Способ измерения и мониторинга давления на бетонные и кирпичные несущие стены и фундаменты зданий и сооружений на заданном уровне на стадии их эксплуатации



 


Владельцы патента RU 2582495:

федеральное государственное бюджетное образовательное учреждение высшего образования "Вологодский государственный университет" (ВоГУ) (RU)

Изобретение относится к области неразрушающих измерений давления на заданном горизонтальном уровне бетонных и кирпичных стен и фундаментов зданий и сооружений на стадии их эксплуатации. Сущность: на поверхность стены или фундамента наклеивают тензорезистор на уровне измеряемого давления вдоль направления главных сжимающих напряжений и измеряют начальное омическое сопротивление тензорезистора. В стене или фундаменте выше и ниже тензорезистора высверливают два отверстия диаметром в 3…4 раза больше ширины тензорезистора, на расстоянии в 3…4 раза больше ширины тензорезистора, глубиной 40…60 мм и измеряют ответное омическое сопротивление тензорезистора. Определяют относительную деформацию стены или фундамента и давление на заданном уровне стены или фундамента по формулам. Для мониторинга давления на стену или фундамент в каждое отверстие закладывают по два стальных полуцилиндра длиной, равной глубине отверстий, диаметром меньше диаметра отверстий на 2…3 мм. Между стальными полуцилиндрами забивают по стальному клину длиной, равной глубине отверстий, и толщиной 1…3 мм с одной стороны и 4…5 мм с другой стороны. Забиванием стальных клиньев доводят омическое сопротивление тензорезистора до величины, равной начальному омическому сопротивлению, затем фиксируют величину текущего омического сопротивления тензорезистора в любой момент времени и вычисляют изменение омического сопротивления тензорезистора, приращение деформации стены или фундамента и давление на стену или фундамент в любой момент времени. Технический результат: сохранение несущей способности стен и фундаментов; уменьшение концентрации напряжений в стенах и фундаментах; отсутствие необходимости нарушения электрической цепи тензорезисторов; возможность непрерывного мониторинга давления на стены и фундаменты; дистанционное управление измерениями. 4 ил.

 

Изобретение относится к области неразрушающих измерений давления на заданном горизонтальном уровне бетонных и кирпичных стен и фундаментов зданий и сооружений на стадии их эксплуатации.

Известен способ измерения давления на фундамент и стены от вышележащих конструкций и оборудования здания [1], заключающийся в расчете нагрузок по геометрическим размерам и плотности материала конструктивных элементов здания и расположенных в нем объектов, а также известному весу мебели, оборудования, людей и т.д.

Недостатком этого способа является то, что при отсутствии проектной документации на здание такой способ трудоемок, связан с неудобствами для жильцов и работников, не учитывает изменение веса, вызванного устройством новых полов без разборки старых, устройством подвесных потолков, изменением снеговой и ветровой нагрузок, увеличением числа бытовой техники и т.д. и не приспособлен для мониторинга давления в течение срока эксплуатации здания.

Также известен способ измерения давления на стены и фундамент зданий и сооружений [2], который заключается в том, что на бетонную или кирпичную поверхность стены или фундамента здания вдоль направления главных сжимающих напряжений наклеивают три тензорезистора и измеряют их начальное омическое сопротивление R0. Затем ниже наклеенных тензорезисторов вырубают карман глубиной 100 мм, шириной 200 мм и высотой 25 мм и измеряют их ответное омическое сопротивление R1.

Напряжение σ в стене или фундамента рассчитывают по формуле

σ=ε·E,

где ε - относительная деформация стены или фундамента;

Е - модуль упругости материала стены или фундамента.

Относительную деформацию ε стены или фундамента определяют по формуле

,

где k - коэффициент тензочувствительности тензорезисторов.

При этом чтобы не измерять модуль упругости Е материала стены или фундамента, в карман вводят компенсатор в виде металлической коробки с размерами 160×80×15 мм с жесткими боковыми стенками, днищем и крышкой в виде гибких мембран, маслопроводом и манометром. Компенсатор крепят к стенкам камеры цементным раствором, после затвердевания раствора в компенсатор накачивают масло до тех пор, пока давление компенсатора на стенки вырубки не приведет к возврату омического сопротивления тензорезисторов к величине начального омического сопротивления R0. По манометру определяют давление масла Рм внутри компенсатора. Это давление равно напряжению σ в материале стены или фундамента и давлению конструкции на стену или фундамент на заданном уровне здания в горизонтальном сечении выше уровня наклейки тензорезисторов.

Недостатками этого способа являются формирование повышенной концентрации напряжений в стене или фундаменте, вызванное устройством карманов в виде прямого параллелепипеда; выключение из работы части стены или фундамента, работающей на сжатие, даже после заполнения кармана бетоном, вследствие чего снижается несущая способность силовых элементов здания; постоянное наличие в компенсаторе масла.

Наиболее близким к предлагаемому способу является способ измерения давления на стену или фундамент на заданном уровне [2], заключающийся в том, что на малой площади поверхности конструкции наклеивают тензорезисторы, измеряют начальное омическое сопротивление R0 тензорезисторов, фрезеруют кольцевой надрез вокруг наклеенных тензорезисторов на поверхности стены или фундамента на глубину ¾ диаметра кольцевого надреза, измеряют ответное омическое сопротивление R1 тензорезисторов и определяют относительную деформацию стены по формуле

.

По относительной деформации ε стены или фундамента определяют напряжение в материале стены или фундамента по формуле

σ=ε·Е.

Модуль упругости Е материала стены или фундамента измеряют по результатам испытаний выбуренных цилиндрических образцов материала конструкции известными неразрушающими методами [3], например с помощью прибора ПУЛЬСАР-1.0.

Далее по напряжению σ в материале стены или фундамента определяют давление на единицу площади поперечного сечения стены или фундамента.

Недостатками этого способа являются необходимость нарушения электрической цепи тензорезисторов на период фрезерования кольцевого надреза, что влечет появление ошибки в измерениях ответного сопротивления R1 тензорезисторов; снижение несущей способности конструкции и ее надежности; низкая точность измерения деформации ε из-за малой глубины кольцевого надреза и относительно большого его диаметра.

Техническим результатом, на достижение которого направлено предлагаемое изобретение, является сохранение несущей способности стен и фундаментов; уменьшение концентрации напряжений в стенах и фундаментах; отсутствие необходимости нарушения электрической цепи тензорезисторов; возможность непрерывного мониторинга давления на стены и фундаменты; дистанционное управление измерениями.

Предлагаемый способ измерения давления на бетонные и кирпичные стены и фундаменты заключается в том, что на поверхности стены или фундамента 3 (см. фиг. 1, фиг. 2, фиг. 3 и фиг. 4) вдоль направления главных сжимающих напряжений наклеивают тензорезистор 1 и измеряют его начальное омическое сопротивление R0. Затем выше и ниже тензорезистора 1 в стене или фундаменте 3 высверливают два отверстия 2 диаметром в 3…4 раза больше ширины b тензорезистора 1, глубиной L равной 40…60 мм, на расстоянии в 3…4 раза больше ширины b тензорезистора 1 и измеряют ответное омическое сопротивление R1 тензорезистора 1.

Относительную деформацию стены или фундамента 3 определяют по формуле

,

где k - коэффициент тензочувствительности тензорезистора 1.

Давление на заданном уровне стены или фундамента 3 определяют по формуле

p00E+γh,

где E - модуль упругости материала стены или фундамента 3;

γ - плотность материала стены или фундамента 3;

h - расстояние от тензорезистора 1 до заданного уровня стены или фундамента 3, на котором измеряется давление на единицу площади горизонтального сечения стены или фундамента 3.

Для мониторинга давления на заданном уровне стены или фундамента 3 в каждое из отверстий 2 закладывают по два стальных полуцилиндра 4 диаметром меньше диаметра отверстий 2 на 2…3 мм и длиной, равной глубине L отверстий 2. Между стальными полуцилиндрами забивают по клину 5 длиной, равной глубине L отверстий 2, и толщиной на одном конце 1…3 мм, а на другом 4…5 мм. Забиванием клиньев 5 доводят омическое сопротивление тензорезистора 1 до величины, равной начальному омическому сопротивлению R0. Затем фиксируют текущее омическое сопротивление Rt тензорезистора 1 в любой момент времени t. Изменение омического сопротивления ΔRt тензорезистора 1 рассчитывают по формуле

ΔRt=Rt-R0.

Приращение деформации Δεt стены или фундамента 3 рассчитывают по формуле

.

Давление р на стену или фундамент 3 определяют по формуле

p=p0+ΔεtE.

Литература

1. ТСН 50-302-2004. Проектирование фундаментов зданий и сооружений в Санкт-Петербурге. - СПб.: Правительство Санкт-Петербурга, 2004.

2. Обследование и испытание сооружений: Учеб. для вузов / О.В. Лужин, А.Б. Злочевский, И.А. Горбунов, В.А. Волохов; Под ред. О.В. Лужина. - М.: Стройиздат, 1987. - 263 с.: ил.

3. Землянский А.А. Обследование и испытание зданий и сооружений: Учебное пособие. - М.: Изд-во АСВ, 2001. - 240 с.: ил.

4. Тензо-М. Тензодатчики. Тензорезисторный извлекаемый датчик давления грунта ДДГЛ [Электронный ресурс]. URL: . Дата обращения: 26.03.2013.

Способ измерения и мониторинга давления на бетонные и кирпичные несущие стены и фундаменты зданий и сооружений на стадии их эксплуатации, заключающийся в том, что на поверхность стены или фундамента наклеивают тензорезистор на уровне измеряемого давления вдоль направления главных сжимающих напряжений и измеряют начальное омическое сопротивление R0 тензорезистора, отличающийся тем, что в стене или фундаменте выше и ниже тензорезистора высверливают два отверстия диаметром в 3…4 раза больше ширины тензорезистора, на расстоянии в 3…4 раза больше ширины тензорезистора, глубиной 40…60 мм и измеряют ответное омическое сопротивление R1 тензорезистора; относительную деформацию стены или фундамента определяют по формуле

где k - коэффициент тензочувствительности тензорезистора;
давление на заданном уровне стены или фундамента определяют по формуле
p00E+γh,
где Е - модуль упругости материала стены или фундамента; γ - плотность материала стены или фундамента; h - расстояние от тензорезистора до заданного уровня стены или фундамента;
для мониторинга давления на стену или фундамент в каждое отверстие закладывают по два стальных полуцилиндра длиной, равной глубине отверстий, диаметром меньше диаметра отверстий на 2…3 мм; между стальными полуцилиндрами забивают по стальному клину длиной, равной глубине отверстий, и толщиной 1…3 мм с одной стороны и 4…5 мм с другой стороны; забиванием стальных клиньев доводят омическое сопротивление тензорезистора до величины, равной начальному омическому сопротивлению R0; затем фиксируют величину текущего омического сопротивления Rt тензорезистора в любой момент времени t и вычисляют изменение омического сопротивления ΔRt тензорезистора по формуле
ΔRt=Rt-R0;
приращение деформации Δεt стены или фундамента определяют по формуле

давление р на стену или фундамент в любой момент времени t рассчитывают по формуле
р=р0+ΔεtE.



 

Похожие патенты:

Изобретение относится к измерительной технике для определения контактной жесткости. Сущность: поверхности контактирующих деталей с определенными упругими константами материалов прижимают к друг другу с заданной силой F, нормальной к плоскости стыка, определяют остаточную h и упругую αy части полного сближения в контакте, по их сумме определяют величину полного сближения α в контакте, с последующим определением коэффициента j нормальной жесткости упругопластического контакта деталей двоякой кривизны.

Изобретение относится к области неразрушающего контроля материалов и изделий и может быть использовано в машиностроительной отрасли при сборке узлов и деталей корпусных изделий и оперативном контроле остаточной прочности крепежных элементов.

Способ относится к горной промышленности, в частности к шахтным подъемным установкам, и предназначен для контроля технического состояния подъемного каната. Способ позволяет определить жесткость подъемного каната на растяжение путем измерения длины подъемного каната от точки схода подъемного каната с барабана подъемной машины до подвесного устройства подъемного сосуда при остановке порожнего подъемного сосуда под загрузку, веса груза, удлинения подъемного каната после загрузки подъемного сосуда и последующего расчета, по величине которой судят о техническом состоянии подъемного каната.

Изобретение относится к области механических испытаний металлов и сплавов, а именно к испытаниям на изгиб с растяжением, и может быть использовано при испытании различных конструкций, работающих в сложных условиях нагружения, при расчетах на прочность конструкций, работающих в условиях изгиба с растяжением.

Изобретение относится к средствам измерения относительной продольной деформации на поверхности материальных тел. Экстензометр содержит два референтных тела в виде заостренных инденторов, при этом один индентор жестко связан с корпусом прибора, другой установлен с возможностью перемещения, а также систему передачи этих перемещений.

Изобретение относится к области строительства, в частности к определению изменения длительной прочности бетона во времени эксплуатируемых под нагрузкой в условиях внешней агрессивной среды бетонных и железобетонных конструкций.

Изобретение относится к испытательной технике, а именно к устройствам для испытания образцов материалов на консольный изгиб, кручение, растяжение, сжатие, а также на сложное сопротивление и может быть применено в учебной лаборатории.

Изобретение предназначено для оценки деформативности соединений в изделиях из импрегнированной ткани, подвергаемых двухосному напряжению неразрушающими нагрузками с целью определения деформативных характеристик пневматической конструкции в целом.

Изобретение относится к области «Физики контактного взаимодействия» материальной среды в предельном состоянии. Сущность изобретения состоит в том, что предельное состояние исследуемой среды определяют по зависимости τ с р к = p с р к t g φ ° + с ,    где τ с р к и p с р к - значения тангенциального главного напряжения ( τ с р к = σ I = σ I I ) и давления, соответствующего главному напряжению растяжения-сжатия ( σ I I I = p с р к ) среды, в условиях компрессионного сжатия образца среды, а значения нормального давления и нормальных тангенциальных напряжений сдвига среды определяют как: 1) в условиях одноосного деформирования , - при выходе линий сдвига на боковую поверхность образца и - под подошвой штампа; 2) при деформировании поверхности полупространства , - при выходе линий сдвига на поверхность полупространства и - под подошвой штампа; 3) при деформации штампом дна вертикальной выработки , - при выходе линий сдвига из стенок выработки и - под подошвой штампа, где рб=(γстрh-cстр)ctgφстр (кг/см2) - бытовое гравитационное давление; 4) при деформации среды в замкнутом массиве , - при выходе линий сдвига в полость над штампом и - под подошвой штампа. Технический результат - обеспечение возможности определения нормального давления и нормальных тангенциальных напряжений сдвига среды в условиях одноосного деформирования, при деформировании поверхности полупространства, при деформации штампом дна вертикальной выработки, .при деформации штампом дна вертикальной выработки и при деформации штампом дна вертикальной выработки.

Решение относится к механическим испытаниям, предназначенным для определения характеристик металла, проявляемых в технологических операциях холодной обработки давлением.

Изобретение относится к области судостроения, а именно - прочности конструкции корпусов судов ледового плавания, и касается вопросов обеспечения и повышения эксплуатационного ресурса судов арктического плавания.

Изобретение относится к измерительной технике и может быть использовано в датчиках силы, основанных на применении пьезоэлементов для измерения усилий, в частности, возникающих при проведении балансировок изделий.

Изобретение относится к измерительной технике и может быть использовано в датчиках силы, основанных на применении пьезоэлементов для измерений усилий, в частности, при проведении балансировок изделий.

Изобретение относится к области измерительных приборов, в частности к преобразователям незяектрических величин в электрические сигналы, и может быть использовано , например, для изготовления чувствительных элементов пьезорезисторных датчиков контактного сопротивления.

Изобретение относится к области исследования массива горных пород. .

Изобретение относится к измерительной технике и позволяет повысить точность измерения давления и температуры одним терморезисторным преобразователем (ТП). .

Изобретение относится к методам испытаний металлов на трещиностойкость, в частности к способу изготовления сварного составного образца типа СТ для испытаний на трещиностойкость облученного металла по стандартным методикам. Обойму изготавливают из необлученного металла и вставку из облученного металла обломка ранее испытанного образца-свидетеля для корпусов реакторов типа ВВЭР. На первом этапе изготавливают вставку. На втором этапе выбирают металл для изготовления обоймы, для этого определяют предел текучести облученного металла вставки и по диаграмме «предел текучести металла вставки - предел текучести металла обоймы» определяют предел текучести металла обоймы и из выбранного металла изготавливают элементы обоймы. С помощью электронно-лучевой или лазерной сварки выполняют приварку в определенной последовательности отдельных элементов обоймы к вставке. Вначале приваривают передний элемент обоймы, затем поочередно приваривают боковые элементы обоймы и после этого последним сварным швом приваривают задний элемент обоймы. При этом создают условия, чтобы температура в центре вставки облученного металла в процессе сварки не превышала температуру облучения. Затем прорезают задний элемент обоймы до вставки и потом после циклического нагружения и выращивания усталостной трещины до середины вставки. Последующее испытание сварного составного образца на трещиностойкость проводят по стандартной методике. Обеспечивается повышение достоверности результатов испытаний на трещиностойкость облученного металла путем испытания предлагаемого сварного составного образца типа СТ за счет снижения остаточных сварочных напряжений при сохранении свойств облученного металла. 1 з.п. ф-лы, 2 ил., 3 табл.
Наверх