Стенд для испытаний арматуры

Изобретение относится к области испытаний строительных изделий. Стенд содержит опорную трубу с центральным сквозным отверстием для соосного вертикального размещения в нем арматуры и с днищем для опирания нижнего конца арматуры. Верхний конец арматуры закреплен в бетонной призме или в уголковом элементе, которые установлены сверху на опорной трубе. Нижний конец арматуры закреплен в траверсе, выполненной в виде двух швеллеров. Траверса установлена горизонтально в симметричных боковых вырезах, выполненных в нижней части опорной трубы. Вертикальное усилие на арматуру осуществляется нагружающим устройством через грузовую металлическую трубу, которая установлена коаксиально опорной трубе. Заглушенным верхним концом грузовая металлическая труба опирается на крепление с верхним концом арматуры. Нижний конец грузовой трубы опирается на выступающие за опорную трубу концы траверсы. Толщина стенок грузовой металлической трубы составляет не менее 5 мм. Для динамического воздействия на арматуру в качестве нагружающего устройства использована копровая установка. При статическом воздействии на арматуру использован гидравлический пресс. Достигается получение точных параметров прочности анкеровки арматуры в бетоне, а также определение физико-механических параметров арматуры при растяжении как при статическом, так и при динамическом воздействиях. 4 з.п. ф-лы, 5 ил.

 

Изобретение относится к области испытаний строительных изделий, а более конкретно к испытаниям арматуры для бетонных конструкций, в частности композитной арматуры, на механические воздействия, и может быть использовано для определения оптимального диаметра композитной арматуры в бетонных конструкциях, а также для определения несущей способности композитной арматуры в новых конструкциях при статическом и динамическом воздействиях.

Известен образец для определения физико-механических характеристик арматуры (варианты) (патент на полезную модель RU 43971, МПК G01N 3/08, опубл. 10.02.2005). Целью полезной модели является определение физико-механических характеристик арматуры: модуля упругости и прочности на растяжение при выполнении ее из композитного материала, например базальтопластика. Согласно первому варианту образец для определения физико-механических характеристик арматуры включает призму из бетона, размещенную в призме продольную арматуру, имеющую выпуск, дополнительную призму из бетона, в которой размещен выпуск арматуры, трубку из полимерного материала, например пластмассы, свободно расположенную на арматуре и ее выпуске с образованием полости, заполненной смазкой, например машинным маслом. Продольная арматура с выпуском выполнена из композитного материала, например базальтопластика. Призмы примыкают основаниями друг к другу, при этом на противоположных основаниях призм образца расположены приспособления для передачи нагрузки на образец. Трубка установлена в средней части образца и имеет на внешней поверхности смазку, например машинное масло, причем длина трубки равна начальной расчетной длине образца. По второму варианту образец для определения физико-механических характеристик арматуры включает призму из бетона и размещенную в призме продольную арматуру, имеющую выпуск, дополнительную призму из бетона, в которой размещен выпуск арматуры, вставку из низкомодульного материала, например пенопласта. Продольная арматура с выпуском выполнена из композитного материала, например базальтопластика. Призмы обращены основаниями друг к другу, а вставка свободно установлена на арматуре и ее выпуске между указанными основаниями и имеет длину, равную начальной расчетной длине образца. Приспособления для передачи нагрузки на образец расположены на противоположных основаниях призм образца.

Недостатками известного образца в обоих вариантах являются: низкая точность определения модуля упругости из-за приравнивания перемещений призм из бетона к относительным деформациям арматуры. А также то, что сплошное прилегание призм из бетона друг к другу не дает возможности визуального контроля процесса определения физико-механических характеристик арматуры.

Известен способ испытания арматурного стержня (авторское свидетельство СССР №881613, МПК G01N 33/38, опубл. 15.11.1981), в котором приведена схема устройства для выдергивания арматуры из бетонного образца. Бетонный образец с забетонированным по центру арматурным стержнем устанавливают на неподвижной опоре. На бетонном образце размещена пружина с подвижной плитой, имеющей центр и снабженной приборами. Плита пропущена в арматурный стержень и закреплена цанговым захватом. Между плитой и прессом установлена сварная рамка.

Недостатком известного технического решения является массивность технологической оснастки, так как повышается трудоемкость монтажа, небезопасность работы с преднапряженной пружиной, а также сложность выдергивания арматурного стержня из бетонного образца.

Известна установка для испытания композитной арматуры, выбранная за прототип (патент на полезную модель RU 143491, МПК G01N 3/00, опубл. 27.07.2014), включающая узел крепления нижнего конуса композитной арматуры в виде бетонной призмы с композитной арматурой. На поверхности бетонной призмы над композитной арматурой расположена опорная плита с центральным сквозным отверстием, причем диаметр отверстия превышает "конус" разрушения бетона. На опорной плите установлен прибор для создания вертикального усилия, снабженный электронным динамометром и закрепленный гайкой, а узел подъема композитной арматуры выполнен в виде шпильки с наружной резьбой и внутренним сквозным отверстием для пропускания верхнего конца композитной арматуры, опирающейся в переходную муфту с внутренним конусообразным отверстием для цангового зажима. Цанговый зажим обжимает верхний конец арматуры. Конструкция прототипа позволяет получить параметры прочности анкеровки композитной арматуры в бетоне при действии выдергивающего усилия.

Недостатком известной установки является то, что она позволяет получить только данные по прочности анкеровки в бетоне арматурного стержня при статическом воздействии.

Задачей изобретения является расширение области испытаний арматуры.

Технический результат заключается в получении точных параметров прочности анкеровки арматурного стержня в бетоне при статических и динамических воздействиях и определении физико-механических параметров арматурного стержня при растяжении при статическом и динамическом воздействиях.

Задача и технический результат достигаются следующим образом.

Заявляемый в качестве изобретения стенд для испытаний арматуры, как и прототип, содержит опорный элемент с центральным сквозным отверстием для соосного вертикального размещения в нем арматуры, крепление для нижнего конца арматуры и устройство для создания вертикального усилия на арматуру.

В отличие от прототипа опорный элемент в заявляемом стенде выполнен в виде опорной трубы с днищем для опирания нижнего конца арматуры и с симметричными боковыми вырезами в нижней части опорной трубы. Крепление для верхнего конца арматуры установлено на опорной трубе. Крепление для нижнего конца арматуры выполнено в виде траверсы, которая установлена горизонтально в вырезах опорной трубы и выполнена из двух скрепленных между собой болтовыми соединениями швеллеров. Концы траверсы выступают за пределы опорной трубы. В отличие от прототипа устройство для создания вертикального усилия состоит из нагружающего устройства и грузовой металлической трубы, установленной коаксиально опорной трубе и выполненной с заглушенным концом, который опирается на крепление с верхним концом арматуры, при этом нижним концом грузовая труба опирается на выступающие концы траверсы. Толщина стенок грузовой трубы составляет не менее 5 мм.

Крепление для верхнего конца арматуры может быть выполнено в виде бетонной призмы с центральным отверстием для установки арматуры или в виде двух уголков, жестко скрепленных между собой болтовыми соединениями, расположенными вне центра указанного уголкового элемента.

В качестве нагружающего устройства при динамическом воздействии на арматуру использована копровая установка, а опорная труба установлена на жесткое неподвижное основание копровой установки. Грузовая труба в этом случае оснащена сверху датчиком-акселерометром.

В случае статического воздействия на арматуру в качестве нагружающего устройства использован гидравлический пресс, а опорная труба установлена на опорную плиту пресса.

Технических решений, совпадающих с совокупностью существенных признаков изобретения, не выявлено, что позволяет сделать вывод о соответствии изобретения условию патентоспособности «новизна».

Из уровня техники не выявлены решения, имеющие признаки, совпадающие с отличительными признаками заявляемого стенда, что подтверждает соответствие заявляемого изобретения критерию «изобретательский уровень».

Изобретение поясняется чертежами, где:

На фиг. 1 представлена грузовая труба с установленным сверху датчиком-акселерометром.

На фиг. 2 показана установка арматуры для проведения испытаний с закрепленным в бетонной призме верхним концом.

На фиг. 3 показана установка арматуры для проведения испытаний с закрепленным верхним концом в уголковом элементе.

На фиг. 4, фиг. 5 изображена схема воздействия на арматуру в процессе испытаний с закреплением ее верхнего конца в бетонной призме и в уголковом элементе соответственно.

Условие патентоспособности «промышленная применимость» доказано на примере конкретного выполнения стенда.

Стенд для испытаний арматуры состоит из опорной трубы 3 с арматурой 1 (исследуемым арматурным стержнем), грузовой трубы 5, передающей статическое или динамическое воздействие от нагружающего устройства в виде установки или гидравлического пресса (на чертежах не показаны).

Согласно изобретению арматурный стержень 1 представлен в виде металлической арматуры, имеющей периодический профиль, или неметаллической арматуры, например стеклопластиковой, который имеет уширения на концевых участках. Арматурный стержень 1 верхним концом закреплен в бетонной призме 2 (фиг. 2) или в уголковом элементе 7 (фиг. 3), выполненном из двух уголков, скрепленных между собой болтовыми соединениями не менее чем в четырех точках. Причем бетонная призма 2 и уголковый элемент 7 установлены таким образом, чтобы обеспечивалось плотное опирание на опорную трубу 3. Арматурный стержень 1, закрепленный в бетонной призме 2 или в уголковом элементе 7, проходит внутри опорной трубы 3, имеющей в нижней части вырезы, необходимые для пропуска траверсы 4 и не препятствующие свободному перемещению траверсы 4. Траверса 4 выполнена из двух скрепленных между собой болтовыми соединениями швеллеров таким образом, чтобы закрепленный по центру между двумя швеллерами арматурный стержень 1 воспринимал центральную осевую растягивающую нагрузку. На траверсу 4 устанавливается грузовая труба 5 таким образом, чтобы было обеспечено равномерное опирание грузовой трубы 5 на траверсу 4 и, соответственно, передача статического или динамического воздействия центрально по оси арматурного стержня 1. При этом грузовая труба 5 выполнена металлической с толщиной стенки не менее 5 мм, обеспечивающей жесткость и недеформируемость при расчетном статическом или динамическом воздействиях.

В варианте исследования арматурного стержня на динамическое воздействие грузовая труба 5 оснащена датчиком-акселерометром 6, контролирующим приходящее динамическое воздействие. В случае исследования арматурного стержня на статическое воздействие приходящая нагрузка контролируется автоматизированным прессом, например прессом гидравлическим для испытания строительных материалов П-250.

Испытания арматуры на статическое и динамическое воздействия осуществляется в следующей последовательности. В том случае, когда исследуется прочность анкеровки арматурного стержня в бетоне, исследуемый стержень 1 закрепляется в бетонной призме 2 на стадии изготовления (бетонирования) призмы 2. Изготовленная бетонная призма 2 выдерживается в течение 28 суток при нормальных условиях (температура окружающей среды +20 (±2)°С при относительной влажности не менее 90%) для набора прочности бетона. В случае когда исследуется предел прочности при растяжении, арматурный стержень 1 закрепляется в уголковом элементе 7, выполненном в виде двух скрепленных между собой болтовым соединением металлических уголков. Далее арматурный стержень 1, закрепленный в образце 2, устанавливается на опорную трубу 3 таким образом, чтобы было обеспечено симметричное опирание образца 2 на опорной трубе 3. Опорная труба 3 устанавливается на жесткое неподвижное основание копра для динамических испытаний строительных конструкций в случае исследования предела прочности анкеровки в бетоне или при растяжении на динамическое воздействие или на опорную плиту пресса, например пресса гидравлического для испытания строительных материалов П-250, в случае исследования предела прочности анкеровки в бетоне или при растяжении на статическое воздействие. Сквозь опорную трубу 3 проходит траверса 4, на которой закреплен арматурный стержень 1, служащая для передачи статического или динамического воздействий для всех видов испытаний. Траверса 4 устанавливается ровно по центру арматурного стержня 1, чтобы было обеспечено равномерное распределение воздействия, приходящего на арматурный стержень 1. На траверсу 4 устанавливается грузовая труба 5, имеющая в верхней части датчик-акселерометр 6, позволяющий контролировать приходящую на арматурный стержень 1 нагрузку. Датчик-акселерометр 6 подключается к специальному компьютеру, регистрирующему показания датчика во время проведения испытаний. Конструкция с закрепленной арматурой помещается в пресс, предназначенный для испытания конструкций на сжатие, например П-250, после чего производится постепенное загружение грузовой трубы 5 до достижения критерия разрушения арматурного стержня 1 (нарушения прочности анкеровки в бетоне или достижения предела прочности при растяжении), что позволяет получить данные при статическом действии нагрузки. При необходимости получения данных динамической работы арматурного стержня 1, собранная конструкция устанавливается на основание копровой установки, предназначенной для испытаний конструкций на динамические воздействия. Критерий разрушения назначается в зависимости от задачи испытаний - нарушение прочности анкеровки арматурного стержня или достижение предела прочности при растяжении. В данном варианте использования стенда могут быть получены новые данные работы арматуры в бетоне при действии динамических сил.

Таким образом, в сравнении с прототипом заявляемый стенд обладает более широкой областью испытаний арматуры, а проведенные технические испытания заявляемого изобретения подтверждают указанный технический результат.

1. Стенд для испытаний арматуры, содержащий опорный элемент с центральным сквозным отверстием для соосного вертикального размещения в нем арматуры, крепление для верхнего конца арматуры, крепление для нижнего конца арматуры и устройство для создания вертикального усилия на арматуру, отличающийся тем, что опорный элемент выполнен в виде опорной трубы с днищем для опирания нижнего конца арматуры и с симметричными боковыми вырезами в нижней части опорной трубы, крепление для верхнего конца арматуры установлено на опорной трубе, а крепление для нижнего конца арматуры выполнено в виде траверсы, которая установлена горизонтально в вырезах опорной трубы и выполнена из двух скрепленных между собой болтовыми соединениями швеллеров, причем концы траверсы выступают за пределы опорной трубы, кроме того, устройство для создания вертикального усилия состоит из нагружающего устройства и грузовой металлической трубы, установленной коаксиально опорной трубе и выполненной с заглушенным концом, который опирается на крепление с верхним концом арматуры, при этом нижним концом грузовая труба опирается на выступающие концы траверсы, помимо этого толщина стенок металлической грузовой трубы составляет не менее 5 мм.

2. Стенд по п. 1, отличающийся тем, что крепление для верхнего конца арматуры выполнено в виде бетонной призмы с центральным отверстием для установки арматуры.

3. Стенд по п. 1, отличающийся тем, что крепление для верхнего конца арматуры выполнено в виде двух уголков, жестко скрепленных между собой болтовыми соединениями, расположенными вне центра указанного уголкового элемента.

4. Стенд по п. 1, отличающийся тем, что в качестве нагружающего устройства при динамическом воздействии на арматуру использована копровая установка, а опорная труба установлена на жесткое неподвижное основание копровой установки, при этом грузовая труба сверху оснащена датчиком-акселерометром.

5. Стенд по п. 1, отличающийся тем, что в качестве нагружающего устройства при статическом воздействии на арматуру использован гидравлический пресс, а опорная труба установлена на опорную плиту пресса.



 

Похожие патенты:

Изобретение относится к производству строительных материалов. Способ включает подготовку пресс-порошка, прессование образца, фиксацию изменений деформаций при сжатии, построение компрессионных кривых и проведение испытания, причем прессование осуществляют одностадийно и непрерывно, с переменными значениями давления прессования и формовочной влажности пресс-порошка, при этом требуемое оптимальное соотношение влажности и давления прессования определяют положением оптимальной точки на компрессионной кривой, лежащей на ее пересечении с отрезком, перпендикулярным хорде, соединяющей начальное и конечное значения интервала давления прессования на кривой, и проходящим через точку пересечения касательных к кривой в области заданного интервала давления прессования.

Изобретение относится к области определения прочностных свойств металлов и их сплавов путем приложения растягивающих нагрузок к образцам и может быть использовано в металлургии и машиностроении.

Изобретение относится к техническим устройствам для испытания грунтового основания фундамента штампом. Тензометрический секционный штамп содержит чувствительный элемент и измерительные приспособления для измерения контактного давления.

Изобретение относится к области механических испытаний материалов на прочность и устойчивость, в частности к испытаниям образцов из органического стекла в условиях чистого сдвига.

Изобретение относится к исследованию прочностных свойств материалов и может быть использовано для определения вязкости разрушения металлов. Сущность: осуществляют статическое нагружение плоского образца с выращенной трещиной усталости и регистрацию длины трещины в момент перехода от стабильного медленного ее развития в нестабильное быстрое.

Изобретение относится к методам испытаний металлов на трещиностойкость, в частности к способу изготовления сварного составного образца типа СТ для испытаний на трещиностойкость облученного металла по стандартным методикам.

Изобретение относится к области неразрушающих измерений давления на заданном горизонтальном уровне бетонных и кирпичных стен и фундаментов зданий и сооружений на стадии их эксплуатации.

Изобретение относится к измерительной технике для определения контактной жесткости. Сущность: поверхности контактирующих деталей с определенными упругими константами материалов прижимают к друг другу с заданной силой F, нормальной к плоскости стыка, определяют остаточную h и упругую αy части полного сближения в контакте, по их сумме определяют величину полного сближения α в контакте, с последующим определением коэффициента j нормальной жесткости упругопластического контакта деталей двоякой кривизны.

Изобретение относится к области неразрушающего контроля материалов и изделий и может быть использовано в машиностроительной отрасли при сборке узлов и деталей корпусных изделий и оперативном контроле остаточной прочности крепежных элементов.

Способ относится к горной промышленности, в частности к шахтным подъемным установкам, и предназначен для контроля технического состояния подъемного каната. Способ позволяет определить жесткость подъемного каната на растяжение путем измерения длины подъемного каната от точки схода подъемного каната с барабана подъемной машины до подвесного устройства подъемного сосуда при остановке порожнего подъемного сосуда под загрузку, веса груза, удлинения подъемного каната после загрузки подъемного сосуда и последующего расчета, по величине которой судят о техническом состоянии подъемного каната.

Изобретение относится к механическим испытаниям, предназначенным для определения свойств металла, проявляющихся при пластическом деформировании в технологических операциях холодной обработки металла давлением (ХОМД). Сущность: осуществляют этапную холодную деформацию испытуемого образца, при которой окружность, ограничивающая нагружаемую поверхность образца, трансформируется в эллипс, измерение длины осей эллипса после каждого нагружения, определение главных деформаций и интенсивности деформации εi, измерение твердости по Виккерсу (HV) и определение зависимости между интенсивностью деформации εi и твердостью HV в результате аппроксимации графической зависимости между указанными параметрами в соответствии с формулой HV=Nεin, где n - коэффициент, численные значения которого отражают восприимчивость испытуемого металла к наклепу, а коэффициент N определяет собой твердость HV, приобретаемую металлом после деформирования с интенсивностью εi=1. Испытания проводят на образце, изготовленном в виде цилиндра, деформацию осуществляют сжатием, при этом измерение длины осей формирующегося эллипса производят после каждой очередной осадки образца. Техническим результатом является расширение технологических возможностей способа за счет определения восприимчивости к наклепу металла, производимого в прутках диаметром менее 15 мм, применяемого в технологиях холодного объемного деформирования. 2 ил., 2 табл.

Изобретение относится к области определения остаточного напряжения путем инструментального индентирования. Сущность: осуществляют приложение к образцу одноосного напряжения, двуосного напряжения и одинакового по всем направлениям напряжения, а затем выполнение инструментального индентирования с использованием индентора, вычисление наибольшей глубины вдавливания индентора в ненапряженном состоянии образца путем подстановки в формулу для вычисления максимальной глубины вдавливания индентора в ненапряженном состоянии фактической глубины контакта в ненапряженном состоянии, полученной из фактической глубины контакта индентора, и максимальной глубины вдавливания индентора и результирующей глубины отпечатка индентора при приложении максимального вдавливающего усилия L0, найденных из зависимости глубины вдавливания индентора от вдавливающего усилия, полученной путем инструментального индентирования, получение кривой зависимости глубины вдавливания индентора от вдавливающего усилия в ненапряженном состоянии путем подстановки вычисленной указанным образом максимальной глубины вдавливания индентора в ненапряженном состоянии образца в формулу, связывающую глубину вдавливания индентора и вдавливающее усилие, и вычисления разности ΔL усилий между усилием L1, соответствующим максимальной глубине вдавливания индентора на кривой зависимости глубины вдавливания индентора от вдавливающего усилия в ненапряженном состоянии, и максимальным вдавливающим усилием L0, и вычисление остаточного напряжения в образце путем подстановки вычисленной разности ΔL усилий в формулу для вычисления остаточного напряжения. Технический результат: возможность определять остаточное напряжение в образце даже при отсутствии состояния без остаточного напряжения. 3 н. и 8 з.п. ф-лы, 27 ил.

Изобретение относится к «Физике материального контактного взаимодействия», конкретно к способу определения удельного и эквивалентного сцепления в структурированном и нарушенном состоянии. Удельное сцепление среды в структурированном состоянии определяют по зависимости в нарушенном состоянии - а эквивалентное сцепление где - удельный вес среды с нарушенной структурой. Технический результат – точное определение прочностных характеристик среды в структурированном и нарушенном состоянии. 2 ил.

Изобретение относится к технике испытаний и измерений, а именно к устройствам для исследования механических свойств материалов с малым поперечным сечением, предпочтительно высокоэластичных нитей. Портативная разрывная машина содержит установленные на жесткой раме одноточечный концевой тензометрический датчик, шаговый двигатель, блок питания и драйвер к шаговому двигателю, плату микроконтроллера. Технический результат: реализация переносного устройства, обеспечивающего достаточную разрывную способность при минимальных габаритах и весе, пригодном для испытания высокоэластичных нитей, отвечающего современным требованиям по безопасности, энергосбережению, долговечности, удобству транспортировки, монтажа и эксплуатации, а также снижение затрат на его приобретение и эксплуатацию. 1 з.п. ф-лы, 2 ил.

Изобретение относится к исследованию прочностных свойств материалов, а именно к установкам для высокоскоростного испытания материалов. Устройство содержит два электромагнитных силовозбудителя, подключенных к накопителю энергии, две соосно установленные тяги для передачи усилий образцу и аппаратуру для наблюдения режима деформирования образца. Тяги для передачи усилий образцу выполнены в виде волноводов-концентраторов и прилегают к внешней стороне силовозбудителей, размещенных между волноводами-концентраторами. Волноводы-концентраторы имеют резьбовые отверстия для фиксации образца. Технический результат: повышение эффективности преобразования электрической энергии в механическую и повышение информативности и достоверности результатов испытаний конструкционных материалов на динамическое растяжение, а также упрощение конструкции. 3 ил.

Изобретение относится к устройствам и методам механических испытаний образцов конструкционных материалов и может быть использовано для определения характеристик сопротивления смятию. Устройство содержит две нагружающие рамы, установленные в верхнем захвате испытательной машины, в каждой нагружающей раме выполнено отверстие, в которое вставлен сминающий цилиндрический штифт, нагружающие рамы зафиксированы между собой болтами с обеспечением минимального зазора для свободного перемещения образца относительно рам, образец соответствует ASTM Е238. На нижнем краю отверстия в образце с обеих сторон образца устанавливают ножи с зубцами, закрепленные в прижимах, стянутых между собой болтами. Конструктивно обеспечивается независимое перемещение прижимов с ножами относительно нагружающих рам. Датчик раскрытия устанавливается на кромках сминающего цилиндрического штифта и прижима. Сущность: овализация отверстия в процессе испытаний регистрируется по перемещению прижимов, закрепленных с помощью ножей на нижнем краю отверстия относительно неподвижного сминающего штифта. При этом замер деформации отверстия обеспечивается в процессе испытаний непосредственно на контуре отверстия. Технический результат: увеличение точности измерения и упрощение конструкции устройства 2 н. и 3 з.п. ф-лы, 5 ил.

Изобретение касается способа оценки деформационных свойств полипропиленовых нитей с углеродными наполнителями в процессе эксплуатации. Сущность способа заключается в том, что проводят поминутное растяжение с постоянной скоростью образцов синтетических нитей с одновременным воздействием электрическим током. Далее проводят поминутное измерение значений растягивающих напряжений и значения электрического сопротивления с одновременным вычислением значений удельного электрического сопротивления по формуле , где R - электрическое сопротивление нити, L≤2 мм - расстояние между контактами, b - толщина нити, d - ширина образца; причем полипропиленовую нить с углеродными наполнителями растягивают до достижения значения удельного электрического сопротивления ρ=109 Ом⋅м. По полученному значению максимального растягивающего напряжения с учетом усреднения по формуле: где σi - значение максимально допустимого растягивающего напряжения в каждом случае, судят о сохранении антистатических свойств полипропиленовых нитей с углеродными наполнителями. Использование способа позволяет спрогнозировать сохранение антистатических свойств материалов в процессе многократного растяжения полипропиленовых нитей с углеродными наполнителями 6 табл., 1 ил.

Изобретение относится к области испытаний материалов, в частности к устройствам для фиксации образца к испытательной машине для разрыва образца, в том числе определения адгезии и прочности на разрыв образцов отвердевших минеральных или полимерных тампонажных растворов. Устройство содержит взаимодействующие с нагружателем пассивные и активные корпуса с полыми тягами с установленными в них узлами крепления образцов. Образец изготовлен в виде фигуры вращения с цилиндрическими выступами на концах. Корпуса изготовлены одинаковой конструкции в виде стакана с открытыми с одной стороны окнами длиной, превышающей длину образца, образующими тяги, равномерно размещенные по периметру корпуса. Тяги одного корпуса вставлены в окна другого корпуса с возможностью продольного перемещения, при этом тяги на концах снабжены внутренней, кольцевой радиальной относительно оси корпуса проточкой под упоры, перемещаемые внутрь полыми толкателями с наружной резьбой, которые вставлены в соответствующие радиальные резьбовые отверстия тяг. Внутри толкателей установлены подвижные шпильки, соединенные с упорами, которые выполнены с возможностью взаимодействия с соответствующими внутренними торцами выступа образца. Нагружатель выполнен в виде пресса, взаимодействующего с соответствующими торцами корпусов. Технический результат: позволяет исключить осевой перекос и пластический пережим благодаря ровному и отцентрированному захвату образца при разрыве, упростить конструкцию за счет отсутствия захватов со специальной разрывной машиной и использовать пресс для разрыва образцов. 4 ил.

Изобретение относится к испытательной технике, к испытаниям на прочность. Стенд содержит корпус, установленные на нем захваты образца, механизм нагружения, включающий две гибкие тяги, кинематически связанные с захватами, натяжной механизм тяг, платформу, привод вращения, установленный на платформе, возбудитель колебаний нагрузки в форме треугольника, установленного на валу привода вращения и расположенного между тягами, и привод перемещения платформы вдоль оси вала. Стенд снабжен платформой вращения с фиксатором поворота, ось вращения которой перпендикулярна оси вала, и разъемным соединением вала привода вращения с возбудителем колебаний нагрузки. Вторые концы тяг закреплены на поверхности платформы вращения с возможностью изменения точек закрепления. Технический результат: расширение функциональных возможностей стенда при пропорциональном изменении амплитуд чередующихся циклов и интервалов между циклами. 1 ил.

Изобретение относится к области обработки металлов давлением и может быть использовано для определения сопротивления деформации металлических материалов путем испытания образцов на сжатие, для построения кривой упрочения, для определения математической зависимости между сопротивлением деформации и степенью деформации при различных температурах. Цилиндрический образец для испытания на сжатие содержит торцевые выточки и отверстие диаметром высоты образца, выполненное по оси образца. Технический результат: возможность повысить степень однородной деформации до 65-75%, за счет создания гидродинамического трения между рабочей поверхностью бойков и торцами образца в течение всего процесса сжатия. 1 ил.

Изобретение относится к области испытаний строительных изделий. Стенд содержит опорную трубу с центральным сквозным отверстием для соосного вертикального размещения в нем арматуры и с днищем для опирания нижнего конца арматуры. Верхний конец арматуры закреплен в бетонной призме или в уголковом элементе, которые установлены сверху на опорной трубе. Нижний конец арматуры закреплен в траверсе, выполненной в виде двух швеллеров. Траверса установлена горизонтально в симметричных боковых вырезах, выполненных в нижней части опорной трубы. Вертикальное усилие на арматуру осуществляется нагружающим устройством через грузовую металлическую трубу, которая установлена коаксиально опорной трубе. Заглушенным верхним концом грузовая металлическая труба опирается на крепление с верхним концом арматуры. Нижний конец грузовой трубы опирается на выступающие за опорную трубу концы траверсы. Толщина стенок грузовой металлической трубы составляет не менее 5 мм. Для динамического воздействия на арматуру в качестве нагружающего устройства использована копровая установка. При статическом воздействии на арматуру использован гидравлический пресс. Достигается получение точных параметров прочности анкеровки арматуры в бетоне, а также определение физико-механических параметров арматуры при растяжении как при статическом, так и при динамическом воздействиях. 4 з.п. ф-лы, 5 ил.

Наверх