Т-циркулятор

Изобретение относится к технике СВЧ и может быть использовано в волноводных трактах передатчиков, приемников, антенн РЛС для направленной передачи электромагнитных волн. Т-циркулятор содержит симметричное волноводное Т-разветвление в Н-плоскости, согласующий металлический клин, три ферритовых вкладыша и магнитную систему. Для повышения тепловой и электрической прочности Т-циркулятора при расширении полосы рабочих частот каждый ферритовый вкладыш выполнен в виде двух трехгранных равносторонних ферритовых призм, которые соосно установлены на противоположных широких стенках волноводного Т-разветвления в Н-плоскости, в областях круговой поляризации. При этом каждая трехгранная равносторонняя ферритовая призма ориентирована одной боковой гранью ортогонально к плоскости симметрии волноводного Т-разветвления в Н-плоскости и одним боковым ребром в сторону согласующего металлического клина. 1 ил.

 

Предлагаемое изобретение относится к технике СВЧ и может быть использовано в волноводных трактах передатчиков, приемников, антенн РЛС для направленной передачи электромагнитных волн.

Известна конструкция Т-циркулятора [А.Л. Микаэлян. Теория и применение ферритов на сверхвысоких частотах. Госэнергоиздат, 1963 г., стр. 582, рис. 10-63, 10-64], содержащая симметричное волноводное Т-разветвление в Н-плоскости, согласующий клин, круглый цилиндрический ферритовый вкладыш, размещенный симметрично относительно плоскости симметрии Т-разветвления, диаметрально пересекающей его, и магнитную систему. Его недостатки состоят в узкой полосе рабочих частот и низкой электропрочности.

Наиболее близкой по технической сущности к предлагаемому изобретению является конструкция Т-циркулятора [Патент на полезную модель RU 109333 U1, опубликован: 10.10.2011], содержащая симметричное волноводное Т-разветвление в Н-плоскости, согласующий металлический клин, три цилиндрических ферритовых вкладыша, выполненных в виде двух дисков, и магнитную систему.

Недостатком такой конструкции Т-циркулятора является узкая полоса рабочих частот, что определяется резким изменением диэлектрической проницаемости на границе воздух (ε=1) - феррит (ε≈12÷44) (при воздушном заполнении волноводного Т-разветвления).

Задачей предлагаемого изобретения является расширение функциональных возможностей Т-циркулятора.

Технический эффект предлагаемого изобретения состоит в повышении тепловой и электрической прочности при расширении полосы рабочих частот Т-циркулятора.

Сущность предлагаемого Т-циркулятора состоит в том, что он содержит симметричное волноводное Т-разветвление в Н-плоскости, согласующий металлический клин, три ферритовых вкладыша и магнитную систему.

Новым в предлагаемом Т-циркуляторе является то, что каждый ферритовый вкладыш выполнен в виде двух трехгранных равносторонних ферритовых призм, которые соосно установлены на противоположных широких стенках волноводного Т-разветвления в Н-плоскости, в областях круговой поляризации. При этом каждая трехгранная равносторонняя ферритовая призма ориентирована одной боковой гранью ортогонально к плоскости симметрии волноводного Т-разветвления в Н-плоскости и одним боковым ребром в сторону согласующего металлического клина.

На фиг. 1 приведено схематичное изображение предлагаемого Т-циркулятора.

Т-циркулятор состоит из: симметричного волноводного Т-разветвления в Н-плоскости, образованного средним волноводным каналом (1) и двумя боковыми волноводными каналами (2) и (3), согласующего металлического клина (4), трех ферритовых вкладышей (5), (6), (7), выполненных в виде двух трехгранных равносторонних ферритовых призм, соосно установленных на противоположных широких стенках волноводного Т-разветвления в Н-плоскости таким образом, что все призмы ориентированы одной боковой гранью ортогонально к плоскости симметрии волноводного Т-разветвления и одним боковым ребром в сторону согласующего металлического клина (4) и магнитной системы (8).

Т-циркулятор работает следующим образом: поле волны Н10, возбужденной, например, в среднем волноводном канале (1) Т-циркулятора, достигнув симметричного волноводного Т-разветвления, возбуждает в боковых волноводных каналах (2) и (3) первичные волны Н10. В силу симметрии волноводного Т-разветвления первичные волны в боковых волноводных каналах (2) и (3) равны по амплитуде и синфазны. Одновременно волна Н10, пришедшая из среднего волноводного канала (1), возбуждает намагниченные ферритовые вкладыши (5) и (6), расположенные в симметричном волноводном Т-разветвлении симметрично справа и слева от плоскости, проходящей через средние линии широких стенок среднего волноводного канала (1), и ферритовый вкладыш (7), пересекаемый этой плоскостью. Особенностью возбуждения ферритовых вкладышей (5) и (6) и правой и левой частей ферритового вкладыша (7) состоит в том, что магнитная составляющая поля СВЧ волны Н10 с одной стороны от плоскости, проходящей через средние линии широких стенок среднего волноводного канала (1), и с другой стороны от этой плоскости - имеют встречную (правую и левую) круговую поляризацию. Величина магнитной проницаемости одинаково намагниченных ферритовых вкладышей различна для право- и левополяризованных волн, т.е. для левого (5) и правого (6) ферритовых вкладышей, и для левой и правой частей ферритового вкладыша (7), пересекаемого плоскостью, проходящей через средние линии широких стенок среднего волноводного канала (1) (плоскостью симметрии Т-циркулятора). Это приводит к тому, что левый и правый ферритовые вкладыши (5) и (6) и левая и правая части ферритового вкладыша (7) по-разному (асимметрично) воздействуют на симметричное поле волны Н10 в симметричном волноводном Т-разветвлении. Это вызывает возбуждение волны Н20 в волноводном Т-разветвлении, переизлученной ферритовыми вкладышами (5), (6) и (7). В силу симметричного расширения волноводного Т-разветвления, размер поперечного сечения допускает существование волны Н20. Таким образом, имеют место необходимое и достаточное условия существования волны Н20 в симметричном волноводном Т-разветвлении, противофазно возбуждающей боковые волноводные каналы (2) и (3). В результате при равенстве амплитуд первичной волны Н10 и вторичной волны Н20, а также при их синфазности в одном из боковых волноводных каналов, например, в волноводном канале (2), поле волны Н10 и поле волны Н20 (переизлученной ферритовыми вкладышами) будут складываться, а в другом волноводном канале (3) - вычитаться. То есть энергия волны, возбужденной в среднем волноводном канале (1), будет полностью передаваться в волноводный канал (2). Одновременно противофазность и равенство амплитуд первичной и вторичной волн в боковом волноводном канале (3) приводят к их взаимной компенсации и обеспечивают развязку этого волноводного канала.

При возбуждении симметричного волноводного Т-разветвления волной Н10 со стороны одного из боковых волноводных каналов, например, волноводного канала (2), симметрия волноводного Т-разветвления в Н-плоскости отсутствует. Однако, в силу граничных условий на его стенках и принципа взаимности, непосредственно в согласованном волноводном Т-разветвлении возбуждается поле, по структуре аналогичное волне Н10, повторяющее структуру поля, возбуждаемого в волноводном Т-разветвлении со стороны среднего волноводного канала (1). В результате в волноводах среднего волноводного канала (1) и бокового волноводного канала (3) возбуждаются равные по амплитудам синфазные первичные волны Н10. Так же, как и при возбуждении со стороны среднего волноводного канала (1), при возбуждении электромагнитного поля со стороны бокового волноводного канала (2) все три одинаково намагниченных ферритовых вкладыша: левый (7), правый (5) и левая и правая половины вкладыша (6) возбуждаются электромагнитным полем со встречной круговой поляризацией - левого и правого направлений. В связи с этим величина магнитной проницаемости ферритовых вкладышей различна, и соответственно переизлученное ими вторичное поле слева и справа по направлению его распространения антисимметрично (по поляризации вектора Е), т.е. аналогично полю волны Н20 (вторичная волна). Размеры волноводного Т-разветвления в Н-плоскости за счет протяженности среднего волноводного канала (1) в направлении его продольной оси допускают существование волны, аналогичной волне Н20. Это приводит к тому, что в одном из волноводных каналов, например, волноводном канале (1), поля первичной и вторичной волн синфазны и складываются, а в другом волноводном канале (3) - противофазны и вычитаются. При синфазности и равенстве амплитуд полей первичной и вторичной электромагнитных волн в волноводном канале (1) энергия волны, возбужденной в волноводном канале (2), будет полностью передаваться в волноводный канал (1). Одновременно противофазность и равенство амплитуд первичной и вторичной электромагнитных волн в волноводном канале (3) приводят к их взаимной компенсации, что обеспечивает развязку волноводного канала (3). Аналогичным образом будет осуществляться передача энергии электромагнитных волн при возбуждении Т-циркулятора со стороны волноводного канала (3) при сохранении направления магнитного поля, намагничивающего ферритовые вкладыши (5), (6), (7). Т.е. будет осуществляться последовательность передачи энергии электромагнитных волн из канала в канал 1→2→3→1. При изменении направления поля, намагничивающего ферритовые вкладыши на встречное направление, передача волн изменится на обратное: 1→3→2→1.

В предлагаемой конструкции Т-циркулятора расширению полосы рабочих частот способствует изменение конфигурации ферритовых вкладышей - постепенное увеличение сечения от боковых ребер трехгранных равносторонних ферритовых призм к их центру, и неполное заполнение волновода по высоте ферритовыми вкладышами. Это влечет за собой уменьшение эффективной диэлектрической проницаемости вкладышей и ее плавное изменение от боковых ребер к центру. Одновременно трехгранные равносторонние ферритовые призмы, установленные в области круговой поляризации, на периферии трехплечего волноводного Т-разветвления преобразуют часть энергии электромагнитного поля волны Н10 в электромагнитное поле волны Н20, что приводит к снижению концентрации напряженности поля в центре Т-разветвления и постепенному изменению эффективной диэлектрической проницаемости на границе сред - воздух-феррит (при воздушном заполнении волноводного Т-разветвления), тем самым увеличивая его электропрочность. Расположение ферритовых вкладышей на противоположных широких стенках волноводного Т-разветвления в Н-плоскости улучшает теплоотдачу (теплоотвод) от ферритовых деталей и тем самым повышает тепловую и электрическую прочности Т-циркулятора при высоких значениях мощности.

Т-циркулятор, содержащий симметричное волноводное Т-разветвление в H-плоскости, согласующий металлический клин, три ферритовых вкладыша и магнитную систему, отличающийся тем, что каждый ферритовый вкладыш выполнен в виде двух трехгранных равносторонних ферритовых призм, которые соосно установлены на противоположных широких стенках волноводного Т-разветвления в H-плоскости, в области круговой поляризации, при этом каждая трехгранная равносторонняя ферритовая призма ориентирована одной боковой гранью ортогонально к плоскости симметрии волноводного Т-разветвления в H-плоскости и одним боковым ребрам в сторону согласующего металлического клина.



 

Похожие патенты:

Тем-камера // 2606173
Изобретение относится к электротехнике. Сущность изобретения заключается в том, что ТЕМ-камера содержит корпус в форме пирамиды, при этом в поперечном сечении центральная и сужающиеся части корпуса являются прямоугольником с соотношением сторон 1:1,15, причем длина центральной части равна ее ширине, а сужающиеся части выполнены с линейными углами сужения 32,7° и 36,7°, открытые концы которого имеют размер 7,2×8,4 мм и вдоль продольной составляющей сгибы для соединения со стягивающим кольцом, которое выполнено в форме цилиндра с прямоугольным вырезом внутри и отношением сторон 1:1,15, по краям которого имеются по меньшей мере четыре отверстия с резьбовым соединением для крепления с помощью винтов через токопроводящую пасту держателя под соединитель, который также имеет цилиндрическую форму с по меньшей мере четырьмя резьбовыми отверстиями и по меньшей мере пятью отверстиями под высокочастотный соединитель, четыре из которых выполнены с одинаковым диаметром, а пятое выполнено в виде коаксиального волновода с волновым сопротивлением 50 Ом, центральный проводник которого соединен при помощи пайки и соединения в паз с центральной пластиной, которая выполнена из проводящего материала толщиной 2 мм и шириной 1:1,3 по отношению к ширине центральной части корпуса, а на концах центральной пластины выполнено линейное сужение со ступенчатыми вырезами на кромках в форме дуги, причем сужение в начале выполнено под углом 46° на расстоянии толщины стягивающего кольца и под углом 61° на расстоянии от толщины стягивающего кольца до 5,5 мм, превышающем расположение ребер корпуса, в одной из стенок которого имеется прямоугольный вырез, кромки которого выполнены с фаской под угол 45°, для испытательного стола из проводящего материала, который имеет по меньшей мере одно отверстие для соединителя и фаску под углом 45°.

Использование: для создания волноводной нагрузки. Сущность изобретения заключается в том, что волноводная нагрузка содержит короткозамкнутый отрезок прямоугольного волновода, внутри которого вдоль двух широких стенок установлены поглотители, которые выполнены в виде плоских пластин из поглощающего материала, имеют одинаковую толщину, заполняют всю площадь двух широких стенок прямоугольного волновода, узкие стенки короткозамкнутого отрезка прямоугольного волновода выполнены с уменьшающейся высотой от начала нагрузки к ее концу и на короткозамкнутом конце нагрузки высота узких стенок волновода выбрана равной двум толщинам пластин из поглощающего материала.

Изобретение относится к радиотехнике. Полосовой фильтр образован прямоугольными волноводами, отделенными друг от друга вдоль середины имеющей большую ширину поверхности фильтра, и тонкой металлической пластиной, заключенной между прямоугольными волноводами.

Изобретение относится к радиотехнике, а именно к технике СВЧ, и предназначено для создания полосно-заграждающих фильтров на основе диэлектрических резонаторов преимущественно в дециметровом диапазоне длин волн.

Изобретение относится к области радиотехники и радиоэлектроники и может быть использовано для поглощения электромагнитного излучения на выходе сверхвысокочастного волноведущего тракта, а также входить в состав сложных сверхвысокочастотных функциональных узлов и устройств.

Предлагаемое изобретение относится к технике СВЧ и может быть использовано в волноводных трактах передатчиков, приемников, антенн РЛС для направленной передачи электромагнитных волн.

Предлагаемое изобретение относится к технике СВЧ и может быть использовано в волноводных трактах передатчиков, приемников, антенн РЛС для направленной передачи электромагнитных волн.

Изобретение относится к области радиосвязи. Технический результат изобретения заключается в повышении эффективности устройств генерации и частотной модуляции за счет увеличения линейного участка частотной модуляционной характеристики при произвольных характеристиках нелинейного элемента.

Изобретение относится к радиоэлектронике и измерительной технике и может быть использовано для заданного ослабления высокочастотного сигнала большой мощности в широкой полосе рабочих частот.

Изобретения относятся к областям радиосвязи и могут быть использованы для создания устройств генерации и частотной модуляции с увеличенным линейным участком частотной модуляционной характеристики при произвольных характеристиках нелинейного элемента, цепи внешней обратной связи и параметрах резистивного четырехполюсника.

Изобретение относится к технике сверхвысоких частот и может быть использовано в селективных трактах приемных и передающих систем. Микрополосковый полосно-пропускающий фильтр содержит диэлектрическую подложку, на одну сторону которой нанесено заземляемое основание, а на вторую - нанесены электромагнитно связанные полосковые проводники: смещенные относительно друг друга протяженные широкие отрезки полосковых проводников, заземляемые на основание со стороны свободных концов, с противоположных - соединены между собой посредством протяженных отрезков полосковых проводников, с внутренней стороны - соединены с отрезками протяженных узких полосковых проводников, дважды изогнутых под прямым углом, при этом вдоль по их периметрам, внутри каждого расположены свернутые П-образно отрезки полосковых проводников, заземляемые на основание со стороны свободных концов, соединенные с внешней стороны с ортогонально расположенными протяженными широкими отрезками полосковых проводников, являющихся портами фильтра. Изобретение обеспечивает расширение рабочей полосы пропускания и высокочастотной полосы заграждения, а также улучшение селективных свойств. 2 ил.

Изобретение относится к областям радиотехники и связи. Высокочастотный фазовращатель выполнен на основе КМОП-технологии, при этом усилители с переменным коэффициентом усиления построены на основе модифицированных ячеек Гильберта, а аналоговый дифференциальный квадратурный сумматор подключен к квадратурному полифазному фильтру напрямую. Каждая модифицированная ячейка Гильберта состоит из десяти МОП-транзисторов. При этом затворы первого и четвертого МОП-транзисторов являются высокочастотными входами, истоки первого и второго МОП-транзисторов соединены со стоком девятого МОП-транзистора, истоки третьего и четвертого МОП-транзисторов соединены со стоком десятого МОП-транзистора, исток девятого и десятого МОП-транзисторов подключен к общему узлу, затворы девятого и десятого МОП-транзисторов подключены к первому выходу источника напряжений смещения, затворы второго и третьего МОП-транзисторов подключены ко второму выходу источника напряжений смещения, стоки первого и третьего МОП-транзисторов подключены к узлу, к которому подключены истоки пятого и шестого МОП-транзисторов, стоки второго и четвертого МОП-транзисторов подключены к узлу, к которому подключены истоки седьмого и восьмого МОП-транзисторов, затворы пятого и восьмого МОП-транзисторов и затворы шестого и седьмого МОП-транзисторов представляют собой управляющие дифференциальные входы соответственно, стоки пятого и седьмого МОП-транзисторов и стоки шестого и восьмого МОП-транзисторов подключены к двум входам цепи нагрузки соответственно Высокочастотный фазовращатель на МОП-транзисторах с конструкцией согласно изобретению обладает уменьшенной ошибкой установки фазы и потребляемой мощностью, а также более низкой себестоимостью. 3 ил.

Изобретение относится к автотранспортным средствам, в частности специального назначения, может быть использовано для повышения помехозащищенности бортового электрооборудования к внешнему высокочастотному электромагнитному полю при эксплуатации АТС в условиях сложной электромагнитной обстановки. Повышение помехозащищенности электрооборудования АТС к внешнему высокочастотному ЭМП достигается нанесением широкополосного радиопоглощающего материала как минимум на три взаимно перпендикулярные металлические внутренние поверхности того объема кузова АТС, в котором расположено защищаемое электрооборудование. Параметры широкополосного радиопоглощающего материала выбираются из учета начала ослабления ЭМП на заданной минимальной частоте диапазона частот, в котором наблюдается не менее 90% нарушений работоспособности электрооборудования при воздействии внешнего высокочастотного ЭМП. Способ позволяет перейти из режима стоячих волн на режим смешанных волн, за счет чего уменьшить во внутреннем объеме кузова АТС максимальные уровни ЭМП, вследствие чего улучшается электромагнитная обстановка и снижается влияние ЭМП на бортовое электрооборудование, тем самым происходит повышение его помехозащищенности. 3 ил.

Использование – в области электротехники. Технический результат – повышение стойкости к деформации обмотки линейного фильтра. Согласно изобретению линейный фильтр для систем передачи на линиях электропередач переменного тока среднего/высокого напряжения содержит непрерывную катушку из электропроводного металла, при этом катушка сформирована непрерывной спиралью, выполненной из витков (1, 1А, 1В, 1С) катушки, которые намотаны как соленоид и удерживаются разнесенными друг от друга последовательностью прокладок (2), выполненных из электрически изолирующего материала. Витки (1, 1А, 1В, 1С) катушки имеют Н-образное сечение, чтобы на каждой из противоположных поверхностей таких витков катушки образовывалось углубление или непрерывный канал, куда помещены прокладки (2). При этом прокладки (2) создают надежную опору для каждого витка катушки. 3 з.п. ф-лы, 2 ил.

Изобретение относится к устройствам СВЧ-электроники и может быть использовано при конструировании нано- и микроэлектронных элементов для обработки сигналов. Элемент на магнитостатических спиновых волнах (МСВ) имеет две пары микрополосковых преобразователей, которые образуют два параллельных линейных канала распространения МСВ, разнесенных друг от друга на расстояние, обеспечивающее размещение между указанными каналами резонатора МСВ, взаимодействующего с линейными каналами. Каждый линейный канал распространения МСВ выполнен в виде системы одиночных цилиндрических включений из ферромагнитного материала, образованных в базовой ферромагнитной пленке и расположенных равномерно по длине канала, а резонатор МСВ представляет собой систему одиночных цилиндрических включений из ферромагнитного материала, образованных в базовой ферромагнитной пленке и расположенных равномерно по окружности. Включения из ферромагнитного материала имеют большую намагниченность, чем базовая ферромагнитная пленка. Технический результат - возможность реализации функций фильтра и резонатора при обеспечении пониженных вносимых потерь в диапазоне частот нескольких ГГц. 5 з.п. ф-лы, 6 ил.

Изобретение относится к области радиоизмерительной СВЧ-техники и предназначено для автоматической регулировки коэффициента стоячей волны по напряжению (КСВU) и неравномерности по амплитудно-частотной характеристике (АЧХ) и фазочастотной характеристике (ФЧХ) в СВЧ-приборах. Технический результат предлагаемого способа автоматической регулировки технических характеристик в СВЧ-приборах и комплекса средств для его осуществления заключается в существенном повышении точности регулировки за счет обработки сигнала в цифровом формате, возможности одновременной регулировки КСВU и неравномерности АЧХ и ФЧХ в СВЧ-приборах и повышении производительности процесса за счет значительного сокращения времени проведения регулировки. Для достижения заявленного результата используют ЭВМ с пакетом программ, подключенную через интерфейс к съемному механическому стенду, включающему блоки ЦАП-АЦП и исполнительные механизмы, приводящие в движение устройства для регулировки путем вращения штоков. С помощью ЭВМ проводят анализ достигнутых значений технических характеристик, принимают решение о необходимости дальнейшей регулировки, а при достижении минимально возможных значений КСВU и неравномерности АЧХ и ФЧХ заканчивают процесс регулировки СВЧ-прибора. 2 н.п. ф-лы, 1 ил.

Многослойный полосно-пропускающий фильтр содержит параллельные слои диэлектрика резонансной толщины, каждый из которых отделен один от другого и от окружающего пространства плоской решеткой параллельных тонкопленочных полосковых проводников с упорядоченными осями. При этом оси любых двух соседних решеток ортогональны. Технический результат изобретения заключается в улучшении селективных свойств фильтра, выражающемся в расширении верхней полосы заграждения за счет значительного повышения частоты второй моды колебаний двухслойных резонаторов по сравнению с частотой первой моды колебаний. 2 ил.

Изобретение относится к области радиотехники, в частности к фильтрам. Полосно-пропускающий СВЧ-фильтр содержит установленные на металлическое основание и гальванически соединенные между собой боковыми поверхностями четвертьволновые резонаторы, изготовленные на основе коаксиальных керамических линий квадратного сечения. Каждый резонатор и емкости связи его с другим резонатором или внешним устройством изготовлены как один конструктивный элемент, при этом емкости связи отделены от резонатора зазором в металлизации внешней поверхности коаксиальной керамической линии и выполнены в виде керамических конденсаторов, обкладками которых являются внутренний проводник и боковые поверхности отрезка коаксиальной керамической линии от зазора до открытого торца коаксиальной керамической линии, причем на горизонтальных поверхностях этого отрезка коаксиальной керамической линии отсутствует металлизация. Регулировка частоты в фильтре производится за счет наличия мест выборки металлизации. Ширина зазора, отделяющего резонатор от емкостей связи, определяется из величины напряжения поверхностного пробоя. Технический результат - уменьшение габаритных размеров, улучшение частотных, мощностных, прочностных характеристик. 1 з.п. ф-лы, 6 ил.

Изобретение относится к устройствам, обеспечивающим постоянный фазовый сдвиг между опорным каналом (компенсирующей линией) (ОК) и фазосдвигающим каналом (ФК) в широкой полосе частот. Фиксированный фазовращатель СВЧ содержит опорный канал на одиночной линии передачи и фазосдвигающий канал, выполненный в виде, по крайней мере, одного четырехполюсника в виде отрезка связанных линий передачи, нагруженных в месте соединения короткозамкнутым шлейфом. Причем связанные линии передачи выполнены ступенчато-неоднородными. Технический результат заключается в уменьшении коэффициента стоячей волны по напряжению и уменьшении максимального отклонения Δφ функции фазового сдвига от номинального значения φ0. 1 з.п. ф-лы, 2 ил.

Изобретение относится к технике СВЧ и может быть использовано в спутниковой связи и в системах непосредственного телевизионного вещания с поляризационным уплотнением. Устройство содержит два малошумящих усилителя, мостовое устройство, а также соосно расположенные и соединенные между собой отрезок круглого волновода и ответвитель ортогональных линейно поляризованных волн, выполненный на круглом волноводе и снабженный короткозамыкателем. При этом в отрезке круглого волновода размещена в диаметральной плоскости фазосдвигающая неоднородность, закрепленная на конце диэлектрического стержня, пропущенного через отверстие радиусом r<0,1R в короткозамыкателе с возможностью осевого вращения, где R - радиус круглого волновода. В стенке ответвителя ортогональных линейно поляризованных волн выполнены два отверстия связи, соединенные через идентичные отрезки прямоугольного волновода с входными плечами мостового устройства, и с центрами, расположенными в одной поперечной плоскости, лежащей на расстоянии λв/4 от отражающей поверхности короткозамыкателя, и на расстоянии πR/2 один от другого, где λв - длина волны в круглом волноводе на средней рабочей частоте. Фазосдвигающая неоднородность подбирается таким образом, чтобы обеспечить фазовый сдвиг 90°, а мостовое устройство выполнено в виде разбалансированного квадратурного волноводного моста, входные плечи которого через идентичные отрезки прямоугольного волновода и идентичные малошумящим усилителям соединены с отверстиями связи ответвителя ортогональных линейно поляризованных волн, таким образом, что входы малошумящих усилителей расположены на максимально близком расстоянии от отверстий связи ответвителя ортогональных линейно поляризованных волн. Технический результат заключается в уменьшении шумовой температуры устройства для приема ортогональных линейно поляризованных волн. 1 ил.
Наверх