Элемент устройства сброса низкопотенциальной энергии космического аппарата

Изобретение относится к космической технике и может быть использовано в конструкциях холодильников-излучателей космических аппаратов (КА) и энергетических установок. Излучатель устройства сброса низкопотенциальной энергии космического аппарата содержит металлическую трубку с внешним защитным теплопроводящим слоем. Внешний защитный теплопроводящий слой выполнен по крайней мере из двух одинаковых расположенных вокруг трубки продольных трубчатых элементов. Стенки соседних трубчатых элементов соприкасаются и выполнены из углерод-углеродного композиционного материала на основе высокотеплопроводного углеродного волокна. Торцы трубчатых элементов закрыты. Трубчатые элементы заполнены легким заполнителем. Техническим результатом изобретения является повышение теплоотводящей способности и защищенности излучателя. 3 з.п. ф-лы, 2 ил.

 

Изобретение относится к космической технике и может быть использовано в конструкциях устройств сброса низкопотенциальной энергии космического аппарата, в том числе в конструкциях холодильников-излучателей космических аппаратов (КА) и энергетических установок.

В настоящее время широко известны конструкции трубчатых холодильников-излучателей, в которых трубки с теплоносителем приварены к силовой обечайке и не защищены от микрометеоритов, в связи с чем имеют сравнительно небольшой срок службы.

Для решения этой проблемы были предложены холодильники-излучатели, которые состоят из элементов, содержащих металлические трубки с теплоносителем, снабженные внешним защитным слоем из материала с высокой теплопроводностью для лучшего отвода тепла от трубок. Например, техническое решение по патенту US 5150748 А от 29.09.1992 г. (прототип). В указанном решении раскрыт элемент устройства для сброса тепла, содержащий металлическую трубку и защитный слой из коротких волокон, например, углеродных, одним концом прикрепленных к металлической трубке, внутри которой течет горячий теплоноситель, а другим концом направленных в космическое пространство. Эта конструкция обладает следующими недостатками:

- волокна в защитном слое расположены на расстоянии друг от друга, микрометеориты, размеры которых меньше этого расстояния, могут

беспрепятственно проникать между волокнами и ударно воздействовать на стенку металлической трубки, нарушая ее целостность;

- излучение с боковой поверхности волокон в значительной степени экранируется другими волокнами, поэтому эквивалентная поверхность излучения меньше суммарной поверхности волокон, а дополнительный вес волокон используется неполностью (экранируемые участки волокон не работают по своему прямому назначению и поэтому являются лишь «балластом», прибавляя дополнительный вес);

- известный способ крепления волокон внешнего слоя к металлической трубке не позволяет обеспечить хороший тепловой контакт между ними;

- защитный слой по прототипу не обладает достаточной жесткостью.

Задача предлагаемого изобретения заключается в устранении вышеуказанных недостатков.

Технический результат изобретения заключается в увеличении степени защиты излучателя устройства сброса низкопотенциальной энергии космического аппарата от микрометеоритов и космического мусора при повышении его теплоотводящей способности.

Указанный результат обеспечивается тем, что излучатель устройства сброса низкопотенциальной энергии космического аппарата, содержащий металлическую трубку, снабжен внешним защитным теплопроводящим слоем. Внешний защитный теплопроводящий слой выполнен по крайней мере из двух одинаковых расположенных вокруг трубки продольных трубчатых элементов. Стенки соседних трубчатых элементов соприкасаются и выполнены из углерод-углеродного композиционного материала на основе высокотеплопроводного углеродного волокна. Торцы трубчатых элементов закрыты, а внутри трубчатых элементов размещен легкий заполнитель.

Высокотеплопроводное углеродное волокно может быть выполнено в виде жгута или ленты.

Заполнитель может быть выполнен из вспененной керамики.

Вспененная керамика может быть выполнена в виде засыпки.

Изобретение поясняется чертежами.

На фиг. 1 показана аксонометрическая проекция излучателя устройства сброса низкопотенциальной энергии космического аппарата с закрытыми торцами, заполненного легким заполнителем.

На фиг. 2 показан разрез А-А излучателя устройства сброса низкопотенциальной энергии космического аппарата.

Приведенный на фиг. 1 излучатель состоит из металлической трубки (1) и внешнего защитного теплопроводящего слоя, выполненного из 8 трубчатых элементов (2), причем стенки соседних трубчатых элементов соприкасаются и выполнены из углерод-углеродного композиционного материала (УУКМ) на основе высокотеплопроводного углеродного волокна (УВ), например углеродного волокна марки XN-90-60S, обладающего теплопроводностью свыше 500 Вт/(м·К), трубчатые элементы заполнены легким заполнителем (3), торцы трубчатых элементов закрыты разжимными заглушками (4) из углерод-углеродного композиционного материала.

Внешний защитный теплопроводящий слой выполнен в форме трубчатых элементов, что увеличивает площадь теплоотдачи и позволяет сделать теплообменники, где используется предлагаемое устройство, более легкими, а это, в свою очередь, позволяет увеличить полезную массу космических установок.

Расположение внешнего защитного теплопроводящего слоя продольно по всей длине металлической трубки предусматривает контакт теплопроводящего материала через металл с теплоносителем по всей поверхности трубки для обеспечения лучшего отвода тепла на излучающую поверхность.

Использование соприкасающихся стенок трубчатых элементов позволяет повысить прочность внешнего защитного теплопроводящего слоя и обеспечивает максимальную площадь контакта с теплопередающей трубкой.

Степень защиты тепловой трубки повышается за счет жесткости внешнего защитного теплопроводящего слоя из углерод-углеродного композиционного материала в форме трубчатых элементов с легкой засыпкой внутри.

УУКМ - легкий материал с высокими эксплуатационными свойствами, его применение для изготовления внешнего защитного теплопроводящего слоя позволяет существенно уменьшить массу устройства в целом, а изготовление УУКМ на основе УВ с высокой теплопроводностью в виде длинномерных лент или жгутов позволяет существенно увеличить теплопроводность УУКМ в целом и, как следствие, повысить теплоотводящую способность внешнего теплопроводящего слоя.

Применение легкой засыпки, выступающей в качестве буфера между трубкой с теплоносителем и космическим мусором, позволяет защитить трубки с теплоносителем от повреждений в случае попадания микрометеоритов.

Излучатель устройства сброса низкопотенциальной энергии космического аппарата работает следующим образом. Теплоноситель (жидкость или газ), отводящий тепло от охлаждаемых частей космического аппарата, направляют в металлическую трубку (1) предлагаемого излучателя. Тепло от теплоносителя передается через стенку металлической трубки (1) на внешний защитный теплопроводящий слой (2), форма трубчатого элемента которого за счет увеличения площади теплоотдачи обеспечивает эффективный сброс тепла посредством лучистого теплообмена в космическое пространство. В случае попадания микрометеорита во внешний защитный теплопроводящий слой (2) происходит передача ударной нагрузки в объем легкого заполнителя (3), где происходит ее гашение.

Внешний защитный теплопроводящий слой предлагаемой конструкции имеет развитую излучающую поверхность и минимальный вес. Эффективность конструкции излучателя устройства сброса низкопотенциальной энергии космического аппарата можно оценить параметром m/Q (m - масса элемента в кг, Q - сбрасываемая энергия в кВт), чем ниже значение этого параметра, тем выше эффективность. Известные в настоящее время устройства того же назначения без защиты от микрометеоритов в диапазоне температур 650÷385 К характеризуются m/Q ~ 2,5. Предлагаемая конструкция элемента характеризуется m/Q ~ 1,5÷2 (данные с засыпкой), оцененной при сбросе 1,25 МВт тепла, в интервале температур 650÷385 К, что подтверждает его эффективность.

1. Излучатель устройства сброса низкопотенциальной энергии космического аппарата, содержащий металлическую трубку с внешним защитным теплопроводящим слоем, отличающийся тем, что внешний защитный теплопроводящий слой выполнен по крайней мере из двух одинаковых расположенных вокруг трубки продольных трубчатых элементов, при этом стенки соседних трубчатых элементов соприкасаются и выполнены из углерод-углеродного композиционного материала на основе высокотеплопроводного углеродного волокна, при этом торцы трубчатых элементов закрыты, а внутри трубчатых элементов размещен легкий заполнитель.

2. Излучатель устройства сброса низкопотенциальной энергии космического аппарата по п. 1, отличающийся тем, что высокотеплопроводное углеродное волокно выполнено в виде жгута или ленты.

3. Излучатель устройства сброса низкопотенциальной энергии космического аппарата по п. 1, отличающийся тем, что заполнитель выполнен из вспененной керамики.

4. Излучатель устройства сброса низкопотенциальной энергии космического аппарата по п. 3, отличающийся тем, что вспененная керамика выполнена в виде засыпки.



 

Похожие патенты:

Изобретение относится к космической технике и может использоваться в системах терморегулирования приборных отсеков. Система термостабилизации приборного отсека космического аппарата включает радиатор-излучатель и тепловые трубы.

Изобретение относится к системам терморегулирования космических аппаратов (КА). Способ заключается в том, что измеряют температуру в зонах радиационных панелей (РП) датчиками температур, изменяют температуру каждой зоны посредством терморегуляторов, разбивают период оборота КА вокруг Земли на фиксированные интервалы времени, которые определяют ориентацией КА относительно Солнца и планет.

Изобретение относится к системам терморегулирования космических аппаратов (КА). Способ заключается в том, что измеряют температуру в зонах радиационных панелей (РП) датчиками температур, поддерживают температуру в зонах РП в пределах допустимого диапазона путем изменения температур посредством терморегуляторов, разбивают период оборота КА вокруг Земли на фиксированные интервалы времени, которые определяются ориентацией КА относительно Солнца и планет.

Изобретение касается обеспечения теплового режима бортового научного и служебного оборудования космических аппаратов: искусственных спутников, межпланетных станций и др.

Изобретение относится к бортовым системам электропитания (СЭП), преимущественно низкоорбитальных космических аппаратов (КА) с трехосной ориентацией. СЭП содержит панели солнечной батареи с устройством изменения их ориентации, размещенные с внешней стороны боковых сотопанелей приборного контейнера.

Изобретение относится к системам терморегулирования (СТР) космических аппаратов, например телекоммуникационных спутников. СТР содержит жидкостный контур теплоносителя с электронасосным агрегатом (ЭНА) и компенсатором объема (КО).

Изобретение относится к системам терморегулирования (СТР) космических аппаратов (КА), преимущественно телекоммуникационных спутников. В жидкостном контуре СТР установлен двухступенчатый электронасосный агрегат (ЭНА) с последовательно расположенными рабочими колесами, вращающимися с частотой 6000 об/мин.

Изобретение относится к системам терморегулирования (СТР) космических аппаратов (КА) с тепловой нагрузкой от 13 до 18 кВт. СТР состоит из замкнутых жидкостных контуров и тепловых труб (ТТ), а также раскрываемых панелей радиатора (РПР).

Изобретение относится к бортовому оборудованию, преимущественно телекоммуникационных спутников. Способ включает изготовление коллекторов (К) и соединительных трубопроводов (СТ) из трубы специального профиля (с двумя полками).

Группа изобретений относится к средствам предстартовой подготовки космического аппарата (КА). Устройство содержит противоточный рекуперативный жидкостно-жидкостный теплообменный агрегат, включенный в циркуляционный тракт теплоносителя системы терморегулирования КА.

Изобретение относится к области космической техники, а именно к устройствам отвода тепла в термодинамическом цикле космической энергетической установки. Устройство для улавливания диспергированной пелены капельного холодильника-излучателя (КХИ) содержит узел подачи и узел нагнетания рабочего тела. Узел подачи включает ведущий и ведомый шкивы с установленной на них лентой. На возвратном участке ленты установлен электроподогреватель. Узел нагнетания установлен над ведущим шкивом и включает ротор с углублениями, вмещающими подвижные лопатки и толкатели с возвратными пружинами, кулачок, задающий требуемый закон перемещения толкателей, и шторку снятия остатков рабочего тела. Сбор остывших в результате радиационного охлаждения капель осуществляется движущейся лентой узла подачи. На ленте образуется перемещающаяся вместе с ней к узлу нагнетания жидкая пленка. Для снятия пленки с ленты используются подвижные лопатки. Термостатирование остаточного количества рабочего тела при возвратном движении ленты осуществляется электрическим подогревателем. Техническим результатом изобретения является обеспечение транспортировки охлажденного рабочего тела КХИ ко входу в насос замкнутого контура его циркуляции. 1 з.п. ф-лы, 2 ил.

Изобретение относится к космической технике, а именно к устройствам теплообмена. Панель холодильника-излучателя содержит теплоизлучающую пластину из композиционного материала и металлические трубки для теплоносителя, размещенные между теплоизлучающей пластиной и накладками из композиционного материала. Каждая накладка соединена с пластиной и содержит участок, форма которого соответствует форме металлической трубки. В теплоизлучающей пластине выполнены цилиндрические канавки, с размещенными в них металлическими трубками для теплоносителя. Накладки и теплоизлучающая пластина выполнены из углерод-углеродного композиционного материала. Теплоизлучающая пластина имеет расположенные между трубками отверстия, содержащие натянутые углеродные волокна с теплопроводностью более 300 Вт/м⋅К. Изобретение может быть использовано в конструкциях спутников и энергетических установок. Техническим результатом изобретения является снижение массы панели холодильника-излучателя при увеличении эффективного сброса тепла. 5 з.п. ф-лы, 3 ил.

Изобретение относится к терморегулируемому бортовому оборудованию космического аппарата (КА). Отсек содержит шестиугольную платформу (многослойную панель), на которой с двух сторон размещены тепловыделяющие элементы блоков аппаратуры. Несущая конструкция отсека выполнена на основе тепловых труб (ТТ). Её верхний торец повторяет контур платформы. Элементы аппаратуры, не требующие охлаждения, установлены на силовой ферме, закрепленной на нижнем торце несущей конструкции в виде правильного треугольника. Система терморегулирования объединяет две системы: одна обслуживает тепловыделяющие элементы, не требующие, а другая – требующие низкотемпературного охлаждения. Первая имеет цилиндрический радиатор-излучатель и соединенные с ним ТТ. Другая включает низкотемпературные ТТ, стыкуемые с низкотемпературной ТТ для отвода тепла в космическое пространство. Все ТТ имеют возможность теплового контакта с указанными тепловыделяющими элементами. Техническим результатом изобретения является оптимизация компоновки КА, повышение прочности и жесткости конструкции при наземных операциях и выведении, а также повышение термоустойчивости при работе на орбите. 3 ил.

Группа изобретений относится к методам и средствам защиты бортового оборудования космических аппаратов (КА), а также экипажей пилотируемых КА (станций). Способ включает в себя металлизацию оборудования так, что агрегаты и аппаратуру (1) служебных систем КА выводят на одну шину (2), а комплекс (5) целевой и/или научной аппаратуры - на другую шину (4). Шины выводят на корпуса двух частей КА, изолированных друг от друга непроводящей фермой и/или перекидным отсеком (3). Концы шин присоединяют к обкладкам конденсатора (6) большой емкости. По достижении на обкладках определенной разности потенциалов, фиксируемой вольтметром (7), бортовая система управления дает команду, через пусковое реле (10), на разряд конденсатора на активное сопротивление (8). Выделяющееся на нем тепло отводят с помощью теплопроводов и/или желобов-воздуховодов (9) на радиатор-излучатель (11) и с него - в окружающее пространство. Технический результат группы изобретений заключается в повышении надежности и живучести бортового оборудования КА, а также - безопасности экипажей пилотируемых КА. 2 н.п. ф-лы, 1 ил.

Группа изобретений относится к конструкции и компоновке космических аппаратов (КА), преимущественно геостационарных. КА содержит модуль служебных систем (100) и модуль полезной нагрузки (200), соединённые фермой (300). В корпусе модуля (100) размещены блоки служебной аппаратуры, а снаружи - аккумуляторная батарея (2), поворотная солнечная батарея (8), четыре блока (4) двигателей ориентации и стабилизации, три сферических топливных бака (3) и шар-баллон со сжатым газом. Модуль (200) содержит платформу (201) и блок прецизионных приборов: оптико-электронных (204) и астродатчиков – с разных сторон собственной платформы, удалённой от платформы (201). Платформы выполнены в виде сотопанелей с тепловыми трубами. На приборной платформе могут быть установлены радиаторы-охладители (235). Модуль (200) полезной нагрузки снабжен антеннами радиосвязи (231-234) разной степени направленности, а также радиаторами-охладителями (306), закрепленными на стержнях фермы (300). Технический результат состоит в повышении точности работы оптико-электронной аппаратуры, при её компоновке совместно с антенным комплексом и при ограничениях на массу КА. 3 н. и 16 з.п. ф-лы, 40 ил.
Изобретение относится к модификации параметров космической среды, а также предназначено для экспериментальной наземной отработки в искусственной среде. Для прогрева атмосферы Марса локально нагревают марсианскую залежь природных карбонатов путем концентрирования солнечных лучей на ее поверхности. При нагреве природных карбонатов концентрированием солнечных лучей в марсианскую атмосферу выделяется углекислый газ. Солнечные лучи концентрируют с помощью зеркал и оптических приспособлений. Обеспечивается повышение технологической доступности прогрева в марсианских условиях.

Изобретение относится к устройствам отвода низкопотенциального тепла от систем космических аппаратов. Капельный холодильник-излучатель содержит теплоноситель с системой его хранения и подачи, генератор капель, перекачивающие насосы, трубопроводы, нагреватели элементов и коллектор капель. Коллектор капель выполнен в виде двух расположенных напротив друг друга с зазором кольцевых транспортерных лент, огибающих верхние и нижние направляющие ролики, и снабжен устройством для приведения транспортерных лент в движение по направлению к перекачивающим насосам. Капельный холодильник-излучатель может содержать сальники, установленные под нижними роликами коллектора капель. Транспортерные ленты могут быть расположены симметрично напротив друг друга и формировать Y-образный профиль с углом раскрытия меньше 90 градусов. Техническим результатом изобретения является повышение надежности устройства отвода тепла. 3 з.п. ф-лы, 1 ил.

Изобретение относится к устройствам отвода низкопотенциального тепла от систем космических аппаратов. Капельный холодильник-излучатель содержит теплоноситель с системой его хранения и подачи, генератор капель, перекачивающие насосы, трубопроводы, нагреватели элементов и коллектор капель, выполненный в виде каплеприемника. К горловине каплеприемника герметично присоединена по меньшей мере одна смачиваемая теплоносителем капиллярная эластичная трубка, второй конец которой соединен с перекачивающим насосом и снабжен вытеснительным механизмом. Коллектор капель снабжен жестким треком с прижатой к нему капиллярной эластичной трубкой. Техническим результатом изобретения является повышение надежности устройства отвода тепла. 2 з.п. ф-лы, 1 ил.

Изобретение относится к космической технике, а именно к способу диагностики и прогнозирования срока нормального функционирования КА. В способе для КА, содержащего емкость с рабочим газом, определяют эффективную площадь выходного сечения внезапно образовавшейся течи в результате внезапного механического ударного воздействия на гермоконтейнер метеорной или техногенной частицы; момент времени образования вышеназванной течи; момент времени, когда давление газа в гермоконтейнере уменьшится до минимального допустимого значения, обеспечивающего работоспособность КА. Техническим результатом изобретения является обеспечение достоверного определения величины площади выходного сечения внезапно образовавшейся течи, диагностики и прогнозирования достоверного срока нормального функционирования КА и принятия своевременного решения о переводе КА со стационарной (рабочей) орбиты на орбиту захоронения. 2 ил.

Изобретение относится к авиационной и ракетной технике. Способ обеспечения теплового режима приборного отсека летательного аппарата заключается в охлаждении аппаратуры (2) двухконтурной системой охлаждения. Теплоотвод осуществляется во внешнем контуре путем испарения низкокипящего хладагента с отводом его паров в атмосферу. Охлаждение аппаратуры (2) приборного отсека во внутреннем контуре системы охлаждения осуществляют кондуктивной передачей тепла от приборов на испарители встроенных в вертикальные силовые сотопанели (3) вертикальных тепловых труб (4). В нижней части сотопанелей (3) размещают охлаждаемые приборы с большим адиабатическим нагревом. В направлении к верхней части сотопанелей (3) размещают приборы с меньшим адиабатическим нагревом. Конденсаторы тепловых труб охлаждают трубным теплообменником (5) внешнего испарительного контура. Изобретение улучшает термостабилизацию бортовой аппаратуры, повышает надежность и снижает энергопотребление. 2 ил.
Наверх