаемых с контактными площадками, - частично совпадающую с конфигурацией контактных площадок и удаленных от полос участков, присоединении выводных проводников к контактным площадкам в областях, удаленных от полос участков, воздействии тестовых пониженных и повышенных температур, измерении сопротивлений тензорезисторов при воздействующих температурах, определении температурных коэффициентов сопротивлений тензорезисторов в диапазоне воздействующих температур, вычислении по ним критерия стабильности и сравнении его с тестовыми значениями, отличающийся тем, что определение температурных коэффициентов сопротивлений тензорезисторов проводят в поддиапазонах воздействующих температур, охватывающих в совокупности весь диапазон температур при эксплуатации, и определяют соответственно первый и вторые критерии стабильности по соотношениям , Ψij02(α)=αij, где α1j, α2j, α3j. α4j - температурный коэффициент сопротивления 1, 2, 3, 4-ого тензорезистора НиМЭМС в j-ом температурном диапазоне; αij - температурный коэффициент сопротивления i-ого тензорезистора НиМЭМС в j-ом температурном диапазоне, и если , Ψij02minij02(α)<Ψij02max, где Ψτ01jmax, Ψij02min, Ψij02max - соответственно предельно допустимое максимальное значение первого критерия стабильности, предельно допустимое минимальное и максимальное значение вторых критериев стабильности i-ого тензорезистора НиМЭМС в j-ом температурном диапазоне, которые определяются экспериментальным путем по статистическим данным для конкретного типоразмера датчика, то данную сборку передают на последующие операции.

2. Способ изготовления высокостабильного тензорезисторного датчика давления на основе тонкопленочной НиМЭМС по п. 1, отличающийся тем, что тензоэлементы, перемычки, контактные площадки и выводные проводники соединяют в мостовую измерительную цепь и подвергают ее воздействию тестовых пониженных и повышенных температур, определяют температурные коэффициенты сопротивлений диагоналей мостовой измерительной цепи в поддиапазонах воздействующих температур, охватывающих в совокупности весь диапазон температур при эксплуатации, и определяют третьи критерии стабильности по соотношениям Ψkj03(α)=αkj, где αkj - температурный коэффициент сопротивления k-ой диагонали мостовой измерительной цепи НиМЭМС в j-ом температурном диапазоне, и если Ψkj03minkj03kj03max, где Ψkj03min, Ψkj03max - соответственно предельно допустимое минимальное и максимальное значение третьих критериев стабильности k-ой диагонали мостовой измерительной цепи НиМЭМС в j-ом температурном диапазоне, которые определяются экспериментальным путем по статистическим данным для конкретного типоразмера датчика, то данную сборку передают на последующие операции.



 

Похожие патенты:

Изобретение относится к способу изготовления высокотемпературного ультразвукового преобразователя, который содержит стальной или металлический верхний электрод (2), преобразующий элемент (3), выполненный из пьезоэлектрического материала, и стальную или металлическую подложку (1), которая обеспечивает интерфейс между преобразующим элементом и средой распространения акустических волн, первое соединение между подложкой и пьезоэлектрическим кристаллом и второе соединение.

Изобретение относится к измерительной технике, в частности к тензорезисторным датчикам давления на основе тонкопленочных нано- и микроэлектромеханических систем (НиМЭМС) с мостовой измерительной цепью, предназначенных для использования в системах управления, контроля и диагностики объектов длительного функционирования.

Изобретение относится к области электронной техники и может быть использовано при изготовлении приборов микроэлектромеханических систем, в частности интегральных микромеханических реле и устройств на их основе.

Изобретение относится к пьезоэлектронике. Сущность: рабочее тело высоковольтного генератора представляет собой инерционную массу и пакет из пластин поляризованных композиционных сегнетоэлектрических материалов с высокими значениями пьезоэлектрического коэффициента напряжения и заданной для каждой пластины прочностью на сжатие.

Изобретение относится к области изготовления устройств точного позиционирования на основе пьезоэлектрических актюаторов, характеризующихся широким интервалом рабочих температур, в частности для изготовления прецизионных безгистерезисных сканеров сканирующих зондовых микроскопов и устройств юстировки оптических систем.

Изобретение относится к технологии получения монокристаллов лантангаллиевого танталата алюминия, обладающего пьезоэлектрическим эффектом, используемым для изготовления устройств на объемных и поверхностных акустических волнах.

Использование: область микроэлектроники, а именно сборка микроэлектромеханических устройств и систем (МЭМС) на основе пьезоэлектрического кварца. Технический результат: повышение надежности функционирования в условиях высоких комплексных внешних воздействий.
Областью применения изобретения является микроэлектроника, а более конкретно микроэлектроника интегральных пьезоэлектрических устройств на поверхностных акустических волнах (ПАВ)-резонаторов, которые находят широкое применение в авионике и бортовых системах, телекоммуникации и т.д.

Изобретение относится к области пьезотехники. .

Изобретение относится к электронной технике, а именно: к области создания магнитоэлектрических преобразователей, применяемых в качестве основы для датчиков магнитных полей, устройств СВЧ-электроники, основы для технологии магнитоэлектрической записи информации и для накопителей электромагнитной энергии и энергии вибраций.

Изобретение относится к измерительной технике, в частности к тензорезисторным датчикам давления на основе тонкопленочных нано- и микроэлектромеханических систем (НиМЭМС) с мостовой измерительной цепью, предназначенных для использования в системах управления, контроля и диагностики объектов длительного функционирования.

Изобретение относится к измерительной технике. Устройство для измерения давления содержит СВЧ чувствительный элемент в виде металлической полости, часть стенки которой выполнена упругой, соединенный с помощью элемента возбуждения и элемента съема электромагнитных колебаний с электронным блоком, металлическая полость выполнена в виде волновода с упругой одной торцевой стенкой, при этом электронный блок содержит генератор электромагнитных колебаний фиксированной частоты и подключенный к индикатору детектор, подсоединенные с помощью, соответственно, элемента возбуждения и элемента съема электромагнитных колебаний к волноводу у его другой торцевой стенки, а волновод выполнен в виде предельного волновода, для которого частота возбуждаемых в нем электромагнитных волн выбрана ниже минимальной частоты возбуждения в волноводе распространяющихся электромагнитных волн.

Изобретения относятся к измерительной технике, в частности к средствам и методам для измерения давления. В устройстве используются пленочные емкостные датчики, позволяющие измерять пульсации давления, возникающие от нагрузки вибрации, также устройство содержит державку, демпфер, снижающий нагрузки от вибраций, который размещен на наружной поверхности объекта измерений, а пленочные датчики размещены снаружи и внутри объекта на разных участках.

Изобретение относится, в общем, к устройству измерения давления и, в частности, к узлу кварцевого измерительного преобразователя давления и температуры, характеризующегося улучшенной коррекцией ошибок при воздействии градиентов давления и температуры.

Предлагаемое изобретение относится к измерительной технике, в частности к средствам измерения давления, и может быть использовано при измерении динамического давления совместно с пьезоэлектрическими датчиками динамического давления.

Изобретение относится к области «физика материального взаимодействия». Способ определения механических параметров нарушенной материальной среды в условиях фиксированного внешнего воздействия заключается в том, что фиксируют определяющий для исследуемой среды физический параметр внешнего воздействия - температуру Т(°С), плотность ρ (кг/см3), ускорение гравитационного притяжения (g, м/с2) и движения материального тела (α, м/с2), световое излучение, радиоактивность, электрическое и магнитное воздействие, устанавливают требуемый механический параметр материальной среды с учетом влияния физических определяющих параметров внешнего воздействия, определяют угол внутреннего трения и удельное сцепление cстр (кГ/см2) структурированной (природной) среды.

Изобретение относится к измерительной технике, в частности к преобразователям давления, и может быть использовано в различных областях науки и техники, связанных с измерением перепада давления среды.

Изобретение относится к измерительной технике, в частности к преобразователям давления, и может быть использовано в различных областях науки техники, связанных с измерением перепада давления среды.

Заявленная группа изобретений относится к датчикам, которые используются в устройствах для детектирования давления текучих сред (жидкостей и газообразных сред) в различных областях, например в автомобильной промышленности, в бытовых электрических приборах, в области сохранения окружающей среды и общего контроля в гидротермальной санитарии или в области медицины.

Изобретение относится к бесшкальным манометрам. Техническим результатом изобретения является повышение точности измерений.

Изобретение относится к измерительной технике и может быть использовано для одновременного измерения давления, температуры и теплового потока с компенсацией влияния температуры на результаты измерения давления. Чувствительным элементом (ЧЭ) для измерения давления выбран «кремний на сапфире», состоящий из искусственного сапфира и металлической пленки титана. Дополнительно к сапфировой подложке введены нижняя обкладка, а верхняя обкладка - титановая пленка конденсатора. На сапфире сформирован четырехплечный тензометрический мост (ТМ). Емкостной ЧЭ образован путем расположения между нижней и верхней обкладками конденсатора диэлектрического кольца и защищен от внешних электромагнитных помех экраном. ЧЭ температуры и теплового потока сформирован соосно и симметрично на верхней и нижней поверхностях другой диэлектрической пленки. Пакет конструкции датчика, состоящей из двух частей, собирают в вакууме, располагают внутри корпуса и защищают сеткой. Для электрических соединений предусмотрена клеммная колодка с разъемами и монтажная плата, на которой смонтирована высокоомная защитная схема и усилитель заряда. Полость датчика за мембраной поддерживает связь с атмосферой трубкой с крышками, проходящей сквозь первую часть конструкции датчика. На второй части конструкции датчика выполнены сквозные опорные отверстия не менее 10 штук. Между первой и второй частями конструкции датчика образуется воздушная прослойка. Связь с атмосферой между первой и второй частями конструкции датчика осуществляется опорными трубками и отверстиями. Корпус датчика соединен с общей массой устройства и первой частью конструкции датчика и залит мягким герметиком. Технический результат заключается в возможности одновременно в заданном участке измерять звуковое давление (пульсации, взрывное, ударное, ветровое), давление звука (полное давление), статическое давление (абсолютное, избыточное, дифференциальное), температуру и тепловой поток. 2 ил.
Наверх